
Training Hard Margin Support vector machines 

Using Greedy Stagewise Algorithm  

Liefeng Bo, Ling Wang and Licheng Jiao, Senior Member, IEEE 

Institute of Intelligent Information Processing, Xidian University, Shaanxi, China 

E-mail: blf0218@163.com 

Homepage: http://see.xidian.edu.cn/graduate/lfbo/ 

Abstract 

Hard margin support vector machines (HM-SVMs) suffer from getting over-fitting in 

the presence of noise. Soft margin SVMs deal with this problem by introducing a 

regularization term and obtain a state of the art performance. However, this disposal 

leads to a relatively high computational cost. In this paper, an alternative method, 

greedy stagewise algorithm for SVMs, named GS-SVMs, is presented to cope with 

the over-fitting of HM-SVMs without employing the regularization term. The most 

attractive property of GS-SVMs is that its computational complexity in the worst case 

only scales quadratically with the size of training samples. Experiments on the large 

data sets with up to 400000 training samples demonstrate that GS-SVMs are faster 

than LIBSVM 2.83 without sacrificing the accuracy. Finally, we employ statistical 

learning theory to analyze the empirical results, which shows that the success of 

GS-SVMs lies in that its early stopping rule can act as an implicit regularization term. 

Keywords: Classification, support vector machines (SVMs), greedy stagewise 

algorithm, VC dimension 



1  Introduction 

Hard margin support vector machines have a risk of getting over-fitting in the 

presence of noise (Boser et al., 1992; Keerthi and Lin, 2003). To deal with this 

problem, soft margin SVMs (Cortes and Vapnik, 1995; Schölkof et al., 2000) 

introduce the regularization parameter that allows some training error to obtain large 

margin. This is a highly effective mechanism for avoiding over-fitting, which leads to 

good generalization performance. Though very successful, we can identify 

shortcomings of soft margin SVMs:  

① The training procedure of soft margin SVMs amounts to solving a constrained 

quadratic programming. Although the training problem is, in principle, solvable, 

in practice it is intractable by the classical optimization techniques, e.g. interior 

point method, because their computational complexity usually scales cubically 

with the size of training samples. 

② The regularization parameter depends on the task at hand; hence there is no 

foolproof method for determining it before training. Usually, we have to resort to 

a cross validation procedure that is wasteful in computation (Tipping, 2001). 

In the past few years, a lot of fast iterative algorithms were presented to cope with 

the problem ①. Chunking algorithm (Osuna et al., 1997) splits the variables into 

inactive and active sets (also named working set). At first, an arbitrary subset of the 

variables is selected as the working set. After a general optimization algorithm, e.g. 

interior point method is applied to the subset, the support vectors in the working set 

are reserved and the rest are replaced with the variables that violate 



Karush-Kuhn-Tucker (KKT) conditions. However, this algorithm still is inapplicable 

in the case the number of support vectors is very large due to high memory 

requirement. Joachims (1999) identified this shortage and developed an efficient 

decomposition scheme, named SVMlight. The key idea of SVMlight is to find a feasible 

direction of steepest descend, in which the number of non-zero elements is set to be a 

small constant. Platt (1999) took the decomposition idea to an extreme where the size 

of the working set of SMO algorithm is set to be two and hence an analytical solution 

for sub-problem is obtained. Keerthi et al. (2001) and Shevade et al. (2000) further 

improved the performance of SMO by introducing the maximal violating pair 

working set selection. Hastie et al. (2004) derived an algorithm that can fit the entire 

path of SVM solutionms for every value of the regularization parameter. Some other 

examples include Kernel-Adatron (Friess et al., 1998), SimpleSVM (Vishwanathan et 

al., 2003), SVMTorch (Collobert and Bengio, 2001) and so on. 

Recently, there have been many attempts to approximately train SVMs. Collobert 

et al. (2002) proposed a parallel mixture of SVMs. Dong et al. (2005) introduced a 

parallel optimization step to quickly remove most of the nonsupport vectors for 

speeding up SVMs. Bakir et al. (2005) selectively removed training samples using 

probabilistic estimates related to editing algorithms. Bordes et al. (2005) presented an 

online algorithm to compute an approximation solution of SVMs. Tsang et al. (2005) 

showed many kernel methods can be equivalently formulated as minimum enclosing 

ball problems in computational geometry and presented core vector machine (CVM) 

to compute the approximate solution of SVMs. Keerthi et al. (2006) built sparse 



SVMs using a matching pursuit-like algorithm. These algorithms proved to be 

effective and boosted the development of large scale SVMs. 

Based on a preliminary work (Bo et al., 2005), a greedy stagewise algorithm for 

approximately training SVMs (GS-SVMs) is presented to deal with the over-fitting of 

HM-SVMs. Instead of employing the regularization term, GS-SVMs attempt to 

control the complexity of the hypothesis space by itself. It iteratively builds the 

decision function by adding one kernel function at one time. At each iteration, 

GS-SVMs determine the index and the weight of the new kernel function to be 

included by an optimization problem in two variables, whose solution can be obtained 

in closed form. This procedure is repeated until the loss function stops decreasing. 

