
Training Hard Margin Support vector machines

Using Greedy Stagewise Algorithm

Liefeng Bo, Ling Wang and Licheng Jiao, Senior Member, IEEE

Institute of Intelligent Information Processing, Xidian University, Shaanxi, China

E-mail: blf0218@163.com

Homepage: http://see.xidian.edu.cn/graduate/lfbo/

Abstract

Hard margin support vector machines (HM-SVMs) suffer from getting over-fitting in

the presence of noise. Soft margin SVMs deal with this problem by introducing a

regularization term and obtain a state of the art performance. However, this disposal

leads to a relatively high computational cost. In this paper, an alternative method,

greedy stagewise algorithm for SVMs, named GS-SVMs, is presented to cope with

the over-fitting of HM-SVMs without employing the regularization term. The most

attractive property of GS-SVMs is that its computational complexity in the worst case

only scales quadratically with the size of training samples. Experiments on the large

data sets with up to 400000 training samples demonstrate that GS-SVMs are faster

than LIBSVM 2.83 without sacrificing the accuracy. Finally, we employ statistical

learning theory to analyze the empirical results, which shows that the success of

GS-SVMs lies in that its early stopping rule can act as an implicit regularization term.

Keywords: Classification, support vector machines (SVMs), greedy stagewise

algorithm, VC dimension

1 Introduction

Hard margin support vector machines have a risk of getting over-fitting in the

presence of noise (Boser et al., 1992; Keerthi and Lin, 2003). To deal with this

problem, soft margin SVMs (Cortes and Vapnik, 1995; Schölkof et al., 2000)

introduce the regularization parameter that allows some training error to obtain large

margin. This is a highly effective mechanism for avoiding over-fitting, which leads to

good generalization performance. Though very successful, we can identify

shortcomings of soft margin SVMs:

① The training procedure of soft margin SVMs amounts to solving a constrained

quadratic programming. Although the training problem is, in principle, solvable,

in practice it is intractable by the classical optimization techniques, e.g. interior

point method, because their computational complexity usually scales cubically

with the size of training samples.

② The regularization parameter depends on the task at hand; hence there is no

foolproof method for determining it before training. Usually, we have to resort to

a cross validation procedure that is wasteful in computation (Tipping, 2001).

In the past few years, a lot of fast iterative algorithms were presented to cope with

the problem ①. Chunking algorithm (Osuna et al., 1997) splits the variables into

inactive and active sets (also named working set). At first, an arbitrary subset of the

variables is selected as the working set. After a general optimization algorithm, e.g.

interior point method is applied to the subset, the support vectors in the working set

are reserved and the rest are replaced with the variables that violate

Karush-Kuhn-Tucker (KKT) conditions. However, this algorithm still is inapplicable

in the case the number of support vectors is very large due to high memory

requirement. Joachims (1999) identified this shortage and developed an efficient

decomposition scheme, named SVMlight. The key idea of SVMlight is to find a feasible

direction of steepest descend, in which the number of non-zero elements is set to be a

small constant. Platt (1999) took the decomposition idea to an extreme where the size

of the working set of SMO algorithm is set to be two and hence an analytical solution

for sub-problem is obtained. Keerthi et al. (2001) and Shevade et al. (2000) further

improved the performance of SMO by introducing the maximal violating pair

working set selection. Hastie et al. (2004) derived an algorithm that can fit the entire

path of SVM solutionms for every value of the regularization parameter. Some other

examples include Kernel-Adatron (Friess et al., 1998), SimpleSVM (Vishwanathan et

al., 2003), SVMTorch (Collobert and Bengio, 2001) and so on.

Recently, there have been many attempts to approximately train SVMs. Collobert

et al. (2002) proposed a parallel mixture of SVMs. Dong et al. (2005) introduced a

parallel optimization step to quickly remove most of the nonsupport vectors for

speeding up SVMs. Bakir et al. (2005) selectively removed training samples using

probabilistic estimates related to editing algorithms. Bordes et al. (2005) presented an

online algorithm to compute an approximation solution of SVMs. Tsang et al. (2005)

showed many kernel methods can be equivalently formulated as minimum enclosing

ball problems in computational geometry and presented core vector machine (CVM)

to compute the approximate solution of SVMs. Keerthi et al. (2006) built sparse

SVMs using a matching pursuit-like algorithm. These algorithms proved to be

effective and boosted the development of large scale SVMs.

Based on a preliminary work (Bo et al., 2005), a greedy stagewise algorithm for

approximately training SVMs (GS-SVMs) is presented to deal with the over-fitting of

HM-SVMs. Instead of employing the regularization term, GS-SVMs attempt to

control the complexity of the hypothesis space by itself. It iteratively builds the

decision function by adding one kernel function at one time. At each iteration,

GS-SVMs determine the index and the weight of the new kernel function to be

included by an optimization problem in two variables, whose solution can be obtained

in closed form. This procedure is repeated until the loss function stops decreasing.

The proposed algorithm possesses the two following attractive properties:

① The computational complexity of GS-SVMs is ()O n , where n is the number of

support vectors and is the number of training samples. Even in the worst case

that all the training samples are the support vectors, the computational complexity

is only ()2O .

② No extra regularization parameter is required.

Extensive empirical comparisons validate the efficiency and effectiveness of

GS-SVMs. Moreover, we employ statistical learning theory to analyze the empirical

results, which shows that the success of GS-SVMs lie in that its early stopping rule

can act as an implicit regularization term.

This paper is organized as follows. In section 2, a brief introduction of SVMs is

given. The reason that the dual of HM-SVMs can be regarded as a loss function is

interpreted in section 3. GS-SVMs is detailed derived in section 4. Experiments which

demonstrate the speed and generalization performance of GS-SVMs are given in

section 5. In section 6, we explore the reason for the success of GS-SVMs. In section

7, the contributions of this paper are summarized and the further research direction is

indicated.

