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Detection of protein-protein interactions (PPIs) plays a vital role in molecular biology. Particularly, 
pathogenic infections are caused by interactions of host and pathogen proteins. It is important to 
identify host-pathogen interactions (HPIs) to discover new drugs to counter infectious diseases. 
Conventional wet lab PPI detection techniques have limitations in terms of cost and large-scale 
application. Hence, computational approaches are developed to predict PPIs. This study aims to 
develop machine learning models to predict inter-species PPIs with a special interest HPIs. 
Specifically, we focus on seeking answers to three questions that arise while developing an HPI 
predictor: 1) How should negative training examples be selected? 2) Does assigning sample weights 
to individual negative examples based on their similarity to positive examples improve 
generalization performance? and, 3) What should be the size of negative samples as compared to the 
positive samples during training and evaluation?  We compare two available methods for negative 
sampling: random vs. de novo sampling and our experiments show that de novo sampling offers 
better accuracy. However, our experiments also show that generalization performance can be 
improved further by using a soft de novo approach that assigns sample weights to negative examples 
inversely proportional to their similarity to known positive examples during training. Based on our 
findings, we have also developed an HPI predictor called HOPITOR (Host-Pathogen Interaction 
Predictor) that can predict interactions between human and viral proteins. The HOPITOR web server 
can be accessed at the URL:  http://faculty.pieas.edu.pk/fayyaz/software.html#HoPItor. 

Keywords: host-pathogen interactions, interaction predictor, protein-protein interactions, negative 
sampling. 

1.   Introduction 

Proteins are complex molecules that take part in virtually all life processes in living 
organisms1 such as metabolism, signaling, and structural organization.2 Protein sequences 
are composed of long chains of 20 amino acids.1 The sequence of a protein determines its 
three-dimensional structure, and, consequently, its specific functions.1,3 Proteins rarely 
act alone: more than 80% of proteins operate in complexes formed through interactions 
of proteins.4,1,2,5 Therefore, to understand functional mechanisms of proteins, it is very 
important to study their protein-protein interactions (PPIs).6 A special type of PPIs is 
host-pathogen interactions (HPIs) that involve interactions between proteins from a 
pathogen (virus or bacteria) and its host.7 According to the World Health Organization, 
each year more than 17 million people are killed by infectious diseases.8,9 To fight these 
infectious diseases, it is important to identify HPIs as it is a key step in drug design and 
biological discovery of disease mechanisms.6 

mailto:wajidarshad@gmail.com
mailto:a.asif.shah01@gmail.com
mailto:sadafzakarkhan@gmail.com
mailto:afsar@pieas.edu.pk
http://faculty.pieas.edu.pk/fayyaz/software.html#HoPItor


Basit et al. 

 

2 

Conventional wet lab techniques are expensive and time-consuming, making it almost 
impossible to assess all possible combinations of protein interactions between a pathogen 
and its host.10,11 Therefore, computational approaches are used to predict HPIs.10,11 For 
example, if we want to find possible interactions of only 2000 host proteins with 500 
pathogen proteins, the possible host-pathogen combinations turn out to be one million. 
For this reason, there is a shortage of experimentally verified HPI data. Computational 
studies are vital to increase the available PPI data and eventually add to the pace of drug 
design research.11 

Most available computational methods to predict HPIs use sequence and structural 
similarity based techniques.7,11,12,13,14 However, due to limited availability of structural 
information15 and missing data16, sequence-only based methods are better for generalized 
predictors. In machine learning techniques for PPIs, feature vectors are extracted from 
protein sequences and then a machine learning model learns from available data to 
predict unknown interactions.11,12,13,17,18 A binary classifier uses a training data set of 
known interacting and non-interacting protein pairs.19 The positive samples in training of 
the classifier are obtained from biochemical experiments, whereas, negative samples are 
typically generated computationally11,13,19,20. Machine learning models for predicting 
protein-protein interactions include Support vector machines (SVMs)13,17,18, Random 
Forest (RF)21, Gradient Boosting Machine (XGBoost) 22, Neural Networks, etc.  

In this work, we discuss three questions related to the development of machine 
learning models for prediction of HPIs and their performance evaluation as discussed 
below. We also present a new prediction method called HOPITOR which performs 
significantly better than previous techniques. 