The proposed algorithm possesses the two following attractive properties:  

① The computational complexity of GS-SVMs is ( )O n , where n  is the number of 

support vectors and  is the number of training samples. Even in the worst case 

that all the training samples are the support vectors, the computational complexity 

is only ( )2O . 

② No extra regularization parameter is required. 

Extensive empirical comparisons validate the efficiency and effectiveness of 

GS-SVMs. Moreover, we employ statistical learning theory to analyze the empirical 

results, which shows that the success of GS-SVMs lie in that its early stopping rule 

can act as an implicit regularization term. 

This paper is organized as follows. In section 2, a brief introduction of SVMs is 

given. The reason that the dual of HM-SVMs can be regarded as a loss function is 



interpreted in section 3. GS-SVMs is detailed derived in section 4. Experiments which 

demonstrate the speed and generalization performance of GS-SVMs are given in 

section 5. In section 6, we explore the reason for the success of GS-SVMs. In section 

7, the contributions of this paper are summarized and the further research direction is 

indicated. 

2  Support  vector machines 

In this section, we briefly introduce support vector machines. For more details, the 

interested reader can refer to (Vapnik, 1995 and 1998). In classification, we are given 

a set of training samples { } 1
,i i i
y

=
x  where ix  is the input sample defined on dR , 

iy  is the corresponding output and  is the number of training samples. The aim is 

to determine an approximation function ( )f x  of the target function ( )*f x , which 

best represents the relationship between the inputs and the outputs . In the feature 

space, SVMs model takes the form ( ) ( )Tf = Φx w x  where the nonlinear mapping 

( )Φ x  maps the input data into a higher dimensional feature space whose dimension 

can be infinite. We have also dropped the threshold b  for the sake of simplicity. The 

generalization performance of SVMs usually is not affected by this drop in most cases 

(one should be cautious with very unbalanced data sets where the threshold can be 

helpful). To obtain a classifier, HM-SVMs solve the following optimization problem 

( )( )

21min
2

. . , 1, 1, ,i is t y i< Φ > ≥ =

w

w x
.     (2.1) 

Its Wolfe dual is 
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According to Mercer’s theory (Aronszajn, 1950), any positive definite kernel 

function ( ),i jK x x  can be expressed as the inner product of two vectors in some 

feature space and therefore can be used in SVMs. Replacing ( ) ( )T
i jΦ Φx x  with 

( ),i jK x x , we get 
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To deal with the non separable case, one often uses soft margin SVMs 
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For a new sample x , we can predict its label by 

( ) ( )
1

=sgn ,i i i
i

f y Kα
=

⎛ ⎞
⎜ ⎟
⎝ ⎠
∑x x x ,       (2.5) 

where iα  is the solution of (2.4). 

3  RKHS Norm View for SVMs 

The key conclusion in this section is that the Wolfe dual of HM-SVMs can be 

regarded as the loss function induced by a reproducing kernel Hilbert space (RKHS) 

norm, which is the basis of developing greedy approximation algorithms. Similar 

conclusion about support vector regression is reported by Girosi (1998). 

Theorem 3.1 (Aronszajn, 1950): Let dX ⊂ R , a real symmetric function ( ),K x y , 

, X∈x y  is positive definite symmetric if and only if for every set of real numbers 



1 2{ , , , }α α α  and every set of vectors { }1 2 ,x , x , x , we have 

( )
, 1

, 0i j i j
i j

Kα α
=

≥∑ x x . 

Definition 3.2 (Aronszajn, 1950): A Hilbert space H  of function 

: ,f X X→ ≠∅  is called a RKHS with dot product ,
H

i i  and norm 

,
H H

f f f=  if there exists a function :K X X× → satisfying 

( ) ( ) ( ), , Hf K f< > =x xi i  and spanning H , i. e. ( ){ }span , ,H K X= ∈x xi . 

We call ,
H H

f f f= , where f H∈ , reproducing norm. Reproducing 

kernel Hilbert space (RKHS) KH  induced by ( ),K x y  satisfies the following three 

properties 

(a) ( ), KK H∈xi  where X∈x ; 

(b) ( )
1

,i i K
i

K Hα
=

∈∑ xi , where iα  and  are finite; 

(c) For ( ) Kf H∈i , X∈x , ( ) ( ) ( ), , Hf K f< > =x xi i , where ,
H

i i  is the inner 

product of RKHS. In particular, ( ) ( ) ( ), , , ,j i H i jK K K< > =x x x xi i . 

