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Abstract

Shape-from-shading (SFS) methods tend to rely on mod-

els with few parameters because these parameters need to

be hand-tuned. This limits the number of different cues that

the SFS problem can exploit. In this paper, we show how

machine learning can be applied to an SFS model with a

large number of parameters. Our system learns a set of

weighting parameters that use the intensity of each pixel in

the image to gauge the importance of that pixel in the shape

reconstruction process. We show empirically that this leads

to a significant increase in the accuracy of the recovered

surfaces. Our learning approach is novel in that the param-

eters are optimized with respect to actual surface output by

the system.

In the first, offline phase, a hemisphere is rendered using

a known illumination direction. The isophotes in the result-

ing reflectance map are then modelled using Gaussian mix-

tures to obtain a parametric representation of the isophotes.

This Gaussian parameterization is then used in the second

phase to learn intensity-based weights using a database of

3D shapes. The weights can also be optimized for a partic-

ular input image.

1. Introduction

Shape-from-shading (SFS) attempts to reconstruct the

shape of a three-dimensional object from its shading in a

two-dimensional image. This paper presents a parametric

example-based approach for SFS that incorporates machine

learning to improve reconstruction accuracy. Learning from

training data has had considerable impact on areas such as

recognition [2] and low-level vision [5, 17]. Despite suc-

cessful incorporation of learning into so much of computer

vision, there has been little use of training data to directly

optimize the reconstructions from SFS systems.

A wide variety of solutions have been proposed for the

classic SFS problem. Survey studies in [4, 24] have broadly

grouped solutions into three classes of methods based on:

partial differential equations [16], optimization [7, 23] and

image irradiance equation approximation [20]. Despite

their differences, SFS solutions are similar in that they

are based on underlying mathematical formulations with

a handful of parameters. In optimization-based methods,

these parameters are weighting parameters for penalty terms

that impose constraints such as smoothness and integrabil-

ity [4, 24].
Shape-from-shading methods tend to rely on mod-

els with few parameters because these parameters need

to be hand-tuned, thus limiting the number of different

parameter-value combinations that can be evaluated. Using

brute-force grid search methods suffer a similar limitation

as the number of different value combinations that must be

evaluated grows exponentially with the number of parame-

ters.
In this paper, we show how machine learning can be

applied to an SFS model with a large number of parame-

ters. We show in Section 5.1 how adding a larger number

of parameters that assign intensity-based weights to input

pixels leads to significant gains in the accuracy of the sys-

tem. While the proposed approach has limitations, which

are discussed in Section 7, this learning-based approach has

the potential to enable significant innovations on SFS prob-

lems. The ability to search over large parameter spaces in an

automated fashion makes it possible to train complex mod-

els that use many different types of features. The benefits

of this capability can be seen in the recent progress on ob-

ject recognition, where learning is integral to state-of-the-

art methods [2, 9].

2. Related Work

In previous work on learning and shape-from-shading,

the term learning has been used in two ways. In works like

[3, 22, 10], neural network learning algorithms are adapted

to perform the optimization necessary to produce a surface

estimate. In this context, the system learns a set of param-

eters that are tuned to reconstruct a surface from a single

example. It should be noted that no ground-truth data is

used in these systems as the learning can be thought of as

an alternative surface optimization technique.
In our work, we use the term learning as in the context of

supervised learning. Using a database of examples, our sys-

tem learns the model parameters that lead to the best recon-
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Figure 1: Example of isophotes and constraints. (a) Some of the

isophotes in a Lambertian reflectance map. (b) A Gaussian Mixture Model

consisting of 7 mixtures fit to one of the isophotes. (c) The negative log-

likelihood of (b).

struction possible. In contrast to the works described above,

these parameters are used for all images. This style of learn-

ing has been proposed in [13] where the system learns local

estimators that predict orientation using local data. Orien-

tation estimates are also used in [12] to recover an estimate

of the final surface.
Our approach is novel in that it goes beyond learning of

local estimators. Instead, the output of the entire system is

holistically trained. We use the term holistic because ev-

ery parameter is optimized with respect to the final estimate

of the surface depth, in contrast to [12] and [1] where the

training is used to optimize intermediate and/or local es-

timates. As will be discussed in Section 5, this is made

possible by the novel application of the Variational Mode

Learning framework [19].