2 Support vector machines

In this section, we briefly introduce support vector machines. For more details, the

interested reader can refer to (Vapnik, 1995 and 1998). In classification, we are given

a set of training samples { } 1
,i i i
y

=
x where ix is the input sample defined on dR ,

iy is the corresponding output and is the number of training samples. The aim is

to determine an approximation function ()f x of the target function ()*f x , which

best represents the relationship between the inputs and the outputs . In the feature

space, SVMs model takes the form () ()Tf = Φx w x where the nonlinear mapping

()Φ x maps the input data into a higher dimensional feature space whose dimension

can be infinite. We have also dropped the threshold b for the sake of simplicity. The

generalization performance of SVMs usually is not affected by this drop in most cases

(one should be cautious with very unbalanced data sets where the threshold can be

helpful). To obtain a classifier, HM-SVMs solve the following optimization problem

()()

21min
2

. . , 1, 1, ,i is t y i< Φ > ≥ =

w

w x
. (2.1)

Its Wolfe dual is

() ()

, 1 1

1min
2

. . 0 1, ,

T
i j i j i j i

i j i

i

y y

s t i

α α α

α
= =

⎛ ⎞
Φ Φ −⎜ ⎟

⎝ ⎠
≤ =

∑ ∑x x
 . (2.2)

According to Mercer’s theory (Aronszajn, 1950), any positive definite kernel

function (),i jK x x can be expressed as the inner product of two vectors in some

feature space and therefore can be used in SVMs. Replacing () ()T
i jΦ Φx x with

(),i jK x x , we get

()
, 1 1

1min ,
2

. . 0 1, ,

i j i j i j i
i j i

i

y y K

s t i

α α α

α
= =

⎛ ⎞
−⎜ ⎟

⎝ ⎠
≤ =

∑ ∑x x
. (2.3)

To deal with the non separable case, one often uses soft margin SVMs

()
, 1 1

1min ,
2

. . 0 1, ,

i j i j i j i
i j i

i

y y K

s t C i

α α α

α
= =

⎛ ⎞
−⎜ ⎟

⎝ ⎠
≤ ≤ =

∑ ∑x x
. (2.4)

For a new sample x , we can predict its label by

() ()
1

=sgn ,i i i
i

f y Kα
=

⎛ ⎞
⎜ ⎟
⎝ ⎠
∑x x x , (2.5)

where iα is the solution of (2.4).

3 RKHS Norm View for SVMs

The key conclusion in this section is that the Wolfe dual of HM-SVMs can be

regarded as the loss function induced by a reproducing kernel Hilbert space (RKHS)

norm, which is the basis of developing greedy approximation algorithms. Similar

conclusion about support vector regression is reported by Girosi (1998).

Theorem 3.1 (Aronszajn, 1950): Let dX ⊂ R , a real symmetric function (),K x y ,

, X∈x y is positive definite symmetric if and only if for every set of real numbers

1 2{ , , , }α α α and every set of vectors { }1 2 ,x , x , x , we have

()
, 1

, 0i j i j
i j

Kα α
=

≥∑ x x .

Definition 3.2 (Aronszajn, 1950): A Hilbert space H of function

: ,f X X→ ≠∅ is called a RKHS with dot product ,
H

i i and norm

,
H H

f f f= if there exists a function :K X X× → satisfying

() () (), , Hf K f< > =x xi i and spanning H , i. e. (){ }span , ,H K X= ∈x xi .

We call ,
H H

f f f= , where f H∈ , reproducing norm. Reproducing

kernel Hilbert space (RKHS) KH induced by (),K x y satisfies the following three

properties

(a) (), KK H∈xi where X∈x ;

(b) ()
1

,i i K
i

K Hα
=

∈∑ xi , where iα and are finite;

(c) For () Kf H∈i , X∈x , () () (), , Hf K f< > =x xi i , where ,
H

i i is the inner

product of RKHS. In particular, () () (), , , ,j i H i jK K K< > =x x x xi i .

According to the property (b), we can derive that the decision function of SVMs,

()f x , belongs to RKHS KH . We assume that the unknown target function ()*f x

belongs to RKHS KH . Measuring the distance by RKHS norm between the target

function ()*f x and the approximation function ()f x , we have the following loss

function

() ()
2

*

1

1 ,
2
. . 0 1,2, ,

i i i
i H

i

f y K

s t i

α

α
=

−

≥ =

∑x x x
, (3.1)

where
H
i is RKHS norm. (3.1) can be expanded as

() () () () ()2* *

1 1 1

1 1, , , , ,
2 2
. . 0, 1,2, ,

i i i i j i j i jH
i i jH H

i

f y f K y y K K

s t i

α α α

α
= = =

− +

≥ =

∑ ∑∑x x x x x x x x

 (3.2)

Using the reproducing property (c) of kernel function, we can transform Eq. (3.2) into

() () ()2* *

1 1 1

1 1 ,
2 2
. . 0, 1, ,

i i i i j i j i jH
i i j

i

f y f y y K

s t i

α α α

α
= = =

− +

≥ =

∑ ∑∑x x x x
 (3.3)

Since ()*
if x is the output of target function on the point ix , it is reasonable to

estimate it by iy (for noiseless data, ()*
i if y=x). Thus we have

() ()2*

1 1 1

1 1 ,
2 2
. . 0, 1, ,

i i j i j i jH
i i j

i

f y y K

s t i

α α α

α
= = =

− +

≥ =

∑ ∑∑x x x
. (3.4)

Dropping the constant term, we can estimate , 1, ,i iα = by

()
1 1 1

1min ,
2

. . 0 , 1, ,

i j i j i j i
i j i

i

y y K

s t i

α α α

α
= = =

⎛ ⎞
−⎜ ⎟

⎝ ⎠
≤ =

∑∑ ∑x x
. (3.5)

It is easily checked that (3.5) completely amounts to (2.5), which enlightens us to

take the Wolfe dual of SVMs as the loss function induced by RKHS norm. If we

further constrain , 1, ,i iα = smaller than C , we can obtain soft margin SVMs.

4 Greedy Stagewise Algorithm for SVMs

Though (3.5) is, in principle, solvable by the classical optimization techniques, in

practice it suffers from the two serious problems: (1) its computational complexity

usually scales cubically with the size of training samples; (2) there often is a risk of

getting over-fitting due to no regularization term.

In this section, we will deal with the above two problems by greedy stagewise

algorithm (GS-SVMs) which attempts to fast approximate (3.5) while avoiding the

over-fitting. The dictionary (){ }, | 1, 2, ,iD k i= =x x used by GS-SVMs is a set of

the kernel functions centered on the training samples. GS-SVMs iteratively build the

decision function by adding one kernel function at one time. At each iteration,

GS-SVMs determine the index and the weight of the next kernel function to be

included by an optimization problem in two variables. This procedure is repeated until

the loss function (3.5) stops decreasing.

