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Abstract. Building visual recognition models that adapt across different do-

mains is a challenging task for computer vision. While feature-learning machines

in the form of hierarchial feed-forward models (e.g., convolutional neural net-

works) showed promise in this direction, they are still difficult to train especially

when few training examples are available. In this paper, we present a framework

for training hierarchical feed-forward models for visual recognition, using trans-

fer learning from pseudo tasks. These pseudo tasks are automatically constructed

from data without supervision and comprise a set of simple pattern-matching op-

erations. We show that these pseudo tasks induce an informative inverse-Wishart

prior on the functional behavior of the network, offering an effective way to in-

corporate useful prior knowledge into the network training. In addition to being

extremely simple to implement, and adaptable across different domains with little

or no extra tuning, our approach achieves promising results on challenging visual

recognition tasks, including object recognition, gender recognition, and ethnicity

recognition.

1 Introduction

Visual recognition has proven to be a challenging task for computer vision. This dif-

ficulty stems from the large pattern variations under which an automatic recognition

system must operate. Surprisingly, this task is extremely easy for humans, even when

very few examples are available to the learner. This superior performance is in fact due

to the expressive hierarchical representation employed by human visual cortex. There-

fore, it has been widely believed that building robust invariant feature representation is

a key step toward solving visual recognition problems.

In the past years, researchers have designed various features that capture different

invariant aspects in the image, to name a few: shape descriptors [21], appearance de-

scriptors like SIFT features and their variants [16], etc. A classifier is then feed with

this representation to learn the decision boundaries between the object classes. On the

other hand, many efforts have been put toward building trainable vision systems in

the form of hierarchical feed-forward models that learn the feature extractors and the

classification model simultaneously. This approach emulates processing in the visual
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cortex and is reminiscent of the Hubel-Wiesel architecture [12]. While we concede that

given enough time and proper understanding of a particular visual recognition prob-

lem, researchers can devise ingenious feature extractors that would achieve excellent

classification performance especially when the learner is faced with few examples, we

believe that it is hard to devise a single set of features that are universally suitable for all

recognition problems. Therefore, it is believed that learning the features automatically

via biologically inspired models will open the door for more robust methods with wider

applications.

In this paper, we focus on Convolutional Neural Networks (CNNs) as an example of

trainable hierarchical feed-forward models [15]. CNNs have been successfully applied

to a wide range of applications, including character recognition, pose estimation, face

detection, and recently generic object recognitions. The model is very efficient in the

recognition phase because of their feed-forward nature. However, this generality and

capacity of handling a wide variety of domains comes with a price: the model needs a

very large number of labeled examples per class for training. To solve this problem, re-

cently an approach has been proposed that utilizes unlabeled data in the training process

[20]. Even though the method improves the performance of the model, to date, the best

reported recognition accuracy on popular benchmarks like Caltech101 by hierarchical

feed-forward models are yet unsatisfactory [14].

In this paper, we present a framework for training hierarchical feed-forward models

by leveraging knowledge via transfer learning from a set of pseudo tasks which are au-

tomatically constructed from data without supervision . We show that these auxiliary

tasks induce a data-dependent inverse-Wishart prior on the parameters of the model.

The resulting framework is extremely simple to implement, in fact, nothing is required

beyond the ability to train a hierarchical feed-forward model via backpropagation. We

show the adaptability and effectiveness of our approach on various challenging bench-

marks that include the standard object recognition datasets Caltech101, gender classifi-

cation, and ethnic origin recognition on face databases FERET and FRGC [19]. Overall,

our approach, with minimal across-domain extra tuning, exhibits excellent classifica-

tion accuracy on all of these tasks, outperforming other feed-forward models and being

comparable to other state-of-the-art methods. Our results indicate that:

– Incorporation of prior knowledge via transfer learning can boost the performance

of CNNs by a large margin.

– Trainable hierarchical feedforward models, have the flexibility to handle various

visual recognition tasks of different nature with excellent performance.