3. Basic Model

We solve the SFS problem with known illumination di-

rection, constant albedo and an orthogonal camera. Fol-

lowing the broad groupings from the comparison papers by

Zhang et al. and Durou et al. [4, 24], our proposed SFS

method is an optimization based approach. Accordingly, we

define an energy function E(z, θ), with parameters θ, over

shapes z. This energy function E(z, θ) will be minimized

to find the estimate, z∗, of an object’s shape.
Our basic approach is to formulate the energy function

E(z, θ) in a manner that makes it possible to use the Vari-

ational Mode Learning (VML) algorithm [19] to learn the

parameters θ. VML was introduced for learning the param-

eters of Markov Random Fields. Using a set of ground-truth

shapes, we employ VML to find the parameters θ that min-

imize the difference between the ground-truth shapes and

the estimates returned by the SFS system.
To find the parameters θ, we define a loss function

L(z∗, t) that measures the difference between the estimate,

z∗, returned by the SFS system, and the ground-truth shape

t. The VML approach is used to calculate the derivative

of this loss function with respect to θ and find the optimal

parameters θ using gradient descent optimization1.
To accommodate the VML algorithm, the data term of

E(·) is formulated as the negative log-likelihood of a mix-

ture of Gaussian models. Formulating the data-term in this

1The overall training criterion is non-convex with respect to θ, so a set

of parameter values could be a local minimum of the training criterion

fashion allows us to minimize E(z, θ) by minimizing a se-

ries of quadratic upper-bounds on E(z, θ) to find z∗. This

is a series of differentiable operations. Thus the result, z∗,

of the minimization can be differentiated with respect to θ
and used to compute the gradient of L(·) with respect to θ.

4. Implementing the Data Term

In shape-from-shading, the intensity of a pixel in the im-

age constrains the surface normal at the corresponding point

to lie along a curve in the reflectance map of possible sur-

face orientations. The isophotes of the reflectance map de-

fine the possible orientations that a surface point with a spe-

cific intensity can take. We construct the data term by fitting

Gaussian Mixture models to the isophotes corresponding to

different image intensity values.
Below, Section 4.1 describes how the mixture models

are created. Section 4.2 describes how the data term is

constructed from these Gaussian mixture models and intro-

duces the formal notation that will be used throughout the

rest of the paper.

4.1. Fitting the Mixture Models

To begin, we discretize the range of possible surface in-

tensities into B intervals, or bins. For each intensity bin

b, we sample a number of locations in the reflectance map

where the intensity falls in bin b. Each of these locations

corresponds to a valid orientation, which we express using

the derivatives of the surface height. Following convention,

we refer to these derivatives as p and q. After generating

these locations, the Expectation Maximization (EM) algo-

rithm is used to fit a Gaussian Mixture Model to this set of

surface normals. While this process must be repeated for

every illumination used to render the input images, this step

must only be performed once and can thus be precomputed

for many different illuminations.
Figure 1 illustrates the process of generating the mix-

ture models for the data term. Figure 1(a) shows some of

the isophotes in a Lambertian reflectance map. Figure 1(b)

shows a Gaussian Mixture Model fit to the surface orienta-

tions consistent with a specific range of surface intensities.

Here, a mixture model with seven components is shown.

Figure 1(c) shows the negative log-likelihood of (b).

4.2. Constructing the Data Term Energy Function

We start with some notation. Let lj be the intensity bin

corresponding to the intensity at pixel j, C(lj) be the set

of Gaussian mixture components corresponding to bin lj .

As described above, a mixture model is fit for each inten-

sity bin. In each mixture C(lj), we define ic to be the cth

component from C(li), µic
be the 2×1 mean vector of com-

ponent ic, Σ−1
ic

be the 2× 2 precision matrix of component

ic, Kic
be the various constants, including the mixing co-

efficient and the normalization term of component ic and

gi = [pi, qi]
T = [∂zi

∂x
, ∂zi

∂y
]T be the gradient vector of the



shape z at pixel i. z is a column-vector representation of the

shape. The quadratic component in the exponent of each

mixture component can then be expressed as

Qic
= −

1

2

(
gi − µic

)T
Σ−1

ic

(
gi − µic

)
. (1)

We can write the negative log-probability of any particular

values of pi and qi as

− log P (pi, qi) = − log

Nc∑

c=1

exp(Qic
+ log Kic

), (2)

where Nc is the number of Gaussian mixture components.