There are many efforts for greedy learning algorithms. In general, the existing

methods can be roughly classified into two groups. The first group is called greedy

stepwise approach that readjusts the weights of the previously entered basis functions

when a new basis function is added. The typical algorithms include orthogonal least

squares learning algorithms (Chen et al., 1991), kernel matching pursuit (backfitting

and prefitting version) (Vincent and Bengio, 2002), fast sparse approximation for least

square support vector machines (Jiao et al., 2006) and so on. The second group is

called greedy stagewise approach that fixes the weights of the previously entered

basis functions when a new basis function is added. The typical algorithms include

matching pursuit (Mallat and Zhang, 1993), AdaBoost (Freund, 1995), LogitBoost

(Friedman et al., 2000), Doom II (Mason et al., 2000), gradient boosting (Friedman,

2001), leveraged vector machines (Singer, 2000) and so on.

Our algorithm can be classified into the second group. The most important

difference among the algorithms in the second group is the loss function they

optimize. Matching pursuit uses a squared loss function; AdaBoost and leveraged

vector machines use an exponential loss function; LogitBoost uses a negative

binomial log-likelihood; Doom II uses a margin loss function induced by hyperbolic

tangent function; however, GS-SVMs use the dual of HM-SVMs as a loss function.

The reason that the dual of HM-SVMs can be regarded as a loss function can be found

in section 3. Another major difference is caused by the basis functions. In previous

boosting algorithms, it is a tradition that the basis functions are trees and hence the

weights correspond to features. An exception is leveraged vector machines which

share a similar idea with GS-SVMs and build kernel machines by greedy stagewise

algorithm. In GS-SVMs, whose basis functions are the kernel functions centered on

training samples, the weights correspond to samples.

General greedy stagewise algorithm (Friedman, 2001) can be described as the

following. For 1,2,m = ,

() () ()()1, 1
, arg min , ,

. . 1, 2, 1

m m i m i i
i

j

L y f K

s t j m

βα β
α β α

β β

−
=

⎛ ⎞
= +⎜ ⎟

⎝ ⎠
≠ = −

∑ x x x
 (4.1)

and then

() () ()1 ,
mm m mf f K βα−= +x x x x , (4.2)

where (),L i i denotes the loss function, 0 0f ≡ and the occurrence of the constraint

terms means that each kernel function is selected once at most. The constraint

guarantees that the effect of some kernel function is not excessively magnified, which

is an effective mechanism for avoiding over-fitting. On the other hand, it makes that

our algorithm only can obtain an approximation solution. This is not the case for the

boosting algorithms which allow modifying the same parameter several times and

actually can converge to the minimum of their loss function.

A key observation is that the solution for this two-variable optimization problem

in SVMs can be obtained in closed form. For the loss function in SVMs, (4.1) can be

formulated as

()
()

() ()

1 1 1

1 1 1

1,
2

1

1 ,
2

, arg min
1, ,
2

. . 0
1, 2, 1

i j i j i j i

i i j

m m m

i j i
m m m

i

j

y y K

y y K K

s t
j m

β β β β β β β

α β

β β β β β β β

α α α
α β

α α α α

α
β β

− − −

= = =

−

=

⎛ ⎞
− +⎜ ⎟

⎜ ⎟=
⎜ ⎟

+ −⎜ ⎟
⎝ ⎠
≥
≠ = −

∑∑ ∑

∑

x x

x x x x

. (4.3)

Eliminating the constant term in (4.3), we have

() () ()
1

2

, 1

1, arg min , , 1
2

. . 0
1,2, 1

i i j

m

m m
i

j

K y y K

s t
j m

β β β β β β βα β
α β α α α

α
β β

−

=

⎛ ⎞⎛ ⎞
= + −⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠
≥
≠ = −

∑x x x x

. (4.4)

Define the gradient vector

()
1

1 0

, 1 1
k k k

m m

k

if m
g

y y K if mβ
β β β β βα

=

− =⎧
⎪= ⎨ − ≥⎪⎩
∑ x x

. (4.5)

We can reformulate (4.4) as

() ()2 1

,

1, arg min ,
2

. . 0
1,2, 1

m
m m

j

K g

s t
j m

β β βα β
α β α α

α
β β

−⎛ ⎞= +⎜ ⎟
⎝ ⎠
≥
≠ = −

x x

. (4.6)

(4.6) can be solved in two steps. In the first step, we fix β and compute the

minimal value 1mhβ
− of (4.6) with respect to α . In the second step, we compute mβ

by minimizing 1mhβ
− with respect to β , and then compute mα in terms of mβ .

Fixing β , we have the subproblem

()2 11min ,
2
. . 0

mK g

s t

β β βα
α α

α

−⎛ ⎞+⎜ ⎟
⎝ ⎠

≥

x x
. (4.7)

Since (4.7) is a single variable quadratic programming, we can give its analytical

solution

1 1

1

(,) , if (,) 0

0, if (,) 0

m m

m

g K g K

g K
β β β β β β

β
β β β

α
− −

−

⎧− − >⎪= ⎨
− ≤⎪⎩

x x x x

x x
. (4.8)

According to the positive definite property of kernel function, we have

(), 0K β β >x x . Thus (4.8) can be further simplified as

1 1

1

(,) , 0

0, 0

m m

m

g K if g

if
β β β β

β
β

α
− −

−

⎧− <⎪= ⎨
≥⎪⎩

x x

g
. (4.9)

1 0mgβ
− <

()1 ,x xmg Kβ β β
−−

1 0mgβ
− ≥

0

 Figure 4.1. Visualization of the solution

Combining (4.7) and (4.9), we get

() () ()()21 1
1 2 1

0 1

2 , , if 01min ,
2 0, 0

m m
m m

m

g K g
h K g

if g

β β β β
β β β βα

β

α α
− −

− −

≥ −

⎧− <⎪⎛ ⎞= + = ⎨⎜ ⎟
⎝ ⎠ ≥⎪⎩

x x
x x .(4.10)

Considering (4.9) and (4.10), we can obtain the parameter pairs (),m mα β by the

following equations

()1arg min m
m Q

hββ
β −

∈
= . (4.11)

()1 ,
m m m

m
m g Kβ β βα −= − x x . (4.12)

From (4.10), we can see that if each of unselected training samples satisfies 1 0mgβ
− ≥ ,

the loss function (3.5) stops decreasing. So GS-SVMs should terminate. Accordingly,

the greedy stagewise algorithm for SVMs is shown in Figure 4.2.