The first question that arises in the development of a machine learning model for HPIs 
is how to generate negative samples for training a host pathogen interaction predictors. 
Ben-Hur et al.20 discuss available methods to choose negative examples and conclude 
that negative samples should be selected uniformly at random. Although random 
sampling may contaminate the negative examples with interacting proteins, this 
contamination is likely to be minor. More recently, a method called DeNovo negative 
sampling has been proposed by Eid et al.13 to replace random sampling. DeNovo 
sampling is a dissimilarity based negative sampling criterion that considers sequence 
similarities of viral proteins interacting with a host protein in generating negative 
examples13. In DeNovo sampling, pairs of host and pathogen proteins whose sequences 
are similar to known positive examples are excluded from the set of negative examples. 
The experiments by Eid et al. show that DeNovo sampling is more effective than random 
sampling in training HPI predictors in terms of generalization performance. However, Eid 
et al. use a balanced dataset with an equal number of positive and negative proteins 
selected with DeNovo sampling which does not reflect the true use case of an HPI 
prediction method as the number of pairs of host and pathogen proteins can be much 
larger than possible protein interactions. We use a simple SVM to compare these two 
methods for sampling negative examples on an imbalanced dataset.  

The second question is: whether assigning sample-level weights to negative 
classification examples based on their similarity to positive examples can help improve 
generalization performance of HPI predictors or not? Training examples can be assigned 
sample level weights to reflect domain knowledge or confidence in their labeling or noise 
contamination. Eid et al. 13 and others 17,18, 19 do not assign sample level weights to 
individual training examples. The idea of using weighted training samples is widely 
implemented in other fields of science 24,25,26. Ravikant et al.27 use the idea of weighted 
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samples in an energy-based docking method for PPIs. Inspired from the success of 
DeNovo sampling in selection of negative examples, we hypothesize that assigning 
sample weights for negative examples inversely proportional to their similarity to known 
positive examples can help improve classifier generalization. This approach can be 
thought of as a soft denovo approach for handling negative examples in training HPI 
predictors. It generalized the concept of DeNovo sampling: negative examples that are 
similar to known positive examples have a lesser impact on the decision boundary of a 
classifier in comparison to more dissimilar ones to ensure good generalization. Using 
such sample level weighting can reduce the impact of false positives during training. We 
test this hypothesis by comparing the performance of different classifiers with and 
without sample weights. 

The third question considered in this study is: what is the effect of training and test 
data sizes on prediction performance? Should we use balanced training and evaluation 
sets with an equal number of positive and negative examples or should we use as much 
available data as possible?  Eid et al. 13 and others 17,18 use a balanced set in their 
evaluation. However, as discussed above, this approach does not simulate real-world use 
of HPI predictors because the number of possible interactions between proteins is much 
smaller than all possible pairs of those proteins23. Therefore, we propose that the entire 
data should be used for training an HPI predictor and experimentally show that this 
approach offers improved prediction performance. 

 
Fig. 1. Flowchart for developing HOPITOR 

The rest of the paper is organized as follows: Section 2 describes the methods used in the 

study, Section 3 gives results and discussion about different computational experiments 

whereas Section 4 presents our conclusions. 

2.   Methods 

An overview of the methodology is presented in the flowchart given in Fig. 1. The step-
wise development is given below. 
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2.1 Datasets and Preprocessing 

HPIs are obtained from supplementary data provided by Eid et al.13 This dataset has 
originally been compiled using VirusMentha.28 After removing duplicates, it has 4971 
unique interactions between 2237 human proteins and 337 viral proteins. The viral 
proteins are divided into ten groups based on their biological families as shown in Table 
1. The partitioned data was obtained from Eid et al.13 on request. 

 

Table 1. Partitioned Viral Families 

Group 
No. 