For the remainder of this paper, we will describe our ap-

proach using an energy-minimization criterion. Thus we

can think of Equation (2) as defining an energy function

over possible orientations at point i of shape z. This allows

us to write our energy functional as

E(z) =

Np
∑

i=1

− log

Nc∑

c=1

exp(Qic
+ log Kic

)

︸ ︷︷ ︸

data term Ed

+ λs

Np
∑

i=1

|∇pi|
2

+ |∇qi|
2

+ αz2
i

︸ ︷︷ ︸

smoothness term Es

, (3)

where Np is the total number of pixels, and λs is the

smoothness parameter. The term αz2
i is added for numer-

ical stability with the weight α set to a very low value of

1 × 10−6 to avoid flat surfaces. Since minimization of the

quadratic smoothness term is straight-forward, we focus in

the following on the minimization of the data term Ed.

4.3. Quadratic Upper­bounds on the Energy

Equation (2) is non-convex, with many local minima.

We can upper-bound Equation (2), with a tight quadratic

upper-bound using Jensen’s inequality.
The upper-bound will be computed at a particular value

of pi and qi, denoted by p′i and q′i. Accordingly, the

quadratic exponents are denoted as Qic
and Qi′c

. Using

Jensen’s inequality, a quadratic upper-bound on Equation

(2) is then obtained as

− log P (pi, qi) ≤

Nc∑

c=1

exp(Qi′c
+ log Ki′c

)
∑Nc

j=1 exp(Qi′
j
+ log Ki′

j
)
Qic

+ T,

(4)

where T denotes several constant terms that have been left

out due to space considerations. We can ignore these con-

stant terms because our final goal is to differentiate and

solve this upper-bound. Thus the constant terms will not

affect the final answer.

4.3.1 Expressing the Data Term at Every Pixel

The quadratic upper-bound in Equation 4 refers to the ori-

entation at just a single pixel. This can be extended to a ma-

trix formulation for every pixel in the image. To do so, we

first define the precision matrix for a mixture component’s

quadratic exponent, Qic
, as

Σ−1
ic

,

[
aic

bic

bic
dic

]

, (5)

which allows us to express Equation (1) as a sum of terms,

Qic
= −

1

2

(
aic

p̂2
ic

+ 2bic
p̂ic

q̂ic
+ cic

q̂2
ic

)
(6)

where p̂ic
= pi − µicp

and q̂ic
= qi − µicq

.
Since we actually want to recover a height map, z, we

can write

p = DXz, (7)

q = DY z, (8)

where DX and DY are discrete derivative matrices that al-

low vectors p and q to hold the values of p and q at every

pixel in the shape vector z. This substitution makes it pos-

sible to directly solve for z. Thus, our method directly com-

putes the height-map without requiring a second integration

step.
We can then compute the vectors

p̂c = p− µcp
, (9)

q̂c = q− µcq
, (10)

where µcp
(resp. µcq

) is the vector of the mean horizontal

(resp. vertical) gradient of the cth component of all pixels.

This allows us to represent the vector of quadratic exponents

at each pixel as

Qc = −
1

2

[

p̂T
c AcWcp̂c + 2p̂T

c BcWcq̂c + q̂T
c DcWcq̂c

]

(11)

where Ac is a diagonal matrix such that the ith entry along

the diagonal, [Ac]i,i is equal to the aic
from Σ−1

ic
in Equa-

tion 5. The matrices Bc and Dc are similarly defined using

bic
and dic

. The matrix Wc is also a diagonal matrix, with

the ith entry along the diagonal defined as

[Wc]i,i =
exp

(
Qi′c

+ log Ki′c

)

∑Nc

j=1 exp
(

Qi′
j
+ log Ki′

j

) (12)