2 Related Work

Various techniques have been proposed that exploit locally invariant feature descrip-

tors, to name a few: appearance descriptors based on SIFT features and their deriva-

tives [16], shape descriptors [21], etc. Based on these feature descriptors, a similarity

measure is induced over images, either in the bag of word representation [8], or in a

multi-resolution representation [14]. This similarity measure is then then used to train

a discriminative classifier. While these approaches achieve excellent performance, we
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believe that it is hard to devise a single set of features that are universally suitable for

all visual recognition problems.

Motivated by the excellent performance and speed of the human visual recognition

system, researchers explored the possibility of learning the features automatically via

hierarchical feedforward models that emulate processing in the visual cortex. These ap-

proaches are reminiscent of multi-stage Hubel-Wiesel architectures that use alternating

layers of convolutional feature detectors (simple cells) and local pooling and subsam-

pling (complex cells) [12]. Examples of this generic architecture include: [7],[22],[18]

in addition to Convolutional Neural Networks (CNN) [15] (see Fig. 2). Several ap-

proaches have been proposed to train these models. In [22] and [18] the first layer is

hard-wired with Gabor filters, and then large number of image patches are sampled

from the second layer and used as the basis of the representation which is then used to

train a discriminative classifier. In CNN all the layers, including a final layer for clas-

sification, are jointly trained using the standard backpropagation algorithm [15]. While

this approach makes CNN powerful machines with a capacity to adapt to various tasks,

it also means that large number of training examples are required to prevent overfitting.

Recently [20] proposed a layer-wise greedy algorithm that utilizes unlabeled data for

pre-training CNNs. More recently, in [13], the authors proposed to train a feed-forward

model jointly with an unsupervised embedding task, which also leads to improved re-

sults. Though using unlabeled data too, our work differs from the previous work at the

more emphasis on leveraging the prior knowledge which suggests that our work can be

combined with those approaches to further enhance the training of feed-forward models

in general and CNN in particular, as we will discuss in section 4.

Finally, our work is also related to a generictransfer learning framework [2], which

uses auxiliary tasks to learn a linear feature mapping. The work here is motivated dif-

ferently and aims toward learning complex nonlinear visual feature maps as we will

discuss in section 3.3. Moreover, in object recognition, transfer learning has been stud-

ied in the context of probabilistic generative models [6] and boosting [23]. In this paper

our focus is on using transfer learning to train hierarchical feedforward models by lever-

aging information from unlabeled data.

3 Transfer Learning

3.1 Basics

Transfer learning, also known as multi-task learning [1,5], is a mechanism that improves

generalization by leveraging shared domain-specific information contained in related

tasks. In the setting considered in this paper, all tasks share the same input space (X) and

each task m can be viewed as a function fm that maps between this space to an output

space: fm : X → Y . Intuitively, if the tasks are truly related, then there is a shared

structure between all of all them that can be leveraged by learning them in parallel. For

example, Fig 1-a depicts few tasks. In this figure it is clear that input points a and b1

have similar values across all of these tasks, and thus one can conclude that these two

input points are semantically similar, and therefore should be assigned similar values

1 Please note that the order of points along the x-axis does not necessarily encode similarity.



72 A. Ahmed et al.

under other related tasks. When the input space X represents images, the inclusion of

related tasks would help induce similarity measures between images that enhances the

generalization of the main task being learned. The nature of this similarity measure

depends on the architecture of the learning system. For instance, in a feed-forward

Neural Network (NN) with one hidden layer, all tasks would share the same hidden

representation (feature space) Φ(x) (see Fig. 1-b) and thus the inclusion of pseudo tasks

in this architecture would hopefully result in constraining the model to map semantically

similar points like a and b ,from the input space, to nearby positions in the feature space.