Algorithm 1: GS-SVMs

1. Set 0 () 0f =x ,α = 0 , 0 = −g 1 , 0 = −h 1 , {1,2, }Q = , P = ∅ ;

2. For 1m = to , do:

3. If ()1min 0m

Q
gββ

−

∈
≥ , stop;

4. ()1arg min m
m Q

hββ
β −

∈
= , ()1 ,

m m m

m
m g Kβ β βα −= − x x ;

5. { }mP P β= ∪ , { }mQ Q β= − ;

6. ()1 , ,
m m

m m
mg g y y K Qβ β β β β βα β−= + ∈x x ;

7. Update 1,mh Qβ β− ∈ according to Eq. (4.10);

8. ()1() () ,
mm m mf f K βα−= +x x x x ;

9. End For
10. End Algorithm

Figure 4.2. Flowchart of GS-SVMs

A special case is Gaussian kernel that satisfies (), 1K ≡x x , which allows us to

simplify (4.10) as

() ()21 1
1 2 1

0 1

2 if 01min ,
2 0, if 0

m m
m m

m

g g
h K g

g
β β

β β β βα
β

α α
− −

− −

≥ −

⎧− <⎪⎛ ⎞= + = ⎨⎜ ⎟
⎝ ⎠ ≥⎪⎩

x x . (4.13)

According to SVMs, we call the samples corresponding to nonzero weights as

support vectors. It is easily checked that the computational complexity of GS-SVMs

is only ()O n , where n is the number of support vectors.

5 Experiments

In this section, we investigate the properties of GS-SVMs on the various data sets and

compare it with HM-SVMs and soft margin SVMs. Gaussian kernel

() ()2

2
, expi j i jK θ= − −x x x x is used to construct classifiers. Soft margin SVMs are

trained using LIBSVM 2.83 (Fan et al., 2005) which implements the improved

SMO algorithm. HM-SVMs are constructed using MOSEK optimization toolbox,

since SMO works inefficiently for HM-SVMs. All the experiments are run on a

personal computer with 3.2 GHz P4 processors, 2 GB memory, and Windows XP

operation system. The size of the cache is set to be 1GB. The optimization process is

terminated when the maximal violation of the KKT conditions is within 0.001. For

fair comparison, GS-SVMs also use the sparse representation of training samples as

LIBSVM 2.83. The shrinking is used if no further explanation is given.

5.1 Comparison with LIBSVM 2.83 on Adult and Web Data Sets

In order to validate the speed of GS-SVMs, we compare it with LIBSVM 2.83 on

Adult and Web data sets which are available at http://research.microsoft.com/~jplatt/.

The characteristics of the data sets and the value of kernel parameter are described in

Table 5.1. In the first experiment, we fix C at a suitable value which gives good

generalization performance. The results are shown in Table 5.2 as functions of the

number of training samples. In the second experiment, we vary C over a wide range.

The results are shown in Table 5.3 as functions of C .

As we can see, the number of kernel evaluations of GS-SVMs is fewer than that

of LIBSVM 2.83 on the two data sets. LIBSVM 2.83 benefits from the large cache

size. Many expensive kernel evaluations are avoided since the entities of the kernel

matrix can be accessed from the cache when needed again. However, for the large

scale data sets, it is hopeless to fit the larger part of the kernel matrix to the cache,

because the space requirement for the kernel matrix grows quadratically with . We

will illustrate this point in the next section.

Table 5.1 Characteristics of the data sets and the value of kernel parameter.

Problems θ (SVMs) θ (GS-SVMs) Dim Size
Adult-1 0.05 0.05 123 1605
Adult-4 0.05 0.05 123 4781
Adult-7 0.05 0.05 123 16100
Web-1 0.05 0.10 300 2477
Web-4 0.05 0.10 300 7366
Web-7 0.05 0.10 300 24692

From Table 5.2~5.3, GS-SVMs are consistently faster than LIBSVM 2.83 on the

two data sets, especially for the large C values where the runtime of LIBSVM 2.83

has a sharp increasing. If grid search is used for the selection of free parameters, the

number of the trainings of GS-SVMs is significantly fewer than that of SVMs since

GS-SVMs do not require selecting the regularization parameter. For example, if we

try 10 different values for C and θ and perform ten-fold cross validation, then

GS-SVMs only require retraining 100 times; however SVMs do that 1000 times.

Hence, the training speed of GS-SVMs is significantly times faster than that of SVMs.

Also, we can see that the test errors of GS-SVMs and LIBSVM 2.83 are very close.

Thus, we have the conclusion that GS-SVMs are significantly faster in speed than

LIBSVM 2.83 and comparable in generalization performance with LIBSVM 2.83.

Table 5.2 Comparisons of GS-SVMs and LIBSVM 2.83. SV denotes the number of

support vectors; Error denotes the misclassification rate (%); K1 denotes the number

of kernel function evaluations with using the cache with each unit corresponding to

610 kernel function evaluations; K2 denotes the number of kernel function

evaluations without using the cache with each unit corresponding to 610 kernel

function evaluations and Time denotes the runtime with each unit corresponding to 1

second. Regularization parameter C is set to be 2 and 4 for Adult and Web data sets,

respectively.

LIBSVM 2.83 GS-SVMs Problems
SV Error K1 K2 Time SV Error K1 Time

Adult-1 679 15.7 1.1 3.2 0.4 650 15.9 1.0 0.3
Adult-4 1872 15.5 9.6 13.9 3.7 1735 15.3 8.3 2.7
Adult-7 5878 15.1 102.7 130.3 51.9 5461 15.0 87.9 28.1
Web-1 441 2.0 1.1 5.5 0.4 325 2.6 0.8 0.2
Web-4 907 1.6 7.1 24.5 2.4 719 1.9 5.3 1.5
Web-7 2017 1.2 52.9 134.9 18.0 1724 1.5 42.6 11.6

Table 5.3 Comparisons of GS-SVMs and LIBSVM 2.83 for the different

regularization parameters. The definition of K1, K2 and Time is the same as in Table

5.2.