According to the property (b), we can derive that the decision function of SVMs, 

( )f x , belongs to RKHS KH . We assume that the unknown target function ( )*f x  

belongs to RKHS KH . Measuring the distance by RKHS norm between the target 

function ( )*f x  and the approximation function ( )f x , we have the following loss 

function 

( ) ( )
2

*

1

1 ,
2
. . 0 1,2, ,

i i i
i H

i

f y K

s t i

α

α
=

−

≥ =

∑x x x
,       (3.1) 

where 
H
i  is RKHS norm. (3.1) can be expanded as 
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Using the reproducing property (c) of kernel function, we can transform Eq. (3.2) into  

( ) ( ) ( )2* *

1 1 1
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Since ( )*
if x  is the output of target function on the point ix , it is reasonable to 

estimate it by iy  (for noiseless data, ( )*
i if y=x ). Thus we have 

( ) ( )2*

1 1 1

1 1 ,
2 2
. . 0, 1, ,

i i j i j i jH
i i j

i

f y y K

s t i

α α α

α
= = =

− +

≥ =

∑ ∑∑x x x
.   (3.4) 

Dropping the constant term, we can estimate , 1, ,i iα =  by 
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It is easily checked that (3.5) completely amounts to (2.5), which enlightens us to 

take the Wolfe dual of SVMs as the loss function induced by RKHS norm. If we 

further constrain , 1, ,i iα =  smaller than C , we can obtain soft margin SVMs. 

4  Greedy Stagewise Algorithm for SVMs 

Though (3.5) is, in principle, solvable by the classical optimization techniques, in 

practice it suffers from the two serious problems: (1) its computational complexity 

usually scales cubically with the size of training samples; (2) there often is a risk of 

getting over-fitting due to no regularization term. 

In this section, we will deal with the above two problems by greedy stagewise 



algorithm (GS-SVMs) which attempts to fast approximate (3.5) while avoiding the 

over-fitting. The dictionary ( ){ }, | 1, 2, ,iD k i= =x x  used by GS-SVMs is a set of 

the kernel functions centered on the training samples. GS-SVMs iteratively build the 

decision function by adding one kernel function at one time. At each iteration, 

GS-SVMs determine the index and the weight of the next kernel function to be 

included by an optimization problem in two variables. This procedure is repeated until 

the loss function (3.5) stops decreasing. 

There are many efforts for greedy learning algorithms. In general, the existing 

methods can be roughly classified into two groups. The first group is called greedy 

stepwise approach that readjusts the weights of the previously entered basis functions 

when a new basis function is added. The typical algorithms include orthogonal least 

squares learning algorithms (Chen et al., 1991), kernel matching pursuit (backfitting 

and prefitting version) (Vincent and Bengio, 2002), fast sparse approximation for least 

square support vector machines (Jiao et al., 2006) and so on. The second group is 

called greedy stagewise approach that fixes the weights of the previously entered 

basis functions when a new basis function is added. The typical algorithms include 

matching pursuit (Mallat and Zhang, 1993), AdaBoost (Freund, 1995), LogitBoost 

(Friedman et al., 2000), Doom II (Mason et al., 2000), gradient boosting (Friedman, 

2001), leveraged vector machines (Singer, 2000) and so on. 

Our algorithm can be classified into the second group. The most important 

difference among the algorithms in the second group is the loss function they 

optimize. Matching pursuit uses a squared loss function; AdaBoost and leveraged 



vector machines use an exponential loss function; LogitBoost uses a negative 

binomial log-likelihood; Doom II uses a margin loss function induced by hyperbolic 

tangent function; however, GS-SVMs use the dual of HM-SVMs as a loss function. 

The reason that the dual of HM-SVMs can be regarded as a loss function can be found 

in section 3. Another major difference is caused by the basis functions. In previous 

boosting algorithms, it is a tradition that the basis functions are trees and hence the 

weights correspond to features. An exception is leveraged vector machines which 

share a similar idea with GS-SVMs and build kernel machines by greedy stagewise 

algorithm. In GS-SVMs, whose basis functions are the kernel functions centered on 

training samples, the weights correspond to samples. 

General greedy stagewise algorithm (Friedman, 2001) can be described as the 

following. For 1,2,m = , 

( ) ( ) ( )( )1, 1
, arg min , ,

. . 1, 2, 1

m m i m i i
i

j

L y f K

s t j m

βα β
α β α

β β

−
=

⎛ ⎞
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≠ = −
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    (4.1) 

and then 

( ) ( ) ( )1 ,
mm m mf f K βα−= +x x x x ,       (4.2) 

where ( ),L i i  denotes the loss function, 0 0f ≡  and the occurrence of the constraint 

terms means that each kernel function is selected once at most. The constraint 

guarantees that the effect of some kernel function is not excessively magnified, which 

is an effective mechanism for avoiding over-fitting. On the other hand, it makes that 

our algorithm only can obtain an approximation solution. This is not the case for the 

boosting algorithms which allow modifying the same parameter several times and 



actually can converge to the minimum of their loss function. 