Family Name 
No. of 
viral 

proteins 

Positive 
Examples 

DeNovo 
Negative 
Examples 

Ratio of 
Negative to 

Positive 
Examples 

1 Paramyxoviridae 12 762 1797 2.35 

2 Filoviridae 4 114 592 5.20 
3 Bunyaviridae 3 159 508 3.20 

4 Flaviviridae 14 291 25953 89.2 

5 Adenoviridae 22 88 3453 39.2 
6 Orthomyxoviridae 32 664 5004 7.50 

7 Chordopoxviridae 26 194 4158 21.4 

8 Papillomaviridae 40 245 6665 27.2 
9 Herpesviridae 134 1001 25505 25.5 

10 Retroviridae 50 1399 8062 5.76 

  Total 337 4917 81697 16.6 

2.2 Generating Negative Samples  

Machine learning based PPI predictors require both positive and negative datasets for 
their training. Because the interaction data are available for positive class only, the 
generation of negative examples is the first step. We evaluate two different techniques for 
generating negative samples: random vs. DeNovo sampling. 

(a) (b) 

Fig. 2. Illustration of (a) Random sampling and (b) Denovo sampling 

2.1.1 Random Negative Sampling 

Ben-Hur et al.20 argue that, even though random sampling may contaminate the data set, 
this contamination is not likely to effect classifier performance much.  This method is 
illustrated in Fig. 2(a). First, a random host protein and a random pathogen protein are 
chosen; then, it is checked whether the chosen pair is part of the set of known 
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interactions; if not, then the randomly chosen samples are selected as negative examples. 
The solid connectors represent the positive HPIs and the dotted connectors show the 
randomly selected negative HPIs. Pathogen protein 1 can be paired with host proteins 𝑎 
and 𝑐 as a negative example; however, it cannot be paired negatively with host protein 𝑏 

since there exists a positive sample between 1 and 𝑏. 

2.1.2 DeNovo Negative Sampling 

Eid et al.13 hypothesize that viral proteins with high sequence similarity can interact with 
similar host proteins. Based on this hypothesis, the authors argue that random negative 
sampling will result in a large number of false negatives samples. To mitigate this issue, 
Eid et al.13 propose dissimilarity based negative sampling criterion called DeNovo 
negative sampling. 

In DeNovo sampling, pairwise sequence similarity of viral proteins is first 
determined. If two viral proteins are more similar than a cut-off value, a host protein that 
interacts with one of them cannot be paired with the second one to form a negative 
example. Dissimilarity scores are used to compare the similarities between viral proteins. 
These scores are obtained by taking the complement of normalized bit scores from the 
all-vs-all pairwise global alignment of viral proteins. At a dissimilarity threshold  𝑇, the 
negative samples that do not fulfill the criterion are filtered out, and random sampling is 
done over the rest of the negative examples.  We use 𝑇 = 0.7 in this study. This method 
is illustrated in Fig. 2(b)Error! Reference source not found.. The complete details of 
DeNovo pairing technique is given in Eid et al.13 In Fig. 2(b), pathogen protein 1 cannot 
be paired with host protein 𝑏 because it interacts with it. Moreover, it also cannot be 

paired with host protein 𝑎 as 1 and 2 are similar to each other, i.e., their dissimilarity 

distance is less than 𝑇, and 2 interacts with 𝑎. However, viral proteins 1 and 4 have 

dissimilarity distance ≥ 𝑇, and they have a positive example with human proteins 𝑏 and 𝑐 
respectively, therefore, 1 can only be paired with 𝑐 as a negative example. Table-1 shows 
the number of denovo negative examples for each viral family in our evaluation. For a 
fair comparison, an equal number of negative proteins were selected based on random 
sampling as well. 
2.3 Feature Extraction 

In this work, we have used clustered tripeptide composition features which were also 
used by  Eid et al.13 and originally proposed by Shen et al.17 and others.12, 18 In this 
approach, the 20 amino acids are first clustered into seven groups based on their 
physiochemical properties that affect protein interactions such as side chain volume and 
dipoles17. The seven clusters are  {𝐴, 𝑉, 𝐺}, {𝐼, 𝐿, 𝐹, 𝑃},  {𝑌, 𝑀, 𝑇, 𝑆}, {𝐻, 𝑁, 𝑄, 𝑊}, {𝑅, 𝐾}, {𝐷, 𝐸} and {C}. After clustering, the frequency of all possible 3-mers is calculated in 

each protein sequence to get a 73 = 343 dimensional protein-level feature vector. The 
individual feature vectors in an example (ℎ, 𝑣) comprising of a host protein ℎ and 

pathogen protein 𝑣 are first normalized to unit norm and concatenated into a single 686-
dimensional feature vector.  