Adult-7 Web-7 Algorithm C
K1 K2 Time K1 K2 Time

GS-SVMs 88 88 28 43 43 12
62− 128 128 66 47 55 15
42− 113 116 43 51 60 15
22− 106 109 54 54 70 16
02− 103 112 52 53 87 17

22 103 177 71 53 135 18
42 110 531 64 51 186 18
62 117 1664 109 48 243 17
82 117 4103 159 46 262 17

LIBSVM
2.83

102 116 9156 309 45 260 16

5.2 Comparison with the exist ing algorithms on Forest Data Set

To know the behavior of GS-SVMs on the very large data sets, we test the proposed

algorithm on Forest data set (Blackard and Dean, 1999). The data set contains

581,012 samples with seven classes. The dimension of samples is 54. We look only at

the binary classification problem of differentiating class 2 from the rest. We randomly

select 100000 samples as the training set and 50000 samples as the test set.

Table 5.4 Comparisons of GS-SVMs and LIBSVM 2.83 on Forest data set. The

definition of SV, Error, K1, K2 and Time is the same as in Table 5.2. For K1 and K2,

each unit corresponds to 910 kernel function evaluations.

GS-SVMs LIBSVM 2.83 Problems
SV Error K2 Time SV Error K1 K2 Time

20000 17923 12.4 0.4 109 18561 13.1 1.7 0.9 331
40000 30894 8.9 1.2 384 33197 8.5 7.2 6.7 2277
60000 40722 7.0 2.4 731 44401 6.5 16.5 15.5 5343
80000 48346 6.0 3.9 1184 53546 5.4 29.3 27.3 8938
100000 54831 5.3 5.6 1879 60921 4.7 45.4 41.8 13675

To get good free parameters, we first choose two small subsets: one for training

and the other for validation. The parameters are tuned on the validation set. Then, the

parameters 1 10000θ = and 10C = are obtained for SVMs and the parameter

1 10000θ = is obtained for GS-SVMs. This group of data sets covers a wide range of

kernel matrix size which fits into the cache by nearly 30% to only 1 %; hence, in most

cases, we have to reevaluate the kernel function when some entity of the kernel matrix

is needed. Table 5.4 shows the results of GS-SVMs and LIBSVM 2.83 as functions of

the number of training samples. We can see that the generalization performance of

GS-SVMs and LIBSVM 2.83 is close and however the training time of GS-SVMs is

much less than that of LIBSVM 2.83. Note that the shrinking does not apply to Forest

data set since it increases the training time of LIBSVM 2.83.

Since different divisions of training and test sets are used in the benchmark test, it

is not easy to compare the performance of the different algorithms fairly. Here, we

give Collobert et al’s and Dong et al’s results (Collobert et al. 2002; Dong et al. 2005)

for reference. Dong et al. randomly divided the full data set into 435756 training

samples and 145256 test samples. Then, they trained SVMs on some subsets using the

parallel techniques and uniformly combined the outputs of these SVMs to make a

final decision. Dong's experiments was conducted on a PC with single intel P4

1.7GHz processor with 256k L2 (second-level) cache, SDRAM. The total training

time was about 6240 seconds. The test error was 10.4% for class 2 and the rest.

Collobert et al. considered the same binary classification. Their training and test sets

consisted of 100000 and 50000 samples, respectively. The experiments were

conducted on the cluster with 50 Athlon 1.2Ghz CPUs. The test error was about 9.3%

for the hard mixture of SVMs and the total training time was 2220 seconds. When the

size of the training set was increased to 400000 and the local experts were changed to

multilayer perceptrons, rather than SVMs, the hard probability mixture of MLPs

achieved 5.6% test error on the binary classification, and the training time was 1020

seconds.

Table 5.5 Comparisons of GS-SVMs and other existing algorithms. Size denotes the

number of training samples. The definition of SV, Error, and Time is the same as in

Table 5.2.

Algorithms Size Error Time SV
Dong et al’s algorithms 435756 10.4 6240 N/A

Collobert et al’s algorithm 400000 5.61 1020 N/A
Core vector machines 400000 2.35 24369 42182

GS-SVMs 400000 2.60 15449 103658

For comparison, we also run GS-SVMs and core vector machines (Tsang et al.,

2005) on 400000 training samples and the results are shown in Table 5.5. It is

observed that GS-SVMs are very competitive with the existing approximation

algorithms. GS-SVMs are comparable with CVM and superior to the other two

algorithms in terms of the generalization performance. The runtime of Collobert et

al’s algorithm is less comparable with the other three algorithms because it exploits

the significantly faster machine. The runtime of Collobert et al’s algorithm should be

less than the runtime reported in Table 5.5 if it was run at our computer, but one

should note that its generalization performance is very poor.

5.3 Comparison with SVMs on more benchmark data sets

In order to validate the generalization performance of GS-SVMs, we compare to

HM-SVMs, soft margin SVMs on fifteen benchmark data sets from UCI (Blake and

Merz, 1998). These data sets have been extensively used in testing the performance

of diversified kinds of learning algorithms. This collection is a well-balanced mixture

of the learning tasks with different characteristics, which contains problems with a

few training samples or with many, with a few classes or with many, with a few

features or with many and with low or high noise. The characteristics of benchmark

data sets are given in Table 5.6. One-against-one method is used to extend binary

classifiers to multi-class classifiers.

For the data sets where the test samples may be available, the error on the test

samples is reported in Table 5.7. For the data sets where the test samples may not be

available, ten-fold cross validation is run and the average error of ten-fold cross

validation is reported in Table 5.7. For each training-test pair, ten-fold cross validation

is performed on the training set for tuning free parameters. Before training, we scale

all the training samples into the interval [-1 1], and then adjust the test samples using

the same linear transformation. The detailed experimental setup is the following:

(a) For soft margin SVMs, kernel parameter and regularization parameter are chosen

from intervals ()2log [8, 7, 6, 5, ,5,6,7,8]θ = − − − − and

()2log [1,0,1, 2, 7,8,9,10]C = − . This range is enough for our problems. The

number of trainings needed on each training-test pair is 10 17 12 2040× × = .

