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Abstract

When the available data of a target speaker is insufficient to

train a high quality speaker-dependent neural text-to-speech

(TTS) system, we can combine data from multiple speakers

and train a multi-speaker TTS model instead. Many studies

have shown that neural multi-speaker TTS model trained with

a small amount data from multiple speakers combined can gen-

erate synthetic speech with better quality and stability than a

speaker-dependent one. However when the amount of data from

each speaker is highly unbalanced, the best approach to make

use of the excessive data remains unknown. Our experiments

showed that simply combining all available data from every

speaker to train a multi-speaker model produces better than or at

least similar performance to its speaker-dependent counterpart.

Moreover by using an ensemble multi-speaker model, in which

each subsystem is trained on a subset of available data, we can

further improve the quality of the synthetic speech especially

for underrepresented speakers whose training data is limited.

Index Terms: speech synthesis, multi-speaker modeling, im-

balanced corpus, ensemble learning

1. Introduction

Recent advances in statistical parametric speech synthesis re-

search have produced synthetic speech indistinguishable from

natural speech when a model is trained with a large and high

quality speech corpus [1, 2]. However to scale the technology

to multiple voices and reduce the production cost, the ability to

build TTS systems from a smaller and less refined corpus is cru-

cial. As data sparsity is the major challenge for this task, many

schemes have been proposed to alleviate it. If the speech corpus

is created from scratch, the sentence corpus used for recording

could be carefully designed to ensure a balanced coverage of

linguistic units [3, 4]. A less refined speech corpus, such as a

corpus of found data, can also be used by filtering out utter-

ances deemed unfit [5, 6]. A data selection scheme can also be

applied on legacy corpora to remove redundant samples [7, 8].

In another approach, we could combine speech data from many

speakers and train a multi-speaker TTS system [9].

Recent neural acoustic models are capable of achieving

high performance for both single speaker modeling [2] and

multi-speaker modeling [10, 11] tasks. The multi-speaker

model is simple to set up [12, 13] and can generate more

stable speech waveforms than those of the speaker-dependent

model when the amount of the target speaker’s data is limited

[10]. Latorre et al. [14] compared the performances of multi-

speaker and single-speaker models using different amounts of

data and reported similar results for various conditions. In these

multi-speaker experiments [11, 14], the number of utterances

contributed by each speaker is kept perfectly or roughly bal-

anced. In this paper, we are interested in finding the best strat-

egy to train a multi-speaker model using an existing speaker-

unbalanced corpus.

Class imbalance is a common issue faced by many classi-

fication systems because real-world data are usually predomi-

nated by the normal classes while lacking samples of the ab-

normal classes. Many techniques have been proposed to tackle

this problem. Over-sampling and under-sampling are simple

and effective approaches to obtain a synthetically balanced cor-

pus [15]. In this paper, we use the same techniques to prepare

the training set for a multi-speaker acoustic model. Moreover,

we propose using an ensemble model, which combines predic-

tions of multiple subsystems, to produce a better prediction it-

self. Our ensemble acoustic model for speech synthesis shares

the same spirit as the ensemble deep learning system for speech

recognition [16].

In section 2 of this paper, we describe our methodology

for multi-speaker acoustic and the ensemble models. Section 3

provides details about the experimental conditions and Section

4 presents both objective and subjective evaluation results of our

proposal. We conclude in Section 5 with a brief summary and

mention of future work.

2. Multi-speaker and ensemble models

2.1. Multi-speaker model for speaker-imbalanced corpus

In this paper we adopt the same auto-regressive neural-network

acoustic model used in our prior publication [1]. By appending

a one-hot vector speaker code to every frame of the linguistic in-

put x, we created a multi-speaker model that can generate mul-

tiple voices simply by changing the speaker code. The method

is simple but effective and does not depend on the network ar-

chitecture [13, 17]. This essentially means that all parameters

of the network are shared among all training speakers except the

bias of the first hidden layer:

h1 = tanh(W1x+ c1 + b
(k)) (1)

where h1 is the output of the first hidden layer containing m

units, W1 ∈ R
m×m and c1 ∈ R

m×1 are common parame-

ters shared among all speakers, and b
(k) ∈ R

m×1 is a speaker-

specific bias projected from the speaker’s one-hot vector. tanh
is the non-linear activation function of the first hidden layer.