3.2 Problem Formulation

Since in this paper we mainly focus on feed-forward models, we will formulate our

transfer learning problem using a generic neural network learning architecture as in

Fig. 1-b. Let N be the number of input examples, and assume that the main task to be

learnt has index m with training examples Dm = {(xn, ymn)} . A neural network has

a natural architecture to tackle this learning problem by minimizing:

min
θ

l (Dm, θ) + γΩ(θ) (1)

where l (Dm, θ) amounts to an empirical loss

min
wm

[

∑

n

ℓ(ymn, wT

mΦ(xn; θ)) + α‖wm‖2

]

Ω(θ) is a regularization term on the parameters of the feature extractors Φ(x; θ) =
[φ1(x; θ) . . . φJ (x; θ)]T – this feature extractor, i.e. the hidden layer of the network,

maps from the input space to the feature space. Moreover, ℓm(·, ·) is the cost function

for the target task. Unlike the usual practice in neural networks where the regularization

on θ is similar to the one on wm, we adopt a more informative Ω(θ) by additionally

introducing Λ pseudo auxiliary tasks, each represented by learning the input-output

pairs: Dλ = {(xn, yλn)}N
n=1, where yλn = gλ(xn) are a set of real-valued functions

automatically constructed from the input data. As depicted in Fig. 1.b, all the tasks share

the hidden layer feature mapping. Moreover, we hypothesis that each pseudo auxiliary

function, gλ(xn), is linearly related to Φ(xn; θ) via the projection weights wλ. Then the

regularization term Ω(θ) becomes:

min
{wλ}

∑

λ

[

∑

n

(

yλn − w
T

λΦ(xn; θ)
)2

+ β‖wλ‖
2

]

(2)

Training the network in 1.b to realize the objective function in (1) is extremely sim-

ple because nothing beyond the standard back-propagation algorithm is needed. By

constructing meaningful pseudo functions from input data, the model is equipped with

extensive flexibilities to incorporate our prior knowledge. Furthermore, there is no re-

striction on the parametric form of Φ(x; θ), which allows us to apply learning problem

(1) to more complex models (e.g., the CNN shown in Fig. 2.a). Our experiments will

demonstrate that these advantages can greatly boost the performance of CNNs for visual

recognition.
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(a) (b)

Fig. 1. Illustrating the mechanism of transfer learning. (a) Functional view: tasks represented as

functional mapping share stochastic characteristics. (b) Transfer learning in neural networks, the

hidden layer represents the level of sharing between all the task.

3.3 A Bayesian Perspective

In this section we give a Bayesian perspective to the transfer learning problem formu-

lated in Section 3.2. While (1, 2) are all what is needed to implement the proposed

approach, the sole purpose of this section is to give more insight to the role of the

pseudo tasks and to formalize the claims we made near the end of Section 3.1.

In Section 3.2, we hypothesized that the pseudo tasks are realizable as a linear pro-

jection from the feature mapping layer output, Φ(x; θ), that is:

yλ = wT

λ Φ(x; θ) + e (3)

where e ∼ N(0, β−1). The intuition behind (3) is to limit the capacity of this mapping

so that the constraints imposed by the pseudo tasks can only be satisfied by proper ad-

justments of the feature extraction layer paraments, θ. To make this point more clear,

consider Fig. 1.a, and consider points like a and b which are assigned similar values

under many pseudo tasks. Under the restriction that the pseudo auxiliary tasks are re-

alizable as a linear projection from the feature extraction layer output, and given an

appropriate number of such pseudo tasks, the only way that the NN can satisfy these

requirements, is to map points like a and b to nearby position in the feature space.

Therefore, the kernel induced by the NN, K(xi, xj ; θ), via its feature mapping function

Φ(.; θ), is constrained to be similar to the kernel induced by the pseudo tasks, where the

degree of similarity is controlled via the parameter γ in (1). Below we will make this

intuition explicit.

We first begin by writing the empirical loss due to the pseudo auxiliary tasks,

L({Dλ}, θ, {wλ}), where we make the dependency on {wλ} explicit, as follows:

L({Dλ}, θ, {wλ}) =
∑

λ

[

∑

n

(

yλn − w
T

λΦ(xn; θ)
)2

+ β‖wλ‖
2

]

(4)

If we assumer that wλ ∼ N(0, I), and that e ∼ N(0, β−1), then it is clear that (4)

is the negative log-likelihood of {Dλ} under these mild Gaussian noise assumptions.
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In Section 3.2, we decided to minimize this loss over {wλ}, which gives rise to the

regularizer term, Ω(θ). Here, we will take another approach, and rather integrate out