2.4 Classification Models 

We evaluate three different regularized machine learning models in our study: Support 
Vector Machines (SVM), Random Forest (RF) and Gradient Boosting Machine 
(XGBoost)22. We use Scikit-learn 0.1929 in Python 2.730 to train and evaluate SVM and 
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RF models and python-based xgboost 0.7 API for training and testing of XGBoost. For 
notation, we assume that we are given sets of positive and negative examples, 𝑃 and 𝑁, 

respectively, with a total of 𝑛 =  |𝑃| + |𝑁| examples. An example is represented by its 

feature vector 𝐱𝐢 and associated label 𝑦𝑖 ∈ {+1, −1} for 𝑖 = 1. . . 𝑛. Below we discuss 
classifiers used in this study. 

2.4.1 Support Vector Machines (SVMs)  

We have used Support Vector Machines (SVMs)31 with a radial basis function kernel.  

SVM is a large-margin classifier with the decision function 𝑓(𝒙) = 𝐰𝑇𝒙 + 𝑏 where 𝐰 

and 𝑏 are weight and bias terms of the classifier. The optimization problem of an SVM 
tries to minimize the number of margin violations and misclassifications over training 
data while maximizing its regularization or margin: min𝐰,b,𝛏 12 ‖𝐰‖2 + ∑ c𝑖ξ𝑖ni=1 ,    (1) 

such that for all 𝑖 = 1 … 𝑛: 𝑦𝑖(𝐰𝐓𝐱𝐢 + b) ≥ 1 − ξ𝑖, ξ𝑖 ≥ 0.   (2) 
Here, ξ𝑖 is the extent of margin error for the 𝑖th example. The hyper-parameter c𝑖 is the 

margin violation penalty of the 𝑖th example and it determines the relative significance of 
its margin violation and maximization of the margin. Typically, the margin violation 
penalties of all examples are set equal to 𝐶 to reduce the number of hyper-parameters. 
However, these margin violation penalties can be used to assign sample weights to 
individual examples as well. The above equation can be expressed as the dual form: max𝜶 ∑ 𝛼𝑖 − 12 ∑ 𝑦𝑖𝑦𝑗𝛼𝑖𝛼𝑗𝐱𝒊𝑻𝐱𝒋𝑛𝑖,𝑗=1𝑛𝑖=1 ,  (3) 

such that:  ∑ 𝑦𝑖𝛼𝑖 = 0,𝑛𝑖=1 and, 0 ≤  𝛼𝑖  ≤  c𝑖 .    (4) 

In (3), the dot product term 𝐱𝒊𝑻𝐱𝒋 can be replaced by a generalized dot product or 

kernel function, 𝐾(𝐱𝒋, 𝐱𝒋) to make the classifier non-linear. In this study, radial basis 

function is used which is given as: 𝐾(𝐱𝒋, 𝐱𝒋) = exp (−𝛾‖𝐱𝒋 − 𝐱𝒋‖2 ). We optimize the 

SVM kernel parameters using grid search and select C = 10, γ = 0.1. 
2.4.2 Random Forest (RF) 

Random Forest (RF) is an ensemble learning technique that works by creating several 
decision trees on arbitrary subsample sets of input features during training. In testing, it 
produces a probability value for a test example to belong to the positive class by taking 
the mode of classes of individual trees21. We optimize the hyper-parameters of the RF 
ensemble using grid search with respect to maximum number, depth and splitting features 
of decision trees.  

2.4.3 Gradient Boosting Machine (XGBoost) 

XGBoost is an ensemble learning technique that operates by combining weak decision 
tree learners in an iterative manner through boosting. This technique uses gradient 
boosting to learn a decision function that minimizes the average value of classification 
loss on training data based on a combination of decision trees trained in an incremental 
manner over residual errors of the previous stage.32: 
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We use the grid search to optimize XGBoost parameters with respect to maximum 
depth, objective function, learning rate, booster subsample and number of boosting 
iterations. The optimal parameters are:  𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔 𝑟𝑎𝑡𝑒 = 0.1, max  𝑑𝑒𝑝𝑡ℎ =10, 𝑛𝑜. 𝑜𝑓 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑜𝑟𝑠 = 100, 𝑠𝑢𝑏𝑠𝑎𝑚𝑝𝑙𝑒 = 1.    