A key observation is that the solution for this two-variable optimization problem 

in SVMs can be obtained in closed form. For the loss function in SVMs, (4.1) can be 

formulated as 
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Eliminating the constant term in (4.3), we have 
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Define the gradient vector 
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1 0
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We can reformulate (4.4) as 
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(4.6) can be solved in two steps. In the first step, we fix β  and compute the 

minimal value 1mhβ
−  of (4.6) with respect to α . In the second step, we compute mβ  

by minimizing 1mhβ
−  with respect to β , and then compute mα  in terms of mβ . 

Fixing β , we have the subproblem 
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Since (4.7) is a single variable quadratic programming, we can give its analytical 

solution 
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According to the positive definite property of kernel function, we have 

( ), 0K β β >x x . Thus (4.8) can be further simplified as 
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 Figure 4.1. Visualization of the solution 

Combining (4.7) and (4.9), we get 
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Considering (4.9) and (4.10), we can obtain the parameter pairs ( ),m mα β  by the 

following equations 

( )1arg min m
m Q

hββ
β −

∈
= .        (4.11) 



( )1 ,
m m m

m
m g Kβ β βα −= − x x .       (4.12) 

From (4.10), we can see that if each of unselected training samples satisfies 1 0mgβ
− ≥ , 

the loss function (3.5) stops decreasing. So GS-SVMs should terminate. Accordingly, 

the greedy stagewise algorithm for SVMs is shown in Figure 4.2. 

Algorithm 1: GS-SVMs 

1. Set 0 ( ) 0f =x ,α = 0 , 0 = −g 1 , 0 = −h 1 , {1,2, }Q = , P = ∅ ; 

2. For 1m =  to , do: 

3.    If ( )1min 0m

Q
gββ

−

∈
≥ , stop; 

4.    ( )1arg min m
m Q

hββ
β −

∈
= , ( )1 ,

m m m

m
m g Kβ β βα −= − x x ; 

5.    { }mP P β= ∪ , { }mQ Q β= − ; 

6.    ( )1 , ,
m m

m m
mg g y y K Qβ β β β β βα β−= + ∈x x ; 

7.    Update 1,mh Qβ β− ∈  according to Eq. (4.10); 

8.    ( )1( ) ( ) ,
mm m mf f K βα−= +x x x x ; 

9. End For 
10. End Algorithm 

Figure 4.2. Flowchart of GS-SVMs 

A special case is Gaussian kernel that satisfies ( ), 1K ≡x x , which allows us to 

simplify (4.10) as 

( ) ( )21 1
1 2 1
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2 0, if 0
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m m
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β β
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According to SVMs, we call the samples corresponding to nonzero weights as 

support vectors. It is easily checked that the computational complexity of GS-SVMs 

is only ( )O n , where n  is the number of support vectors.  



5  Experiments 

In this section, we investigate the properties of GS-SVMs on the various data sets and 

compare it with HM-SVMs and soft margin SVMs. Gaussian kernel 

( ) ( )2

2
, expi j i jK θ= − −x x x x  is used to construct classifiers. Soft margin SVMs are 

trained using LIBSVM 2.83 (Fan et al., 2005) which implements the improved 

SMO algorithm. HM-SVMs are constructed using MOSEK optimization toolbox, 

since SMO works inefficiently for HM-SVMs. All the experiments are run on a 

personal computer with 3.2 GHz P4 processors, 2 GB memory, and Windows XP 

operation system. The size of the cache is set to be 1GB. The optimization process is 

terminated when the maximal violation of the KKT conditions is within 0.001. For 

fair comparison, GS-SVMs also use the sparse representation of training samples as 

LIBSVM 2.83. The shrinking is used if no further explanation is given. 

5.1  Comparison with LIBSVM 2.83 on Adult  and Web Data Sets  

In order to validate the speed of GS-SVMs, we compare it with LIBSVM 2.83 on 

Adult and Web data sets which are available at http://research.microsoft.com/~jplatt/. 

The characteristics of the data sets and the value of kernel parameter are described in 

Table 5.1. In the first experiment, we fix C  at a suitable value which gives good 

generalization performance. The results are shown in Table 5.2 as functions of the 

number of training samples. In the second experiment, we vary C  over a wide range. 

The results are shown in Table 5.3 as functions of C . 

As we can see, the number of kernel evaluations of GS-SVMs is fewer than that 

of LIBSVM 2.83 on the two data sets. LIBSVM 2.83 benefits from the large cache 



size. Many expensive kernel evaluations are avoided since the entities of the kernel 

matrix can be accessed from the cache when needed again. However, for the large 

scale data sets, it is hopeless to fit the larger part of the kernel matrix to the cache, 

because the space requirement for the kernel matrix grows quadratically with . We 

will illustrate this point in the next section. 