So, an upper-bound on the data term Ed for every pixel,

which we will refer to as Êd(p,q) can be written in matrix

form as

Êd(p,q;p′,q′) =

Nc∑

c=1

−Qc + T (13)



where the vector T consists of constant terms that we need

not worry about for minimization purposes.
Essentially, every row in these matrices corresponds to

the quadratic upper-bound of a mixture component at a par-

ticular pixel. It can be shown that this upper-bound is tight,

i.e. Êd(p
′,q′;p′,q′) = Ed(p

′,q′). Thus, the vectors p′

and q′ can be thought of as the point where the upper-

bound is being computed and will touch the actual func-

tion. The matrix Wc can be thought of as a weighting term

that weights the different quadratic components to produce

a convex upper-bound.

4.4. Recovering Height­Maps with Coordinate De­
scent

Our primary motivation for introducing this upper-bound

is to use it to minimize the energy function. Because the

upper-bound is tight, we optimize the heightmap z such that

the energy never increases. This permits us to train the sys-

tem parameters to directly optimize the result of the mini-

mization. Given an estimate of z at iteration t, denoted zt,

the next estimate is found using these steps:

1. For all mixture components, c = 1 . . . Nc, compute

p′ = DXzt, q′ = DY zt and use them to compute

Wc. Effectively, the upper-bound, Êd(z
t+1; zt) will

be recomputed at zt.

2. Obtain new estimate zt+1 by minimizing Equation

(13).

We refer to this approach as coordinate descent because

computing the Q(·) terms in Step 1 can be viewed as min-

imizing variational parameters [11]. Since Êd(z
t+1; zt) is

quadratic, step 2 can be solved using standard least-squares

techniques and zt+1 can be computed by solving a linear

system.
This optimization is similar to the Expectation-

Maximization algorithm that is popular for finding param-

eters for Gaussian Mixture models. At a high level, this

method is similar to that proposed in [8], in that the system

is iteratively choosing between different quadratic “exem-

plar” models of the gradient at each point.

4.5. Evaluating the Shape­Estimation System

Before describing how we can incorporate parameter

learning into this approach, we will first evaluate this basic

system against recently proposed approaches. Our intent

is to show that even without 3D ground-truth based train-

ing, this approach can produce competitive results. Figure

2 shows the rendered result from our system on the penny

surface from [24], compared with rendered height map from

Potetz’s method [15]. Our result2 is qualitatively close to

[15] but is obtained much faster.

2Obtained using the mean squared error between the rendered recon-

struction and the input image as the loss function (Section 5)

(a) Our result.

MSE=463. Time=8.6m

(b) Potetz’s result.

MSE=108. Time=24h

(c) Ground-truth.

Figure 2: A baseline comparison of (a) our method with (b) Potetz’s

method [15] (Image reproduced from [15]).

Table 1 provides a quantitative comparison of our system

with [6] and [23] for the reconstruction of the Mozart sur-

face. Each column shows the percentage of normals that are

within the given angular difference from the ground-truth.

Even without learning the weighting parameters, the system

presented so far compares favorably against [6] and [23]

while for the more relaxed angular errors, the trained system

is quantitatively superior. In the next section, we describe

how weighting parameters are incorporated and learned.

5. Model Improvement Through Learning

While our basic system performs well, the most power-

ful aspect of our approach is that it is possible to learn the

parameters of the system. In section 5.1, we introduce a

new set of weighting parameters to the energy function in

Equation 3. Section 5.2 will then discuss how to learn these

weighting parameters using Variational Mode Learning.

5.1. Weighing Intensity Intervals

As described in Section 4.2, we construct our model by

fitting a Gaussian Mixture to the possible surface orienta-

tions, parameterized by derivative values. Using the learn-

ing framework described below, we modified the energy

function in Equation 3 to allow us to weight the different in-

tensity ranges differently. Our reasoning is that some inten-

sity ranges provide more reliable information than others.

For instance, in a Lambertian reflectance map, the orienta-

tion of points with the brightest intensity can be unambigu-

ously identified. In this case, the isophote in the reflectance

map is a single point. Because the surface normal is known,

it would seem logical that the energy functions constrain-

ing the normals at these points would receive higher weight.