2.5 Soft Denovo: Weighting of negative examples in training 

In training machine learning models for classification, training examples can be assigned 
a sample weight based on confidence about the correctness of their labels, the degree of 
noise in the sample or class sizes. Sample weighting can be used to include domain-
specific knowledge about examples in training a machine learning model. For example, 
in a support vector machine, each example can be assigned its own margin violation 
penalty c𝑖 instead of having a global 𝐶 hyper-parameter as discussed earlier. One 
advantage that this flexibility allows is to handle class imbalance by assigning a larger 
margin violation penalty to the minority class examples in comparison to examples from 
the majority class. Similar sample weighting schemes are also available for both random 
forest and XGBoost classifiers as well21,32. 

In this work, we propose to use sample weights to reflect our confidence in the 
correctness of labels of negative training examples based on their sequence similarity to 
positively labeled training examples. To test our hypothesis that sample weighting based 
on this approach will improve classification performance, we compare various classifiers 
with and without sample weighting as discussed below. 

2.5.1 Unweighted Training Samples 

In this approach31, all examples are weighted equally during training. However, to handle 
class imbalance, all examples in a class are assigned the same weight which is inversely 
proportional its prior class probability. 

2.5.2 Soft Denovo 

In this approach24, a separate value of sample weight is assigned to each training 
example. As positive training examples are experimentally validated, therefore, all 
positive examples are assigned a sample weight of 1.0. On the other hand, negative 
training examples are computationally generated, therefore, negative examples are 
assigned weights between 0 and 1 depending upon their sequence similarity to known 
positive examples. Specifically, we set the sample weight of a negative example 
comprising of a host protein ℎ and viral protein 𝑣 to the dissimilarity score of 𝑣 with its 
most similar viral protein that interacts with the host protein ℎ. This idea is illustrated in 
Fig. 3. Mathematically, the sample weight of a negative example consisting of a host 
protein ℎ and viral protein 𝑣 can be written as: min𝑣′∈{𝑣′′|(ℎ,𝑣′′)∈𝑃} 𝐷𝑣𝑣′  where 𝐷𝑣𝑣′ is the 

normalized dissimilarity score between viral proteins 𝑣 and 𝑣′. This method of assigning 
sample weights can be thought of as a soft denovo approach for handling negative 
examples. It generalizes the DeNovo sampling concept proposed by Eid et al.: negative 
examples that have high sequence similarity with positive examples should have a 
smaller effect on determining the classification boundary in comparison to more 
dissimilar ones to ensure good generalization by reducing the impact of potential false 
positives. This allows the classifier to construct a decision boundary through an area of 
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low data density. Assigning weights to negative samples in this manner can also reduce 
the impact of the method used for selecting negative examples on generalization 
performance of an HPI predictor. To handle class imbalance, the sample weight of an 
example is then multiplied by its class-level weight which is inversely proportional to its 
prior class probability.  

 
Fig. 3. An example of selecting the weight, 𝑐𝒊 of a negative sample. Consider the pair (𝒉, 𝒗) between host protein 𝒉 and viral protein 𝒗 such that the host protein 𝒉 interacts 

with  𝒗𝟏′ , 𝒗𝟐′ ,  and 𝒗𝟑′ . Similarity of 𝒗 is maximum with 𝒗𝟏′ . Therefore, dissimilarity 

distance 𝑫𝒗𝒗𝟏′ = 𝟎. 𝟑 is set as the sample weight 𝑐𝒊.     
2.6 Performance Evaluation  

Machine learning models in this study have been evaluated using leave-one-group-out 
cross-validation as implemented by Eid et al.13. In this evaluation, a machine learning 
model is trained on examples from all but one of the 10 groups listed in Table-1 and 
tested on the held-out group or family. This gives a more realistic assessment of 
generalization performance in scenarios where the predictor will be used for identifying 
protein interactions of a novel viral family.  
The cross-validation performance of different machine learning models is evaluated using 
area under the Receiver Operating Characteristic curve (AUC-ROC) and precision-recall 
curves (AUC-PR)11,33. For this purpose, True positive rate (TPR) (or recall), False 