{wλ} from (4), which results in the following fully Bayesian regularizer, ΩB(θ):

ΩB(θ) =
Λ

2
log det(ΦTΦ + β−1I) +

Λ

2
tr

(

(ΦTΦ + β−1I)−1KΛ

)

(5)

where KΛ =
P

Λ

λ=1
Kλ

Λ
and Kλ = [gλ(xi)gλ(xj)]

N
i,j=1

. If we let K(θ) denotes the Ker-

nel induced by the NN feature mapping layer, where K(xi, xj , θ)=〈Φ(xi; θ), Φ(xj ; θ)〉
+ δijβ

−1 , then (5) can be written as:

ΩB(θ) =
Λ

2
log det(K(θ)) +

Λ

2
tr

(

K(θ)−1KΛ

)

(6)

It is quite easy to show that (6) is equivalent to a loss term due to an inverse-wishart

prior, IW(Λ, KΛ), placed over K(θ). Put it another way, (6) is the KL-divergence be-

tween two multivariate normal distributions with zero means and covariance matrices

given by K(θ) and KΛ. Therefore, in order to minimize this loss term the leaner is

biased to make the kernel induced by the NN,K(θ), as similar as possible to the ker-

nel induced by the pseudo-tasks,KΛ, and this helps regularize the functional behavior

of the network, especially when there are few training examples available. In Section

3.2, we choose to use the regularizer, Ω(θ) as a proxy for ΩB(θ) for efficiency as it

is amenable to efficient integration with the online stochastic gradient descent algo-

rithm used to train the NN, whereas ΩB(θ) requires gradient computations over the

whole pseudo auxiliary task data sets, for every step of the online stochastic gradient

algorithm. This decision turns out to be a sensible one, and results in an excellent per-

formance as will be demonstrated in Section 6.

4 Transfer Learning in CNNs

There are no constraints on the form of the feature extractors Φ(.; θ) nor on how they

are parameterized given θ, therefore, our approach is applicable to any feed-forward

architecture as long as Φ(.; θ) is differentiable, which is required to train the whole

model via backpropagation. A popular architecture that showed excellent performance

for visual recognition is the CNN architecture, see Fig. 2.a, which is an instance of

multi-stage Hubel-Wiesel architectures [12],[15]. The model includes alternating layers

of convolutional feature detectors (C layers), and local pooling of feature maps using

a max or an averaging operation (P layers), and a final classification layer. Detailed

descriptions of CNNs can be found in [15]. Applying the transfer learning framework

described in Section 3 to CNNs results in the architecture in Fig. 2-a. The pseudo tasks

are extracted as described in Section 5 and the whole resulting architecture is then

trained using standard backpropagation to minimize the the objective function in (1).

Throughout the experiments of this paper, we applied CNNs with the following ar-

chitecture: (1) Input: 140x140 pixel images, including R/G/B channels and additionally

two channels Dx and Dy, which are the horizontal and vertical gradients of gray in-

tensities; (2) C1 layer: 16 filters of size 16 × 16; (3) P1 layer: max pooling over each
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Fig. 2. Joint training using transfer-learning from pseudo-tasks

5 × 5 neighborhood; (4) C2 layer: 256 filters of size 6 × 6, connections with sparsity2

0.5 between the 16 dimensions of P1 layer and the 256 dimensions of C2 layer; (5) P2

layer: max pooling over each 5 × 5 neighborhood; (6) output layer: full connections

between 256 × 4 × 4 P2 features and outputs. Moreover, we used least square loss for

pseudo tasks and hinge loss for classification tasks. Every convolution filter is a linear

function followed by a sigmoid transformation (see [15] for more details).

It is interesting to contrast our approach with the layer-wise training one in [20].

In [20], each feature extraction layer is trained to model its input in a layer-wise fash-

ion: the first layer is trained on the raw images and then used to produce the input to

the second feature extraction layer. The whole resulting architecture is then used as a

multilayered feature extractor over labeled data, and the resulting representation is then

used to feed an SVM classifier. On contrast, in our approach, we jointly train the classi-

fier and the feature extraction layers, thus the feature extraction layer training is guided

by the pseudo-tasks as well as the labeled information simultaneously. Moreover, we

believe that the two approaches are orthogonal as we might first pre-train the network

using the method in [20], and then use the result as a starting point for our method. We

leave this exploration for future work.