This higher weight would reflect that there is less ambiguity

in the estimate of surface normal 3

We implement this weighting by modifying the data term

Ed in Equation 3 to include weighting terms:

Ed(z) =

Np∑

i=1

− exp (wi) log

Nc∑

c=1

exp (Qic
+ log Kic

)

(14)

3While this scheme is intuitively motivated, in the following sections

we show strong experimental evidence demonstrating the efficacy of this

weighting scheme.



Angular difference 1◦ 2◦ 3◦ 4◦ 5◦ 10◦ 15◦ 20◦ 25◦

Haines & Wilson [6] 0.2 0.8 2.1 4.5 7.9 21.9 33.3 43.1 50.4

Worthington & Hancock [23] 2.4 5.4 8.0 10.4 13.4 25.0 33.4 40.5 46.8

Presented system (untrained) 0.6 2.0 4.0 6.6 9.4 23.2 36.8 48.3 59.0

Presented system (trained) 0.6 2.0 4.2 7.0 10.3 26.2 41.3 54.5 65.9

Table 1: Percentages of normals of the Mozart reconstruction that are within the given angular difference (column-wise) from the ground-truth normals.

Illumination direction given by (-1, 0, 1). Our untrained system is comparable to [6] and [23] while the trained one is quantitatively superior for more relaxed

angular errors.

where wi is the weight associated with the intensity-bin l(i)
corresponding to the intensity at pixel i. We include the ex-

ponential to insure that the final weight is positive. This en-

ables us to do an unconstrained minimization when learning

the weighting parameters. When fitting the upper-bounds

(Section 4.3) during optimization, these weights will be

multiplied with the quadratic upper-bound in a fashion sim-

ilar to Equation 14.

5.2. Variational Mode Learning

Having defined weighting parameters for different inten-

sity ranges, we now describe how these parameters can be

optimized. The first step is to define a loss function that

evaluates the quality of the result returned using any partic-

ular set of parameters. We use the loss on surface orienta-

tion which is defined as:

L (z, t) ,

Np∑

i=1

1− nz

i · n
t

i (15)

where t is the ground-truth and nz

i is the normalized normal

vector to the surface z at pixel i. We can also use the mean

squared error between the rendered reconstruction and the

input image as the loss function. This allows the algorithm

to work in an optimization framework without ground-truth

shapes like [3, 22, 10] rather than in a learning framework.
Once the loss function has been defined, we can use the

Variational Mode Learning (VML) technique [19] to find

the parameters that minimize the loss for the heightmap es-

timated after running a fixed number of coordinate descent

iterations described in Section 4.4.
Formally, if z∗ is the output of NI coordinate descent

steps, the goal is to find the weighting parameter vector

w = (w1, w2, . . .) which minimize L(z∗, t). This can

be accomplished using straightforward gradient-based op-

timization – if it is possible to compute the gradient of

L(z∗, t) with respect to w.
Since z∗ is the result of a set of differentiable coordi-

nate descent steps, we can compute the gradient of L(z∗, t),
∂L
∂w

, using the chain rule in a style very similar to back-

propagation. This is described next.

5.3. Basic Learning Algorithm

If z∗, which we will also denote as zNI , is the result of

NI coordinate descent steps, we use a set of recursive steps

to compute ∂L
∂w

. The underlying idea behind VML is that by

applying the chain rule, the derivative of L(·) with respect

to some parameter wi can be computed as

∂L

∂wi

=

NI∑

n=1

∂L

∂zn

T ∂zn

∂wi

(16)

where the intermediate values of z after each iteration are

labeled z1, z2, . . . , zNI .
The partial derivatives in this summation can be com-

puted efficiently in a recursive fashion, using the following

steps:

1. Initialize ∂L
∂w

to all zeros.

2. Compute ∂L
∂z

NI
.

3. For n = NI . . . 0:

(a) ∂L
∂w
← ∂L

∂w
+ ∂L

∂zn

∂z
n(zn−1

F
,w)

∂w
Notice that we

have appended an “F”, for fixed, to
∂z

n(zn−1

F
,w)

∂w

and added an argument. This is to indicate that in

these computations zn−1 is treated as a constant

on which zn depends.