(b) For GS-SVMs and HM-SVMs, kernel parameter is chosen from interval

()2log [8, 7, 6, 5, ,5,6,7,8]θ = − − − − . The number of trainings needed on each

training-test pair is 10 17 170× = . This range is enough for these data sets.

Table 5.6. Characteristics of benchmark data sets.

Problems Size Class Dimension
Australian Credit 690 2 15

German 1000 2 20
Glass 214 6 9
Heart 270 2 13

Ionosphere 351 2 34
Iris 150 3 4

Liver disorders 345 2 6
Pima Indians Diabetes 768 2 8

Segment 2310 7 18
Vowel 528 11 10
Wdbc 569 2 30
Wine 178 3 13
Zoo 101 7 10
Page 5473 4 10

Splice 3175 3 240
Dna 2000/1186 3 180

Letter 15000/5000 26 16
Satimage 4435/2000 6 36
Shuttle 43500/14500 9 7

Pairwise two-tailed t-tests indicate that GS-SVMs are much better than

HM-SVMs on eight data sets, i.e. Australian, German, Glass, Heart, Iris, Liver, Wine

and Diabetes. As for the remaining data sets, GS-SVMs and HM-SVMs obtain the

similar performance. Pairwise two-tailed t-tests also indicate that GS-SVMs are much

better than SVMs on Glass, and worse than SVMs on Liver. As for the remaining data

sets, GS-SVMs and SVMs obtain the similar performance.

Table 5.7. Errors of GS-SVMs, HM-SVMs, and SVMs on benchmark data sets. The

results of the best method and of all other methods with no significant difference (the

significant level > 0.05) are set in bold face. Note that pairwise two-tailed t-tests are

not applied over Dna, Letter, Satimage and Shuttle.

Problems GS-SVMs HM-SVMs SVMs
Australian Credit 0.1507 0.2145 0.1551

German 0.2580 0.3070 0.2460
Glass 0.2846 0.3134 0.3319
Heart 0.1630 0.2333 0.1677

Ionosphere 0.0600 0.0600 0.0598
Iris 0.0467 0.0800 0.0400

Liver disorders 0.3397 0.3831 0.2871
Pima Indians Diabetes 0.2279 0.2945 0.2292

Segment 0.0268 0.0316 0.0299
Vowel 0.0171 0.0095 0.0095
Wdbc 0.0228 0.0351 0.0246
Wine 0.0111 0.0337 0.0111
Zoo 0.0291 0.0391 0.0391

Mean 0.1260 0.1565 0.1255
Page 0.0355 / 0.0307

Splice 0.0328 / 0.0375
Dna 0.0447 / 0.0455

Letter 0.0270 / 0.0202
Satimage 0.0830 / 0.0870
Shuttle 0.0015 / 0.0008
Mean 0.0374 / 0.0369

6 Why Does Greedy stagewise algorithm for SVMs Work?

Empirical study has shown that GS-SVMs work well on various data sets. In this

section, we will further explore the reason for the success of GS-SVMs. According to

statistical learning theory, the generalization performance of learning algorithm not

only depends on the empirical risk but also the VC dimension of the hypothesis space.

If the VC dimension of the hypothesis space is too large, the empirical risk

minimization is possibly not consistent, i.e. the learning algorithms with a small

empirical risk may bring a large actual risk.

Chang and Lin (2001) have shown that if a kernel function is strictly positive

definite, HM-SVMs have unique solution. In other words, HM-SVMs with positive

definite kernel can completely separate the training samples with the presence of

noise or not. This means that the hypothesis space is too large and HM-SVMs can

suffer from over-fitting. In order to obtain good generalization performance, it is

necessary to find a right balance between the empirical risk and the VC dimension of

the hypothesis space. By introducing a regularization term, soft margin SVMs can

balance the empirical risk and the VC dimension of the hypothesis space and thus

obtain the good generalization performance.

GS-SVMs adjust the weights of the kernel functions one by one. The weight of

each kernel function centered on the training samples is adjusted once at most, so

GS-SVMs run iterations at most. In fact, the early stopping rule can act as an

implicit regularization term and thus controls the capacity of hypothesis space. Thus,

GS-SVMs usually do not find a good approximation solution for HM-SVMs.

The set of hyperplanes

{ }20 : ,Tb −
ΔΓ = ⋅ − = ≤ Δw x w w (6.1)

is called the set of Δ -margin separating hyperplanes if they classify vector x as

follows

1 1
1 1

b
y

b
⋅ − ≥⎧

= ⎨− ⋅ − ≤ −⎩

w x
w x

. (6.2)

Note that classifications of vectors x that fall into the margin []1,1− are undefined.

For the set of Δ -margin separating hyperplanes, the following theorem holds true.

Theorem 6.1 (Vapnik, 1999): Let vectors X∈x belong to a sphere of radius

R . Then the set of Δ -margin separating hyperplanes has the VC dimension H

bounded by the inequality

2

2min , 1RH l
⎛ ⎞

≤ +⎜ ⎟Δ⎝ ⎠
. (6.3)

It is well known that the VC dimension of the set of hyperplanes is equal to 1d + ,

where d is dimensionality of input space. However, Theorem 6.1 shows that (1) the

VC dimension of the set of Δ -margin separating hyperplanes can be less than 1d + ;

(2) we can control the VC dimension of the set of Δ -margin separating hyperplanes

by controlling Δ , i.e. the length of the weight vector w .