5 Generating Pseudo Tasks

We use a set of pseudo tasks to incorporate prior knowledge into the training of recog-

nition models. Therefore, these tasks need to be 1) automatically computable based

on unlabeled images, and 2) relevant to the specific recognition task at hand, in other

words, it is highly likely that two semantically similar images would be assigned similar

outputs under a pseudo task.

A simple approach to construct pseudo tasks is depicted in Fig. 4. In this figure, the

pseudo-task is constructed by sampling a random 2D patch and using it as a template

to form a local 2D filter that operates on every training image. The value assigned to an

image under this task is taken to be the maximum over the result of this 2D convolution

operation. Following this method, one can construct as many pseudo-tasks as required.

2 In other words, on average, each filter in C2 is connected to a randomly chosen 8 dimensions

(filter maps) from P1.
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(a) (b)

Fig. 3. Images from: (a)Caltech101 and

(b)FRGC 2.0

Fig. 4. Simple pseudo task generation

Moreover, this construction satisfies condition (2) above as semantically similar images

are likely to have similar appearance. Unfortunately, this simple construction is brittle

with respect to scale, translation, and slight intensity variations, due to operating di-

rectly on the pixel-level of the image. Below, we show how to generalize this simple

approach to achieve mild local-invariance with respect to scale, translation and slight

intensity variations.

First, we processed all the images using a set of Gabor filters with 4 orientations

and 16 scales. This step aims toward focusing the pseudo-tasks on interesting parts of

the images by using our prior knowledge in the form of a set of Gabor filters. Then a

max-pooling operation, across scale and space, is employed to achieve mild scale and

translation-invariance. We then apply the simple method detailed above to this repre-

sentation. It is interesting to note that this construction is similar in part to [22] which

used random patches as the parameters of feed-forward filters which is later used as

the basis for the representation. The detailed procedure is as follows, assuming each

image is a 140 × 140 gray image: (1) Applying Gabor filters result in 64 feature maps

of size 104 × 104 for each image; (2) Max-pooling operation is performed first within

each non-overlapping 4× 4 neighborhood and then within each band of two successive

scales resulting in 32 feature maps of size 26×26 for each image; (3) An set of K RBF

filter of size 7 × 7 with 4 orientations are then sampled and used as the parameters of

the pseudo-tasks. To generate the actual values of a given pseudo-task, we first process

each training image as above, and then convolve the resulting representation with this

pseudo-task’s RBF filter. This results in 8 feature maps of size 20 × 20; Finally, max

pooling is performed on the result across all the scales and within every non-overlapping

10 × 10 neighborhood, giving a 2 × 2 feature map which constitutes the value of this

image under this pseudo-task. Note that in the last step instead of using a global max-

pooling operator over the whole image, we maintained some 2D spatial information by

this local max operator, which means that the pseudo-tasks are 4-dimensional vector-

valued functions, or equivalently, we obtained 4 ∗ K pseudo-tasks (K actual random

patches, each operating at a different quadrant of the image).

These pseudo-tasks encode our prior knowledge that a similarity matching between

an image and a spatial pattern should tolerate a small change of scale and translation

as well as slight intensity variation. Thus, we can use these functions as pseudo tasks

to train our recognition models. We note that the framework can generally benefit from
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all kinds of pseudo task constructions that comply with our prior knowledge for the

recognition task at hand. We have tried other ways like using histogram features of

spatial pyramid based on SIFT descriptors and achieved a similar level of accuracy.

Due to space limitation, we only report the results using the method detailed in this

section.

6 Experimental Results

To demonstrate the ability of our framework to adapt across domains with little tun-

ing, first, we fixed the architecture of CNN as descried in Section 4. Second, we fixed

the number of pseudo tasks K = 1024. To speed up the training phase, we apply PCA

to reduce these resulting pseudo-tasks to 300 ones. Moreover, in order to ensure that

the neural network is trained with balanced outputs, we further project these 300 di-

mensions using a random set of 300 orthonormal bases and scale each of the response

dimensions to have a unitary variance.