(b) If n > 0, ∂L
∂zn−1 ←

∂L
∂zn

∂z
n

∂zn−1 . This final ma-

trix, ∂z
n

∂zn−1 is the Jacobian matrix relating zn and

zn−1.

The equations for computing the various matrices are

quite long. Due to space and formatting considerations, we

refer the reader to [19].

6. Experiments and Results

In the following, we have not used any boundary con-

straints for our reconstructions.

6.1. Synthetic Surfaces

Since training sets for the shape from shading problem

are not readily available, we generated smooth synthetic

surfaces, 64 for training and 128 for testing. For the first

experiment, we fix the illumination vector at (-1, -1, 1) and

learn the weighting parameters using the training set. To

achieve a good balance between performance and training

time we use 5 coordinate descent iterations for heightmap

estimation. We present the training samples in random or-

der and repeat for 30 passes over the training set.



Input image Ground-truth Reconstruction with-

out learning

Reconstruction with

learning

Angular error without

learning

Angular error with

learning

Figure 3: Comparison of reconstruction with and without learning. Reconstruction with learning is perceptually closer to the ground-truth and the per

pixel angular error is also lower as exhibited by the less bright pixels in the last column. Compared to the loss without learning, loss due to learning decreased

by 61% and 65% for the two test surfaces shown. Total loss for the 128 test surfaces decreased by 28.7%.

λs 1 λ̂s

Decrease in training loss 54.0% 34.5%
Decrease in testing loss 50.1% 28.7%

Table 2: Percentage decrease in loss due to training for the cases when

smoothness parameter λs is fixed at 1 and at its optimal value λ̂s for the

training set. It can be seen that parameter learning provides a benefit on

top of using the best smoothness parameter value.

Compared to adjusting the smoothness parameter λs,

learning bin-weights gives us many more parameters that

help guide the optimization towards better numerical solu-

tions. In order to show that learning the bin-weights has an

advantage on top of adjusting the smoothness parameter λs,

we sequentially searched for the optimal value λ̂s that min-

imized the loss of the untrained system on our training set

of 64 synthetic surfaces. We then trained the system using

λ̂s. Table 2 shows that training loss went down by a further

34.5% due to parameter learning while testing loss on 128

test surfaces decreased by 28.7%. For λs = 1, training loss

went down by 54.1% due to learning and testing loss went

down by 50.1%.

Interestingly, we also obtained a decrease of 28.7% in

testing loss for the trained λs = 1 system compared to the

untrained λ̂s system. This is equal to the decrease for the

system trained using λ̂s which exhibits the robustness of our

learning process to the value of λs.

Figure 3 provides a perceptual comparison of shape re-

construction with and without learning for two of the test

surfaces. In addition to being perceptually more similar to

the ground-truth, the reconstructions obtained after learning

have respectively, 61% and 65% lower loss than the recon-

structions without learning.

6.2. Real­world Surfaces

An accurate analysis of the performance of the system on

real-world surfaces can only be done when sufficient real-

world training samples are available. We used a database

of 6 laser scanned faces4, renderings of which are shown in

the first column of Figure 4. We trained on 5 faces with the

remaining face used for testing. Training was carried out

using illumination direction (−1,−1, 1), 1 iteration of the

gradient descent step in Section 5.3 and in each iteration, 5
coordinate descent iterations to estimate the heightmap that

minimizes energy for the current parameter estimates. We

presented the training samples in random order and repeated

for 30 passes over the training set. Alternating the test face

gives 6 different training runs. Table 3 shows the percentage

decrease in loss due to training for the 6 test faces.

Face 1 2 3 4 5 6

Decrease 23.3 29.8 38.6 36.5 27.6 11.5

Table 3: Percentage decrease in loss due to training when face i is re-

constructed after training on the remaining 5 faces.

The middle column of Figure 4 shows the angular er-

rors, Equation 15, at each pixel for the reconstruction of

each face without training. The last column shows recon-

structions with training. The brighter areas indicate larger

angle between normals of the reconstructed shape and the

ground-truth. It can be seen that training results in a recon-

struction with normals closer to the ground-truth. Figure 5

shows reconstructions of face 2 from Figure 4. Apart from

the reduction in numerical loss, visual improvement due to

learning can be noticed on the forehead and around the left

jaw.