The weight vector obtained by GS-SVMs is

()0 0

1

l

i i i
i

yα
=

= Φ∑w x , (6.4)

where 0 , 1,i iα = is the solution of GS-SVMs. Consequently, the length of the

weight vector is

() ()0 0 0 0
2

1 10

1 ,
l lT

i j i j i j
i j

y y Kα α
= =

= =
Δ ∑∑w w x x . (6.5)

This means that the separating hyperplane constructed by GS-SVMs belongs to

the set { }
0

2
00 : Tb −

ΔΓ = ⋅ − = ≤ Δw x w w . We can look 2
0

T −≤ Δw w as an implicit

constraint for GS-SVMs. If we put the constraint to GS-SVM a prior, the solution of

GS-SVMs does not change. The smaller 2
0
−Δ , the smaller the capacity of

0Δ
Γ . If

2
0
−Δ obtained by GS-SVMs is suitable for the problems at hand, GS-SVMs can give a

good regularization parameter explicitly. However, the separating hyperplane

constructed by GS-SVMs usually is not the hyperplane that minimizes the empirical

risk. According to statistical learning theory, the hyperplane minimizing the empirical

risk is preferred for the given capacity of hypothesis space. One can find such

hyperplane in
0Δ

Γ by the following optimization problem

()()
1

2
0

min

. . , 1 , 1, ,

0, 1, ,

l

i
i

i i i

i

T

s t y i

i

ξ

ξ

ξ

=

−

< Φ > ≥ − =

≥ =

≤ Δ

∑
w x

w w

. (6.6)

(6.6) also is called rigorous support vector machines (RSVM) by Bi and Vapnik

(2003). The solutions of RSVMs and SVMs coincide if the appropriate C and 2
0
−Δ

are given. Thus, if GS-SVMs can find a good approximate solution for RSVM with

0Δ = Δ , we can explain why GS-SVMs obtain good generalization performance. We

will show this by the following experiments.

In Figure 6.1~6.2, we give the training errors and test errors of GS-SVMs,

RSVMs, SVMs and HM-SVMs. The kernel parameter of RSVMs is set to the same as

GS-SVMs and 2
0
−Δ in RSVMs is computed by the weight vector obtained by

GS-SVMs. Detailed experimental setup of GS-SVMs, SVMs and HM-SVMs is the

same as section 5. Note that the training errors and test errors are the average of

ten-fold cross validation.

From Figure 6.1~6.2, we can see that the test error of HM-SVMs is significantly

larger than its training error on each data set; however the test errors of GS-SVMs,

RSVMs and soft margin SVMs are close to their training errors on each data set. This

indicates that HM-SVMs suffer from over-fitting; however GS-SVMs, RSVMs and

soft margin SVMs avoid it.

Figure 6.1. Training errors of GS-SVMs, RSVMs, SVMs and HM-SVMs on seven

data sets

From Figure 6.1~6.2, we also can see that RSVM with 0Δ = Δ obtains good

generalization performance. This indicates that the early stopping rule in GS-SVM

can choose an appropriate regularization parameter implicitly. On the other hand, the

training error of GS-SVMs is close to that of RSVMs on seven data sets. This shows

that GS-SVMs can find a good approximate solution for RSVM. Thus, we can explain

the reason for the success of GS-SVMs: (1) GS-SVMs can choose an appropriate

value of Δ , 0Δ by the early stopping rule; (2) GS-SVMs can find a good

approximate solution for rigorous support vector machine with 0Δ = Δ .

Figure 6.2. Test errors of GS-SVMs, RSVM, SVMs and HM-SVMs on seven data

sets

7 Conclusion and Discussion

HM-SVMs have a risk of getting over-fitting in the presence of noise. To deal with

this problem, this paper presents a greedy stagewise algorithm for SVMs, named

GS-SVMs, to train HM-SVMs, which attempts to approximately train HM-SVMs

while avoiding over-fitting. Extensive empirical comparisons show that GS-SVMs are

superior to HM-SVMs and comparable with soft margin SVMs in generalization

performance. On the other hand, GS-SVMs also obtain an impressive speedup relative

to soft and hard margin SVMs; hence it is very suitable for large scale problems. To

explore the reason for the success of GS-SVMs, statistical learning theory is utilized

to analyze the empirical results. It seems that the success of GS-SVMs lies in that the

early stopping rule in GS-SVMs can act as an implicit regularization term.

Note that although our algorithm is derived under the condition that the kernel

function is positive definite, GS-SVMs can also be extended to the non-positive

definite kernel function. Hence, future work also includes exploring the performance

of GS-SVMs using the non-positive definite kernel functions.

Acknowledgments

This work was supported by the National Natural Science Foundation of China under

grant 60372050 and the National Defense Preresearch Foundation of China under

Grant A1420060172.

References

N. Aronszajn. Theory of reproducting kernels. Trans. Amer. Math. Soc, vol. 686, pp.

337-404, 1950.

G. Bakir, L. Bottou, and J. Weston. Breaking SVM complexity with cross training. In

Proceedings of the 17th Neural Information Processing Systems Conference, 2005.

J. B. Bi and V. Vapnik. Learning with rigorous Support Vector Machines. In

Proceedings of the 16th Annual Conference on Learning Theory, 2003.

J. A. Blackard and D. J. Dean. Comparative accuracies of rrtificial neural networks

and discriminant analysis in predicting rorest cover types from cartographic

variables, Computers and Electronics in Agriculture, vol. 24, pp. 131-151, 1999.

C. L. Blake and C. J. Merz. UCI repository of machine learning databases, 1998.

Available at: http://www.ics.uci.edu/~mlearn/MLRepository.html.

L. F. Bo, L. Wang and L. C. Jiao. Training support vector machines using greedy

stagewise algorithm, In Proceedings of the 9th Pacific-Asian Conference on

Knowledge Discovery and Data Dinning, Hanoi, Vietnam, pp. 632-638, 2005.

A. Bordes, S. Ertekin, J. Weston and L. Bottou: Fast Kernel Classifiers with Online

and Active Learning, Journal of Machine Learning Research, vol. 6, pp. 1579-1619,

2005.

B. Boser, I. Guyon, and V. Vapnik. A training algorithm for optimal margin classifiers.

In Proceedings of the 5th Annual ACM Workshop on Computational Learning

Theory, pp. 144-152, ACM Press, 1992.

C. C. Chang and C. J. Lin. Training v-support vector classifiers: theory and algorithms.

Neural Computation, vol. 3, pp. 2119-2147, 2001.

S. Chen, F. Cowan, and P. Grant. Orthogonal least squares learning algorithm for

radial basis function networks. IEEE Transactions on Neural Networks, vol. 2, pp.

302-309, 1991.

R. Collobert and S. Bengio. SVMTorch: support vector machines for large-scale

regression problems. Journal of Machine Learning Research, vol. 1, pp. 143-160,

2001.

R. Collobert, S. Bengio and Y. Bengio. (2003). Scaling large learning problems with

hard parallel mixtures, International Journal of Pattern Recognition and Artificial

Intelligence vol. 17, pp. 349-365, 2003.

C. Cortes and V. Vapnik. Support vector networks. Machine Learning, vol. 20, pp.

273-297, 1995.