Positive Rate (FPR) and precision are defined as follows: 𝑇𝑃𝑅 = 𝑇𝑃𝑇𝑃+𝐹𝑁 , 𝐹𝑃𝑅 = 𝐹𝑃𝑇𝑃+𝐹𝑁  ,𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑃𝑇𝑃+𝐹𝑃 . 
AUC-ROC is the area under the plot between TPR and FPR at various thresholds. The 
ROC curve tells us how good a predictor is at detecting true positives at a given rate of 
false positives. The ROC curve is not sensitive to class imbalance. To report our results 
on imbalanced datasets, we have used the area under the precision-recall curve (AUC-
PR). The weighted averages of AUC-ROC and AUC-PR for all groups with respect to the 
number of examples in them are reported for comparison. 

2.7 Biological Validation 

To test the generalization performance of our prediction model, we test it on three 
different viral species (Human respiratory syncytial virus (HRSV), Measles virus, and 
Rabies virus) from three different families. Specifically, we use our trained model to 
identify the interactions of all proteins in a viral proteome with human STAT1 and 
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STAT2 proteins. It is important to note that these examples are not part of our training 
data and one of the viral families is completely novel for the classifier. We rank all 
putative interactions of the viral proteins with their human host proteins and compare 
them to the literature as discussed in the results section.  

3 Results and Discussion 

3.1 Negative Sampling 

In order to select the optimal method for generating negative examples, we set-up two 
SVM models to test Random and DeNovo negative sampling. The first model is trained 
with negative examples generated by using Random negative sampling whereas the 
second model is trained with negative examples generated by using DeNovo negative 
sampling at 𝑇 = 0.7. Eid et al. 13 use the same number of positive and negative examples. 
However, to simulate the real word scenario where the number of positive examples is 
expected to be much smaller than negative examples, we select the entire set of DeNovo 
negative examples instead of using the balanced set. Both classifiers are tested on 
positive and denovo negative examples using leave one group out cross-validation.  The 
weighted average AUC-ROC for the model trained with random negative sampling is 0.47 whereas, the AUC-ROC for the model trained with DeNovo negative sampling 

is 0.68. Moreover, the average AUC-PR for random sampling is 0.05, while it is 0.39 for 
DeNovo sampling. The detailed group-wise results are shown in Table 2. These 
significantly improved results show that DeNovo sampling is indeed better than Random 

sampling. Therefore, we choose DeNovo negative sampling for building our HPI 
predictor and comparing classifiers as discussed in the next section. This result is in 
agreement with the findings of Eid et al. However, unlike the work by Eit et al., we have 
used an imbalanced data set with precision-recall scores. As a consequence, our result 
further generalizes the conclusion that denovo sampling should be used in training HPI 
predictors. 

Table 2. Comparison of random vs. denovo sampling for SVM classifier 

  
Group 

Random Sampling DeNovo Sampling 

AUC-ROC AUC-PR AUC-ROC AUC-PR 

1 0.43 0.244 0.96 0.95 

2 0.272 0.101 0.984 0.973 

3 0.38 0.203 0.952 0.943 

4 0.53 0.015 0.277 0.011 

5 0.487 0.027 0.989 0.917 

6 0.405 0.09 0.877 0.736 

7 0.412 0.03 0.962 0.778 

8 0.437 0.023 0.932 0.661 

9 0.478 0.034 0.816 0.358 

 10 0.353 0.106 0.773 0.517 

Score 0.47 0.05 0.68 0.39 
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3.2 Classifier Comparison 

We compare the performance of three different classifiers (SVM, RF, and XGBoost). The 
cross-validation results of these three classifiers are tabulated in Table 3. It can be seen 
that XGBoost outperforms both SVM and RF both in terms of AUC-ROC and AUC-PR. 
As a consequence, we use XGBoost for our final model. 