6.1 Object Recognition

We conducted experiments on the Caltech-101 database, which contains 102 categories

(including 101 object categories plus a background category) of object images, with

from 31 to 800 images per category. We chose Caltech-101, because the data set is con-

sidered one of the most diverse object databases available today, and more importantly,

is probably the most commonly tested benchmark in the literature of object recogni-

tion, which makes our results directly comparable with those of others. We follow the

standard setting in the literature, namely, train on 15/30 images per class and test on

the rest. For efficiency, we limit the number of test images to 30 per class. Note that,

because some categories are very small, we may end up with less than 30 test images.

To reduce the overweight of popular categories, we first compute the accuracy within

each category and then compute the average over all the categories. All the experiments

were randomly repeated for 5 trails.

Table 1. Categorization accuracy of dif-

ferent hierarchical feed-forward models on

Caltech-101

Training Size 15 30

HMAX-1 [22] 35% 42%
HMAX-2 [18] 51% 56%
CNN + Pretraining [20] - 54%
CNN 23.9% 25.1%

CNN+Transfer 58.1% 67.2%

Table 1 shows the comparison of our

results with those reported in the literature

using similar hierarchical feed-forward mod-

els on the same settings of experiments. The

baseline method “CNN”, i.e., CNN trained

without pseudo tasks, presented very poor ac-

curacy, which is close to the phenomenon ob-

served in [20]. The “CNN+Pretraining” ap-

proach made a significant improvement by

first training a encoder-decoder architecture

with unlabeled data, and then feeding the re-

sult of applying the encoder on labeled data

to an SVM classifer [20]. The idea was inspired by [11] that suggested an unsupervised

layer-wise training to improve the performance of deep belief networks. Our strategy

“CNN+Pseudo Tasks” also improved the baseline CNN by a large margin, and achieved
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the best results of hierarchical feedforward architectures on the Caltech 101 data set. To

better understand the difference made by transfer learning with pseudo tasks, we visual-

ize the learnt first-layer filters of CNNs in Fig. 5 (a) and (b). Due to lacking of sufficient

supervision in such a high-complexity learning task, a bit surprisingly, CNN cannot

learn any meaningful filters. In contrast, thanks to the additional bits of information of-

fered by pseudo tasks, CNN ends up with much better filters. Our result is comparable

to the state-of-the-art accuracy, i.e., 64.6% ∼ 67.6% in the case of 30 training images

per class, achieved by the spatial pyramid matching (SPM) kernel based on SIFT fea-

tures [14][9]. However, the feedforward architecture of CNN can be more efficient in

recognition phase. In our experiments, it takes in average 0.18 second in a PC with

2.66 GHz CPU, to process one 140× 140 color image, including feature extraction and

classification.

6.2 Gender and Ethnicity Recognition

In this section we work on gender and ethnicity recognitions based on facial appearance.

We use the FRGC 2.0 (Face Recognition Grand Challenge[19]) data set, which contains

568 individuals’ face images under various lighting conditions and backgrounds, pre-

senting in total 14714 face images. Beside person identities, each image is annotated

with gender, age, race, as well as positions of eyes and nose. Each face image is aligned

based on the location of eyes, and normalized to be with zero mean and unitary length.

We note that the data set is not suitable for research on age prediction, because majority

of individuals are young students.

We built models for binary gender classification and 3-class ethnicity recognition,

i.e., classifying images into “white”, “asian”, and “other”. For comparison, we imple-

mented two state-of-the-art algorithms that both utilize holistic facial information: one

is “SVM+SPM”, namely, the SVM classifier using SPM kernels based on dense SIFT

descriptors, as described by [14]; the other is “SVM+RBF”, namely, the SVM classifier

using radius basis function (RBF) kernels operating directly on the aligned face images.