Table 5.1 Characteristics of the data sets and the value of kernel parameter. 

Problems θ (SVMs) θ (GS-SVMs) Dim Size 
Adult-1 0.05 0.05 123 1605 
Adult-4 0.05 0.05 123 4781 
Adult-7 0.05 0.05 123 16100 
Web-1 0.05 0.10 300 2477 
Web-4 0.05 0.10 300 7366 
Web-7 0.05 0.10 300 24692 

From Table 5.2~5.3, GS-SVMs are consistently faster than LIBSVM 2.83 on the 

two data sets, especially for the large C values where the runtime of LIBSVM 2.83 

has a sharp increasing. If grid search is used for the selection of free parameters, the 

number of the trainings of GS-SVMs is significantly fewer than that of SVMs since 

GS-SVMs do not require selecting the regularization parameter. For example, if we 

try 10 different values for C and θ  and perform ten-fold cross validation, then 

GS-SVMs only require retraining 100 times; however SVMs do that 1000 times. 

Hence, the training speed of GS-SVMs is significantly times faster than that of SVMs. 

Also, we can see that the test errors of GS-SVMs and LIBSVM 2.83 are very close. 

Thus, we have the conclusion that GS-SVMs are significantly faster in speed than 

LIBSVM 2.83 and comparable in generalization performance with LIBSVM 2.83. 

Table 5.2 Comparisons of GS-SVMs and LIBSVM 2.83. SV denotes the number of 

support vectors; Error denotes the misclassification rate (%); K1 denotes the number 



of kernel function evaluations with using the cache with each unit corresponding to 

610  kernel function evaluations; K2 denotes the number of kernel function 

evaluations without using the cache with each unit corresponding to 610  kernel 

function evaluations and Time denotes the runtime with each unit corresponding to 1 

second. Regularization parameter C  is set to be 2 and 4 for Adult and Web data sets, 

respectively. 

LIBSVM 2.83 GS-SVMs Problems 
SV Error K1 K2 Time SV Error K1 Time 

Adult-1 679 15.7 1.1 3.2 0.4 650 15.9 1.0 0.3 
Adult-4 1872 15.5 9.6 13.9 3.7 1735 15.3 8.3 2.7 
Adult-7 5878 15.1 102.7 130.3 51.9 5461 15.0 87.9 28.1 
Web-1 441 2.0 1.1 5.5 0.4 325 2.6 0.8 0.2 
Web-4 907 1.6 7.1 24.5 2.4 719 1.9 5.3 1.5 
Web-7 2017 1.2 52.9 134.9 18.0 1724 1.5 42.6 11.6 

Table 5.3 Comparisons of GS-SVMs and LIBSVM 2.83 for the different 

regularization parameters. The definition of K1, K2 and Time is the same as in Table 

5.2. 

Adult-7 Web-7 Algorithm C 
K1 K2 Time K1 K2 Time 

GS-SVMs  88 88 28 43 43 12 
62−  128 128 66 47 55 15 
42−  113 116 43 51 60 15 
22−  106 109 54 54 70 16 
02−  103 112 52 53 87 17 

22  103 177 71 53 135 18 
42  110 531 64 51 186 18 
62  117 1664 109 48 243 17 
82  117 4103 159 46 262 17 

LIBSVM 
2.83 

102  116 9156 309 45 260 16 

5.2  Comparison with the exist ing algorithms on Forest  Data Set  

To know the behavior of GS-SVMs on the very large data sets, we test the proposed 



algorithm on Forest data set (Blackard and Dean, 1999). The data set contains 

581,012 samples with seven classes. The dimension of samples is 54. We look only at 

the binary classification problem of differentiating class 2 from the rest. We randomly 

select 100000 samples as the training set and 50000 samples as the test set. 

Table 5.4 Comparisons of GS-SVMs and LIBSVM 2.83 on Forest data set. The 

definition of SV, Error, K1, K2 and Time is the same as in Table 5.2. For K1 and K2, 

each unit corresponds to 910  kernel function evaluations. 

GS-SVMs LIBSVM 2.83 Problems 
SV Error K2 Time SV Error K1 K2 Time 

20000 17923 12.4 0.4 109 18561 13.1 1.7 0.9 331 
40000 30894 8.9 1.2 384 33197 8.5 7.2 6.7 2277 
60000 40722 7.0 2.4 731 44401 6.5 16.5 15.5 5343 
80000 48346 6.0 3.9 1184 53546 5.4 29.3 27.3 8938 
100000 54831 5.3 5.6 1879 60921 4.7 45.4 41.8 13675 

To get good free parameters, we first choose two small subsets: one for training 

and the other for validation. The parameters are tuned on the validation set. Then, the 

parameters 1 10000θ =  and 10C =  are obtained for SVMs and the parameter 

1 10000θ =  is obtained for GS-SVMs. This group of data sets covers a wide range of 

kernel matrix size which fits into the cache by nearly 30% to only 1 %; hence, in most 

cases, we have to reevaluate the kernel function when some entity of the kernel matrix 

is needed. Table 5.4 shows the results of GS-SVMs and LIBSVM 2.83 as functions of 

the number of training samples. We can see that the generalization performance of 

GS-SVMs and LIBSVM 2.83 is close and however the training time of GS-SVMs is 

much less than that of LIBSVM 2.83. Note that the shrinking does not apply to Forest 

data set since it increases the training time of LIBSVM 2.83. 