Table 3. Comparison of SVM, RF and XGBoost for denovo sampling 

  SVM RF XGBoost 

Group ROC PR ROC PR ROC PR 

1 0.96 0.95 0.998 0.996 0.999 0.999 
2 0.984 0.973 0.998 0.99 1.000 1.000 
3 0.952 0.943 0.999 0.995 1.000 1.000 

4 0.277 0.011 0.269 0.008 0.305 0.01 

5 0.989 0.917 0.999 0.977 0.999 0.99 
6 0.877 0.736 0.957 0.825 0.999 0.998 
7 0.962 0.778 0.998 0.979 0.999 0.994 
8 0.932 0.661 0.962 0.653 0.994 0.805 
9 0.816 0.358 0.894 0.345 0.906 0.52 

10 0.773 0.517 0.951 0.844 0.97 0.911 

Score 0.68 0.39 0.73 0.44 0.76 0.53 

3.3 Effect of sample weighting 

In order to analyze the effect of sample weighting, we compare the three classification 
techniques (SVM, RF, and XGBoost) with and without sample weighting. The results are 
shown in Table 4 and are discussed below. It is interesting to note that sample weighting 
improves prediction performance for all classification techniques especially in terms of 
the Area under the PR curve. This confirms our hypothesis that the proposed soft denovo 
technique for selecting negative examples improves prediction performance by reducing 
the impact of potential false positives during training.  

For SVM, the AUC-PR score for un-weighted training samples is 0.39. It improves to 0.5 
when sample weights are used in training. Similarly, the AUC-ROC score improves from 
0.68 (without sample weights) to 0.73 with sample level weighting. For RF, the AUC-
ROC score for weighted training samples is 0.75 as compared to 0.73 for un-weighted 
samples. Similarly, the AUC-PR improves from 0.44 to 0.54 as a consequence of sample 
weighting. For XGBoost, the weighted AUC-PR improved from 0.53 to 0.56 when the 
classifier was trained with weighted samples. However, the weighted AUC-ROC 
remained the same for both un-weighted and weighted training samples. It is also 
important to note that accuracy of group 4 is consistently low for all classifiers. This is 
because the viral proteins in this group belonging to Flaviviridae, are very dissimilar to 
the rest of the protein families.  
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Table 4. Comparison Of SVM, RF, and XGBoost with weighted training samples. The 

last row is added from Table 3 for easier comparison. The best performance scores are 

highlighted in bold. 

 Classifier SVM RF XGBoost  

Viral Family Group ROC PR ROC PR ROC PR  

1 0.994 0.992 0.996 0.989 0.999 0.999 

2 0.999 0.998 0.995 0.979 1.000 1.000 

3 0.970 0.964 0.998 0.993 1.000 1.000 

4 0.269 0.011 0.274 0.008 0.289 0.008 

5 0.995 0.957 0.997 0.936 0.999 0.991 

6 0.964 0.908 0.974 0.877 0.999 0.994 

7 0.986 0.932 0.994 0.961 0.998 0.988 

8 0.972 0.722 0.98 0.743 0.994 0.870 

9 0.910 0.570 0.927 0.633 0.925 0.620 

10 0.896 0.667 0.962 0.863 0.957 0.863 

With Sample Weighting 0.73 0.5 0.75 0.54 0.76 0.56 

Without Sample Weighting 0.68 0.39 0.73 0.44 0.76 0.53 

3.4 Effect of training and test data sizes 

We evaluate the performance of our best performing classifier (XGBoost) with denovo 
sampling of negative examples with sample level weights using a balanced (|𝑃| = |𝑁| =4,971) and the full data set (|𝑃| = 4,971, |𝑁| = 81,697 ). The objective of this 
experiment is to see the effect of training and test data sizes on classification 
performance. The negative examples in the balanced set are a random subset of examples 
from the set of 81,697 denovo negative examples stratified with respect to their groups. 
The results of leave one group out cross validation on all training and test combinations 
of balanced vs. full data sets are given in Table 5. It is interesting to note that restricting 
testing to the balanced test set gives much higher performance scores in comparison to 
the more realistic full data set testing. This clearly shows that restricting to a balanced test 
set for performance evaluation can lead to inflated accuracy values. Furthermore, using 
the full training set with sample weighting can improve prediction performance over the 
full test set in comparison to training the classifier on a balanced training set. Therefore, 
we conclude that HPI predictors should be trained and evaluated using the full set of 
negative examples rather than restricting to a balanced set. Not only does this give a more 
realistic assessment of the real world use of HPI predictors, but it can also lead to better 
generalization performance. 
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Table 5. Comparison of AUC-PR and AUC-ROC (in parenthesis) scores for XGBoost trained and tested with 

balanced and full datasets using leave one group out cross-validation. The best performance scores are 

highlighted in bold. 