7. System Limitations

In addition to the benefits of the proposed approach, this

system has limitations which are discussed in the following

two sections.

7.1. Qualitative Versus Quantitative Improvement

In the previous section, we showed how training leads to

significant quantitative improvement in the loss. However,

4We do not intend to present a facial SFS algorithm like [18]. Our

choice of faces as real-world surfaces was motivated by their availability.



(a) Ground-truth. (b) Reconstruction without learning.

Loss=690.54

(c) Reconstruction with learning. Loss=484.74

Figure 5: Reconstructions of face 2 from Figure 4. Apart from the reduction in numerical loss, visual improvement due to learning can be noticed on the

forehead and around the left jaw.

quantitative improvement does not necessarily predict qual-

itatively equal improvement. This is an issue in other areas,

such as image processing where the commonly used PSNR

metric does not predict human perception of image quality.

So researchers have devised alternate metrics, such as the

recently proposed SSIM index [21].
Similarly, for SFS, a shape estimate that is significantly

better, when measured quantitatively, may not be as supe-

rior qualitatively. This calls for more research on perceptu-

ally accurate 3D surface quality metrics.

7.2. Limitations from Optimization Strategy

Minimization of energy functions for SFS problems is

difficult because the energy functions contain many local

minima. In fact, in the model we have presented, the data

term at each pixel will have multiple minima. The presence

of many local minima makes the variational optimization

sensitive to the initial point in the optimization. To over-

come this, the system uses a consistent input as the initial

point for the optimization. For lighting at relatively oblique

angles, we have found the input image itself to be a suitable

initial point for the optimization.
The importance of good initialization for the optimiza-

tion becomes more important as the light source approaches

the [0, 0, 1] vector. We have found that system performance

degrades significantly when the light is vertically oriented.

As can be seen in Figure 1, as the light approaches the hori-

zontal plane, isophotes begin to become straight lines in the

p − q map. This property was key to Pentland’s work on

linear shape-from-shading [14]. Straight isophotes are ideal

for the variational optimization underlying the method pre-

sented here because the quadratic upper-bounds will tend to

lie along the isophote, regardless of the orientation that the

upper-bound is fit at.
On the other hand, if the lighting is vertical, then all of

the isophotes form circles. Circular isophotes are particu-

larly problematic for the variational optimization. Consider

a system that is initialized to a flat image. In the initial im-

age, all of the surface orientations lie at the origin of the

p − q map. Therefore, when the upper-bounds are fit, the

quadratic functions will all be centered at the origin of the

p − q map. As a result, the orientations in the surface that

results from minimizing these upper-bound functions will

tend to stay near the origin, rather than moving to the circle

that the isophote lies on. The result is a reconstruction that

is overly biased towards flat surfaces pointing straight up.

This leads to poorer performance on images lit with verti-

cal illumination orientations than with more oblique orien-

tations.
We have found that starting with a random surface that

differs significantly from a flat surface somewhat alleviates

this issue, though more work is needed on structuring the

optimization to avoid this problem and finding better con-

straints. One solution is simultaneous learning of the whole

system, i.e. learning the intensity-based weights alongside

the Gaussian mixtures’ parameters.

8. Conclusion

We have shown that given sufficient training data, the

SFS problem can benefit from recent advances in Markov

Random Field parameter learning techniques. SFS using

parameter learning is a novel approach and it has the po-

tential to enable significant innovations on SFS problems

because of its ability to search over large parameter spaces

in an automated fashion. Our method performs remark-

ably well for synthetic surfaces since there is no shortage of

training data in that domain. Results on real-world surfaces

indicate that given sufficient training data, the accuracy of

SFS systems on real-world surfaces can be significantly im-

proved.
Machine learning has been used to supplement rather

than replace physically-based constraints on the SFS func-

tional. Learning leads to significant quantitative improve-

ment in the loss but this does not necessarily predict quali-

tatively equal improvement. This calls for more research on

perceptually accurate 3D surface quality metrics.
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