Since different divisions of training and test sets are used in the benchmark test, it 



is not easy to compare the performance of the different algorithms fairly. Here, we 

give Collobert et al’s and Dong et al’s results (Collobert et al. 2002; Dong et al. 2005) 

for reference. Dong et al. randomly divided the full data set into 435756 training 

samples and 145256 test samples. Then, they trained SVMs on some subsets using the 

parallel techniques and uniformly combined the outputs of these SVMs to make a 

final decision. Dong's experiments was conducted on a PC with single intel P4 

1.7GHz processor with 256k L2 (second-level) cache, SDRAM. The total training 

time was about 6240 seconds. The test error was 10.4% for class 2 and the rest. 

Collobert et al. considered the same binary classification. Their training and test sets 

consisted of 100000 and 50000 samples, respectively. The experiments were 

conducted on the cluster with 50 Athlon 1.2Ghz CPUs. The test error was about 9.3% 

for the hard mixture of SVMs and the total training time was 2220 seconds. When the 

size of the training set was increased to 400000 and the local experts were changed to 

multilayer perceptrons, rather than SVMs, the hard probability mixture of MLPs 

achieved 5.6% test error on the binary classification, and the training time was 1020 

seconds. 

Table 5.5 Comparisons of GS-SVMs and other existing algorithms. Size denotes the 

number of training samples. The definition of SV, Error, and Time is the same as in 

Table 5.2. 

Algorithms Size Error Time SV 
Dong et al’s algorithms 435756 10.4 6240 N/A 

Collobert et al’s algorithm 400000 5.61 1020 N/A 
Core vector machines 400000 2.35 24369 42182 

GS-SVMs 400000 2.60 15449 103658 



For comparison, we also run GS-SVMs and core vector machines (Tsang et al., 

2005) on 400000 training samples and the results are shown in Table 5.5. It is 

observed that GS-SVMs are very competitive with the existing approximation 

algorithms. GS-SVMs are comparable with CVM and superior to the other two 

algorithms in terms of the generalization performance. The runtime of Collobert et 

al’s algorithm is less comparable with the other three algorithms because it exploits 

the significantly faster machine. The runtime of Collobert et al’s algorithm should be 

less than the runtime reported in Table 5.5 if it was run at our computer, but one 

should note that its generalization performance is very poor. 

5.3  Comparison with SVMs on more benchmark data sets  

In order to validate the generalization performance of GS-SVMs, we compare to 

HM-SVMs, soft margin SVMs on fifteen benchmark data sets from UCI (Blake and 

Merz, 1998). These data sets have been extensively used in testing the performance 

of diversified kinds of learning algorithms. This collection is a well-balanced mixture 

of the learning tasks with different characteristics, which contains problems with a 

few training samples or with many, with a few classes or with many, with a few 

features or with many and with low or high noise. The characteristics of benchmark 

data sets are given in Table 5.6. One-against-one method is used to extend binary 

classifiers to multi-class classifiers. 

For the data sets where the test samples may be available, the error on the test 

samples is reported in Table 5.7. For the data sets where the test samples may not be 

available, ten-fold cross validation is run and the average error of ten-fold cross 



validation is reported in Table 5.7. For each training-test pair, ten-fold cross validation 

is performed on the training set for tuning free parameters. Before training, we scale 

all the training samples into the interval [-1 1], and then adjust the test samples using 

the same linear transformation. The detailed experimental setup is the following: 

(a) For soft margin SVMs, kernel parameter and regularization parameter are chosen 

from intervals ( )2log [ 8, 7, 6, 5, ,5,6,7,8]θ = − − − −  and 

( )2log [ 1,0,1, 2, 7,8,9,10]C = − . This range is enough for our problems. The 

number of trainings needed on each training-test pair is 10 17 12 2040× × = . 

(b) For GS-SVMs and HM-SVMs, kernel parameter is chosen from interval 

( )2log [ 8, 7, 6, 5, ,5,6,7,8]θ = − − − − . The number of trainings needed on each 

training-test pair is 10 17 170× = . This range is enough for these data sets. 

Table 5.6. Characteristics of benchmark data sets. 