J. X. Dong., A. Krzyzak and C. Y. Suen. Fast SVM training algorithm with

decomposition on very large data sets. IEEE Transactions on Pattern Analysis and

Machine Intelligence vol. 27, pp. 603-618, 2005.

R. E. Fan, P. H. Chen, and C. J. Lin. Working Set Selection Using Second Order

Information for Training Support Vector Machines, Journal of Machine Learning

Research, vol. 6, pp. 1889-1918, 2005.

Y. Freund. Boosting a weak learning algorithm by majority, Information and

Computation, vol. 121, pp. 256-285, 1995.

J. H. Friedman, T. Hastie, and R. Tibshirani. Additive logistic regression: a statistical

view of boosting. Annals of Statistics, vol. 28, pp. 337-407, 2000.

J. H. Friedman. Greedy Function Approximation: A gradient boosting machine.

Annals of Statistics, vol. 29, pp.1189-1232, 2001.

T. T. Friess, N. Cristianini, and C. Campbell. The kernel-adaraton algorithm: A fast

simple learning procedure for support vector machine. In Proceedings of the 15th

International Conference on Machine Learning, pp. 188-196, 1998.

F. Girosi. An equivalence between sparse approximation and support vector machines,

Neural Computation. vol. 10, pp. 1455-1480, 1998.

L. C. Jiao, L. F. Bo, and L. Wang and. Fast Sparse Approximation for Least Square

Support vector machines, IEEE Transactions on Neural Networks, vol. 18, pp.

685-697, 2007.

T. Hastie, S. Rosset, R. Tibshirani, and J. Zhu. The Entire Regularization Path for the

Support Vector Machine. Journal of Machine Learning Research, vol. 5, pp.

1391-1415, 2004.

T. Joachims. Making large-scale SVM learning practical, Advances in Kernel

Methods-Support Vector learning, pp. 169-184, Cambridge, MA: MIT Press, 1999.

S. S. Keerthi, O. Chapelle, and D. Decoste. Building Support Vector Machines with

Reduced Classifier Complexity. Journal of Machine Learning Research, vol. 7, pp.

1493-1515, 2006.

S. S. Keerthi, S. K. Shevade, C. Bhattacharyya, and K. R. K. Murthy. Improvements

to Platt's SMO algorithm for SVM classifier design. Neural Computation, vol. 13,

pp. 637-649, 2001.

S. S. Keerthi and C. J. Lin. Asymptotic behaviors of support vector machines with

Gaussian kernel. Neural Computation, vol. 15, pp. 1667-1689, 2003.

S. Mallat and Z. Zhang. Matching pursuit with time-frequency dictionaries. IEEE

Transaction on Signal Processing, vol. 41, pp. 3397-3415, 1993.

L. Mason, J. Baxter, P. Bartlett, and M. Frean. Boosting algorithms as gradient

descent. Advances in Neural Information Processing Systems, vol. 12, pp. 512-518,

MIT Press, 2000.

E. Osuna, R. Freund and F. Girosi, Training support vector machines: an application

to face detection. In Proceedings of the conference on Computer Vision and Pattern

Recognition, Puerto Rico, 1997.

J. Platt. Fast training of support vector machines using sequential minimal

optimization. Advances in Kernel Methods --- Support Vector Learning, pp.

185-208, Cambridge, MA: MIT Press, 1999.

B. Schölkpof, A. Smola, R. C. Williamson, and P. L. Bartlett. New support vector

algorithms. Neural Computation, vol. 12, pp. 1207-1245, 2000.

S. K. Shevade, S. S. Keerthi, C. Bhattacharyya and K. R. K. Murthy. Improvements to

the SMO algorithm for SVM regression. IEEE Transactions on Neural Networks,

vol. 11, pp. 1188-1194, 2000.

Y. Singer, Leveraged vector machines, In Proceedings of the 12th Neural Information

Processing Systems Conference, 2000.

M. Tipping. Sparse Bayesian learning and the relevance vector machine. Journal of

Machine Learning Research, vol. 1, pp. 211-244, 2001.

I. W. Tsang, J. T. Kwok, and P. M. Cheung. Core vector machines: fast SVM training

on very large datasets. Journal of Machine Learning Research, vol. 6, pp. 363–392,

2005.

V. Vapnik. The Nature of Statistical Learning Theory. New York: Springer-Verlag,

1995.

V. Vapnik. Statistical Learning Theory. New York: Wiley-Interscience Publication,

1998.

V. Vapnik. An overview of statisticallearning theory, IEEE Transactions on Neural

Networks, vol. 10, pp. 988-999, 1999.

P. Vincent and Y. Bengio. Kernel matching pursuits. Machine Learning, vol. 48, pp.

165-187, 2002.

S. V. N. Vishwanathan, A. J. Smola, and M. N. Murty. SimpleSVM. In Proceedings of

the Twentieth International Conference on Machine Learning, 2003.

Liefeng Bo was born in Xi’an, China, on February 18, 1978. He

received the B.S. degree in school of science from Xidian

University, Xi’an, China, in 2002, and is currently pursuing the

Ph.D. degree in circuits and systems from the Institute of

Intelligent Information Processing, Xidian University.

His current research interests include kernel-based learning, manifold learning,

neural networks and computer version. He has published several papers in some

leading journals such as Neural Computation and IEEE Transactions on Neural

Networks.

Ling Wang was born in Xi’an, China, on November 10, 1978.

She received the B.S. degree in school of science and the M.S.

degree in computer science from Xidian University, Xi’an, China,

in 2001 and 2005, respectively. She is currently pursuing the Ph.D.

degree in circuits and systems from the Institute of Intelligent Information Processing,

Xidian University.

Her current research interests include pattern recognition, statistical machine

learning, and image processing.

Licheng Jiao (SM’89) was born in Shaanxi, China, on October 15,

1959. He received the B.S. degree from Shanghai Jiaotong

University, Shanghai, China, in 1982, and the M.S. and Ph.D.

degrees from Xi’an Jiaotong University, Xi’an, China, in 1984 and

1990, respectively.

He is the author or coauthor of more than 150 scientific papers. His current

research interests include signal and image processing, nonlinear circuit and systems

theory, learning theory and algorithms, optimization problems, wavelet theory, and

data mining.