 Balanced Training Set Full Training Set 

Balanced Test Set 0.95 (0.94) 0.95 (0.94) 

Full Test Set 0.50 (0.75) 0.56 (0.76) 

3.5 Web Server Implementation 

We train our final HPI predictor using XGBoost on the full dataset using DeNovo 
negative sampling and sample level weighting. We have developed a web server of our 
HPI predictor for the biologists to check whether a human protein interacts with a viral 
protein or not. It is called Host-Pathogen Interaction Predictor (HOPITOR). It can be 
accessed through http://faculty.pieas.edu.pk/fayyaz/software.html#HoPItor for free. Due 
to computational requirements, the server is limited to a single protein pair for testing at 
one time by a single user. However, we also provide the source code of the method for 
large-scale use. 
 

3.6 In Silico Predictions and Biological Validation 

We use HOPITOR for in silico predictions for biologically validated host-pathogen 
interactions that are not a part of our training set to ensure its generalization performance. 
The sequences of proteins discussed below are taken from the UniProt34 repository. 
Specifically, we use three different viral proteomes to identify their interactions with 
human STAT1 and STAT2 proteins which are part of the human immune response to 
pathogens. 

3.6.1 Human STAT2 and HRSV Proteins 

Human respiratory syncytial virus (HRSV, family: Paramyxoviridae) is the main cause of 
lower respiratory tract infections35,36. HRSV has 11 proteins out of which nonstructural 
proteins (NS1 and NS2) specifically degrade human STAT2 protein37,38. We tested all 
proteins in the HRSV proteome for interaction with human STAT2 protein on 
HOPITOR. The predicted probability of interaction between NS1 and human STAT2 is 99% and it ranks at the top among all 11 viral proteins. HOPITOR also predicts 90% 
probability of NS2 and human STAT2 proteins to interact with each other.  

3.6.2 Human STAT1 and Measles Proteins 

Measles virus (family: Paramyxoviridae) phosphoprotein P blocks the phosphorylation of 
human STAT1 protein by interacting with it39,40. We tested the interactions between all 
proteins in the Measles virus proteome and human STAT1. The predicted probability of 
interaction between STAT1 and measles virus protein P is 96.1%. This interaction is 
ranked second among seven proteins of measles virus. The highest ranked protein is 
nucleoprotein with probability 96.5%. 

3.6.3 Human STAT1 and Rabies Proteins 

http://faculty.pieas.edu.pk/fayyaz/software.html#HoPItor


HoPItor: Host Pathogen Interaction predicTOR 13 

Rabies virus (family: Rhabdoviridae) phosphoprotein interacts with human STAT1 
protein to inhibit interferon signal transduction pathways41. We tested human STAT1 
protein for interaction with all proteins in the rabies virus proteome. The predicted 
probability of interaction between STAT1 with rabies phosphoprotein is 91.4%.  This 
prediction is ranked second among five proteins of rabies virus. It is important to note 
that Rhabdoviridae family was not part of our training set. 
 
These in silico prediction experiments show that HOPITOR can be used as a reliable tool 
to predict human and viral protein interactions. 

4.   Conclusions 

In this paper, we tried to answer three questions that arise while developing a host-
pathogen protein-protein interaction predictor. Below are the conclusions from our 
findings and contributions: 

1. DeNovo sampling is better than random sampling for generating negative 
examples. We suggest that HPI predictors be trained using denovo negative 
examples. 

2. We propose a soft denovo approach for handling negative examples in training 
HPI predictors that offers better generalization performance by assigning lower 
weights to negative training examples that are similar to positive ones.  

3. HPI predictors should be trained using the complete set of negative examples 
instead of restricting to a balanced dataset. 

We have also developed a new HPI predictor called HOPITOR using the XGBoost 
classifier based on these findings. Our computational results show that HOPITOR can be 
used for practical  
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