Problems Size Class Dimension 
Australian Credit 690 2 15 

German 1000 2 20 
Glass 214 6 9 
Heart 270 2 13 

Ionosphere 351 2 34 
Iris 150 3 4 

Liver disorders 345 2 6 
Pima Indians Diabetes 768 2 8 

Segment 2310 7 18 
Vowel 528 11 10 
Wdbc 569 2 30 
Wine 178 3 13 
Zoo 101 7 10 
Page 5473 4 10 

Splice 3175 3 240 
Dna 2000/1186 3 180 

Letter 15000/5000 26 16 
Satimage 4435/2000 6 36 
Shuttle 43500/14500 9 7 



Pairwise two-tailed t-tests indicate that GS-SVMs are much better than 

HM-SVMs on eight data sets, i.e. Australian, German, Glass, Heart, Iris, Liver, Wine 

and Diabetes. As for the remaining data sets, GS-SVMs and HM-SVMs obtain the 

similar performance. Pairwise two-tailed t-tests also indicate that GS-SVMs are much 

better than SVMs on Glass, and worse than SVMs on Liver. As for the remaining data 

sets, GS-SVMs and SVMs obtain the similar performance.  

Table 5.7. Errors of GS-SVMs, HM-SVMs, and SVMs on benchmark data sets. The 

results of the best method and of all other methods with no significant difference (the 

significant level > 0.05) are set in bold face. Note that pairwise two-tailed t-tests are 

not applied over Dna, Letter, Satimage and Shuttle. 

Problems GS-SVMs HM-SVMs SVMs 
Australian Credit 0.1507 0.2145 0.1551 

German 0.2580 0.3070 0.2460 
Glass 0.2846 0.3134 0.3319 
Heart 0.1630 0.2333 0.1677 

Ionosphere 0.0600 0.0600 0.0598 
Iris 0.0467 0.0800 0.0400 

Liver disorders 0.3397 0.3831 0.2871 
Pima Indians Diabetes 0.2279 0.2945 0.2292 

Segment 0.0268 0.0316 0.0299 
Vowel 0.0171 0.0095 0.0095 
Wdbc 0.0228 0.0351 0.0246 
Wine 0.0111 0.0337 0.0111 
Zoo 0.0291 0.0391 0.0391 

Mean 0.1260 0.1565 0.1255 
Page 0.0355 / 0.0307 

Splice 0.0328 / 0.0375 
Dna 0.0447 / 0.0455 

Letter 0.0270 / 0.0202 
Satimage 0.0830 / 0.0870 
Shuttle 0.0015 / 0.0008 
Mean 0.0374 / 0.0369 



6  Why Does Greedy stagewise algorithm for SVMs Work? 

Empirical study has shown that GS-SVMs work well on various data sets. In this 

section, we will further explore the reason for the success of GS-SVMs. According to 

statistical learning theory, the generalization performance of learning algorithm not 

only depends on the empirical risk but also the VC dimension of the hypothesis space. 

If the VC dimension of the hypothesis space is too large, the empirical risk 

minimization is possibly not consistent, i.e. the learning algorithms with a small 

empirical risk may bring a large actual risk. 

Chang and Lin (2001) have shown that if a kernel function is strictly positive 

definite, HM-SVMs have unique solution. In other words, HM-SVMs with positive 

definite kernel can completely separate the training samples with the presence of 

noise or not. This means that the hypothesis space is too large and HM-SVMs can 

suffer from over-fitting. In order to obtain good generalization performance, it is 

necessary to find a right balance between the empirical risk and the VC dimension of 

the hypothesis space. By introducing a regularization term, soft margin SVMs can 

balance the empirical risk and the VC dimension of the hypothesis space and thus 

obtain the good generalization performance.  

GS-SVMs adjust the weights of the kernel functions one by one. The weight of 

each kernel function centered on the training samples is adjusted once at most, so 

GS-SVMs run  iterations at most. In fact, the early stopping rule can act as an 

implicit regularization term and thus controls the capacity of hypothesis space. Thus, 

GS-SVMs usually do not find a good approximation solution for HM-SVMs.  



The set of hyperplanes 

{ }20 : ,Tb −
ΔΓ = ⋅ − = ≤ Δw x w w        (6.1) 

is called the set of Δ -margin separating hyperplanes if they classify vector x  as 

follows 

1 1
1 1

b
y

b
⋅ − ≥⎧

= ⎨− ⋅ − ≤ −⎩

w x
w x

.        (6.2) 

Note that classifications of vectors x  that fall into the margin [ ]1,1−  are undefined. 

For the set of Δ -margin separating hyperplanes, the following theorem holds true. 