The second approach has demonstrated state-of-the-art accuracy for gender recognition

[3,17]. We fix 114 persons’ 3014 images (randomly chosen) as the testing set, and train

the recognition models with various randomly selected 5%, 10%, 20%, 50%, and “All”

of the remaining data, in order to examine the model’s performance given different

training sizes. Note that we strictly ensure that a particular individual appear only in the

test set or training set. For each training size, we randomize the training data 5 times

and report the average error rate as well as the standard deviation. The results are shown

in Table 2 and Table 3.

Table 2. Error of gender recognition on the FRGC data set

Training Size 5% 10% 20% 50% All

RBF+SVM 16.7 ± 2.4% 13.4 ± 2.4% 11.3 ± 1.0% 9.1 ± 0.5% 8.6%

SPM+SVM 15.3 ± 2.9% 12.3 ± 1.1% 11.1 ± 0.6% 10.3 ± 0.8% 8.7%

CNN 61.5 ± 7.3% 17.2 ± 4.3% 8.4 ± 0.5% 6.6 ± 0.3% 5.9%

CNN+Transfer 16.9 ± 2.0% 7.6 ± 1.1% 5.8 ± 0.3% 5.1 ± 0.2% 4.6%
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Table 3. Error of ethnicity recognition on the FRGC data set

Training Size 5% 10% 20% 50% All

RBF+SVM 22.9 ± 4.7% 16.9 ± 2.3% 14.1 ± 2.2% 11.3 ± 1.0% 10.2%

SPM+SVM 23.7 ± 3.2% 22.7 ± 3.6% 18.0 ± 3.6% 15.8 ± 0.7% 14.1%

CNN 30.0 ± 5.1% 13.9 ± 2.4% 10.0 ± 1.0% 8.2 ± 0.6% 6.3%

CNN+Transfer 16.0 ± 1.7% 9.2 ± 0.6% 7.9 ± 0.4% 6.4 ± 0.3% 6.1%

(a) (c) (e)

(b) (d) (f)

Fig. 5. First-layer filters on the B channel, learnt from both supervised CNN and CNN with

transfer Learning. top: filters learnt from supervised CNN. bottom: filters learnt using transfer

learning from pseudo-tasks. first column: Caltech-101 (30 examples per class); second column:

FRGC-gender; and third column: FRGC-Race.

From Table 2 and 3 we have the following observations: (1) The two competitor

methods resulted in comparable results for gender classification, while for ethnicity

recognition SVM+RBF is more accurate than SVM+SPM; (2) In general, CNN mod-

els outperformed the two competitors for both gender and ethnicity recognition, es-

pecially when sufficient training data were given; (3) CNN without transfer learning

produced very poor results when only 5% of the total training data were provided; (4)

“CNN+Transfer” significantly boosted the recognition accuracy in nearly all the cases.

In cases of small training sets, the improvement was dramatic. In the end, our methods

achieved 4.6% error rate for gender recognition and 6.1% for ethnicity recognition.

Interestingly, although CNN and “CNN+Transfer” resulted in close performances

when all the training data were employed, the filters learnt by CNN+Transfer (visu-

alized in Fig. 5.d appear to be much smoother than those learnt by CNN (shown in

Fig. 5.c3 Moreover, as indicated by Fig. 6, we also found that “CNN+Transfer” con-

verged much faster than CNN during the stochastic gradient training, indicating another

advantage of our approach.

We note that the best performances our method achieved here are not directly com-

parable to those reported in [10,17], because their results are based on the FERET data

3 To save space, here we only show the filters of one channel for gender and ethnicity recogni-

tion. However the same phenomenon was observed for filters of other channels.
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Table 4. Error of gender recognition on the FERET data set

RBF+SVM Boosting CNN CNN+Transfer

Error 6.5%[3] 5.6%[3] 2.3% 1.7%

(a) (b)

Fig. 6. Number of errors on test data over epochs, where dashed lines are results of CNN with

transfer learning, solid lines are CNN without transfer learning: (a) gender recognition; (b) ethnic

recognition

set4, which contains face images under highly controlled lighting conditions and sim-

pler backgrounds. More importantly, as recently pointed by [3], their experiments mixed

up faces of same individuals across training and test sets, which made the results not

truly measuring the generalization performance of handling new individuals. To make

a direct comparison possible, we followed the experimental setting of [3] as much as

possible, and conducted experiments on the FERET data for gender recognition, where

no individual is allowed to appear in the training and test simultaneously. The results

are summarized in Table 4, showing that“CNN+Transfer” achieved the best accuracy

on the FERET data set.