Theorem 6.1 (Vapnik, 1999): Let vectors X∈x  belong to a sphere of radius 

R . Then the set of Δ -margin separating hyperplanes has the VC dimension H  

bounded by the inequality 

2

2min , 1RH l
⎛ ⎞

≤ +⎜ ⎟Δ⎝ ⎠
.        (6.3) 

It is well known that the VC dimension of the set of hyperplanes is equal to 1d + , 

where d  is dimensionality of input space. However, Theorem 6.1 shows that (1) the 

VC dimension of the set of Δ -margin separating hyperplanes can be less than 1d + ; 

(2) we can control the VC dimension of the set of Δ -margin separating hyperplanes 

by controlling Δ , i.e. the length of the weight vector w .  

The weight vector obtained by GS-SVMs is 

( )0 0

1

l

i i i
i

yα
=

= Φ∑w x ,        (6.4) 

where 0 , 1,i iα =  is the solution of GS-SVMs. Consequently, the length of the 

weight vector is 
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Δ ∑∑w w x x .     (6.5) 

This means that the separating hyperplane constructed by GS-SVMs belongs to 

the set { }
0

2
00 : Tb −

ΔΓ = ⋅ − = ≤ Δw x w w . We can look 2
0

T −≤ Δw w  as an implicit 

constraint for GS-SVMs. If we put the constraint to GS-SVM a prior, the solution of 

GS-SVMs does not change. The smaller 2
0
−Δ , the smaller the capacity of 

0Δ
Γ . If  

2
0
−Δ  obtained by GS-SVMs is suitable for the problems at hand, GS-SVMs can give a 

good regularization parameter explicitly. However, the separating hyperplane 

constructed by GS-SVMs usually is not the hyperplane that minimizes the empirical 

risk. According to statistical learning theory, the hyperplane minimizing the empirical 

risk is preferred for the given capacity of hypothesis space. One can find such 

hyperplane in 
0Δ

Γ  by the following optimization problem 
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(6.6) also is called rigorous support vector machines (RSVM) by Bi and Vapnik 

(2003). The solutions of RSVMs and SVMs coincide if the appropriate C  and 2
0
−Δ  

are given. Thus, if GS-SVMs can find a good approximate solution for RSVM with 

0Δ = Δ , we can explain why GS-SVMs obtain good generalization performance. We 

will show this by the following experiments. 

In Figure 6.1~6.2, we give the training errors and test errors of GS-SVMs, 

RSVMs, SVMs and HM-SVMs. The kernel parameter of RSVMs is set to the same as 



GS-SVMs and 2
0
−Δ  in RSVMs is computed by the weight vector obtained by 

GS-SVMs. Detailed experimental setup of GS-SVMs, SVMs and HM-SVMs is the 

same as section 5. Note that the training errors and test errors are the average of 

ten-fold cross validation. 

From Figure 6.1~6.2, we can see that the test error of HM-SVMs is significantly 

larger than its training error on each data set; however the test errors of GS-SVMs, 

RSVMs and soft margin SVMs are close to their training errors on each data set. This 

indicates that HM-SVMs suffer from over-fitting; however GS-SVMs, RSVMs and 

soft margin SVMs avoid it. 

 

  

         

Figure 6.1. Training errors of GS-SVMs, RSVMs, SVMs and HM-SVMs on seven 

data sets 

From Figure 6.1~6.2, we also can see that RSVM with 0Δ = Δ  obtains good 



generalization performance. This indicates that the early stopping rule in GS-SVM 

can choose an appropriate regularization parameter implicitly. On the other hand, the 

training error of GS-SVMs is close to that of RSVMs on seven data sets. This shows 

that GS-SVMs can find a good approximate solution for RSVM. Thus, we can explain 

the reason for the success of GS-SVMs: (1) GS-SVMs can choose an appropriate 

value of Δ , 0Δ  by the early stopping rule; (2) GS-SVMs can find a good 

approximate solution for rigorous support vector machine with 0Δ = Δ .  

 

 

          

Figure 6.2. Test errors of GS-SVMs, RSVM, SVMs and HM-SVMs on seven data 

sets 



7  Conclusion and Discussion 

HM-SVMs have a risk of getting over-fitting in the presence of noise. To deal with 

this problem, this paper presents a greedy stagewise algorithm for SVMs, named 

GS-SVMs, to train HM-SVMs, which attempts to approximately train HM-SVMs 

while avoiding over-fitting. Extensive empirical comparisons show that GS-SVMs are 

superior to HM-SVMs and comparable with soft margin SVMs in generalization 

performance. On the other hand, GS-SVMs also obtain an impressive speedup relative 

to soft and hard margin SVMs; hence it is very suitable for large scale problems. To 

explore the reason for the success of GS-SVMs, statistical learning theory is utilized 

to analyze the empirical results. It seems that the success of GS-SVMs lies in that the 

early stopping rule in GS-SVMs can act as an implicit regularization term.  

Note that although our algorithm is derived under the condition that the kernel 

function is positive definite, GS-SVMs can also be extended to the non-positive 

definite kernel function. Hence, future work also includes exploring the performance 

of GS-SVMs using the non-positive definite kernel functions. 
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