6.3 A Further Understanding of Our Approach

In the previous two subsections we showed that our framework, with little tuning, can

adapt across different domains with favorable performance. It is interesting to isolate

the source of this success. Is it only because of the informativeness of the pseudo-tasks

used? And if not, then is there a simpler way of combining the information from the

pseudo-tasks with its equivalent from a supervised CNN trained only on labeled data?

To answer the first question, as we mentioned in Section 5, our pseudo-task construc-

tion overlaps with the the system in [22],[18] 5, however, our results in Table 1 indicates

significant improvement over these baseline. To answer the second question, we did an

additional experiment on Caltech101, using 30 training examples per category, to train

an SVM on the features produced by the pseudo-tasks alone or on the combined features

produced by the pseudo-tasks and the features from the last layer of a CNN trained via

purely supervised learning. The results were 49.6% and 50.6% respectively. This shows

that the gain from using the features from a supervised CNN was minimal. On the other

4 Available at http://www.itl.nist.gov/iad/humanid/feret/
5 In fact, the system in [22] and its successor [18] has other major features like inhibition,etc.
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hand, our approach which involves joint-training of the whole CNN inherits the knowl-

edge from the pseudo-tasks in the form of its induced kernel, as explained in Section

3.3, but is also supervised by labeled data and thus has the ability to further adapts its

induced kernel, K(θ), to better suit the task at hand.

Moreover, our approach results in an efficient model at prediction time. In fact, the

pseudo-task extraction phase is computationally expensive and it took around 29 times

longer to process one image than a feedforward pass over the final trained CNN. In

other words, we paid some overhead in the training phase to compute these pseudo-

tasks once, but created a fast, compact, and accurate model for prediction.

7 Discussion, Conclusion, and Future Work

Benefiting from a deep understanding of a problem, hand-engineered features usually

demonstrate excellent performances. This success is in a large sense due to the fact that

the features are learnt by the smartest computational units – brains of researchers. In

this sense, hand-craft designing and automatic learning of visual features do not have

fundamental differences. An important indication of this paper is that, it is generally

hard to build a set of features that are universally suitable for all different tasks. For

example, the SPM kernel based on SIFT is excellent for object recognition, but may not

be good for gender and ethnicity recognition. Interestingly, an automatically learnable

architecture like CNN can adapt itself to a range of situations and learn significantly

different features for object recognition and gender recognition (if comparing Fig. 5

(b) and (d)). We believe that given a sufficient amount of time, very likely researchers

can come up with even better features for any visual recognition task. However, a com-

pletely trainable architecture can hopefully achieve good results for a less well-studied

task with minimum human efforts.

In this paper, we empirically observed that training a hierarchical feedforward ar-

chitecture was extremely difficult. We conjecture that the poor performance of CNN

on Caltech 101 is due to the lack of training data, given the large variation of object

patterns. In the tasks of gender and ethnicity recognitions, where we have sufficient

data, CNNs in fact produced poor results on small training sets but excellent results

given enough training data (see Table 2 and Table 3). Therefore, when insufficient

labeled examples are present, it is essential to use additional information to supervise

the network training.

We proposed using transfer learning to improve the training of hierarchical feed-

forward models. The approach has been implemented on CNNs, and demonstrated ex-

cellent performances on a range of visual recognition tasks. Our experiments showed

that transfer learning with pseudo tasks substantially improves the quality of CNNs

by incorporating useful prior knowledge. Our approach can be combined with the pre-

training strategy [20][11], which remains an interesting future work.

Very recently, [4] showed that detecting region of interest (ROI) can greatly boost the

performance of SPM kernel on Caltech 101. Our work is at the level of [14] that builds

classifier based on the whole image. In the future, it is highly interesting to develop a

mechanism of attention in CNNs that can automatically focus on the most interesting

region of images.
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