As most of the network parameters are shared and stochas-

tically trained with combined data, using an imbalanced cor-

pus might produce a model that is over-trained on the major-

ity speakers while under-trained on the minority. To test this

hypothesis we apply resampling techniques, which are widely

used to create synthetically balanced datasets [18, 15]. Here,
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Figure 1: Ensemble multi-speaker acoustic model used for our

investigation.

we can choose to perform under-sampling [18] of the majority

speakers, over-sampling of the minority speakers [19], or a lit-

tle of both [15]. While these techniques are commonly used for

classification tasks, we applied them in the context of training a

multi-speaker neural acoustic model.

2.2. Linear ensemble for acoustic feature inference

In addition to the resampling techniques, we also investigate

using stacking [20, 21] to combine the predictions of several

systems in the hope of further reducing the mismatch between

generated and real-life samples. Ensemble learning is a method

of using multiple models to obtain a better performance; it is

used in many other research fields [22]. For example, Deng

and Platt [16] performed a linear combination of the original

speech-class posterior probabilities provided by subsystems at

the frame level for automatic speech recognition (ASR). Their

ensemble model capitalizes on the diversity of neural network

architectures to provide diverse prediction outputs.

Our ensemble model, shown in Fig.1, shares many traits

with the model proposed in [16] for ASR. To create diverse sub-

systems, we used the same network architecture in each subsys-

tem but trained them on different data subsets randomly sam-

pled from a training corpus. This strategy is more straightfor-

ward than creating subsystems with varied network architec-

tures [16, 23]. Moreover we take a much simpler and non-

parametric approach for the combination functions to test our

hypothesis. Deterministic average-based combination functions

are defined to combine the output of the subsystems. As the

two main acoustic features used in our experiments are mel-

generalized cepstral coefficients (MGCs) and fundamental fre-

quency (F0), we define the combination functions as follows:

• Combination function for MGC: As the MGCs at each

frame are continuous values, our ensemble model sim-

ply computes the average of the MGCs produced by the

subsystems.

• Combination function for F0: Because the F0 is a con-

tinuous value at a voiced frame but a discrete symbol

(i.e., unvoiced flag) at an unvoiced frame, we first decide

whether one frame is voiced or unvoiced by voting. If

most of the subsystems generated voiced F0s values, we

take the average F0 value as the ensemble model’s out-

put. Otherwise, the output F0 is set to unvoiced.

3. Experiments

3.1. Dataset and features

Our experiments are data-driven and we seek to identify the best

approach to train a speech synthesis system from an imbalanced

speech corpus. The corpus we used contained utterances from

ten female Japanese speakers, who are professional or at least

familiar with voice acting work. The number of utterances of

each speaker ranged from 1,000 to 10,000. After processing

and removing utterances unsuitable for speech synthesis, we

split the remaining data into training, validation and testing sets,

as displayed in Table 1. As we applied a sampling technique

to create a synthetic speaker-balanced corpus, the number of

unique utterances of each speaker obtained from these sampling

sessions are also included in Table 1.

The acoustic features used in our experiments consist of 60-

dimensional Mel-generalized cepstral coefficients (MGC) and

511-bin quantized mel scale fundamental frequency (F0) plus

one bin for the unvoiced case. These features are extracted

from 48-kHz speech waveform using a 25-ms window and

shifting 5 ms each frame. Linguistic features consist of typ-

ical Japanese linguistic information such as phonemes, moras

(syllabic unit), part-of-speech tags, interrogative intention, and

pitch-accent. The final linguistic features are encoded as a 265-

dimensional vector for each frame including duration informa-

tion extracted from forced-alignment with the acoustic feature

sequence, which is obtained using an external system.

3.2. Model configurations

We adopted the same architecture described in our previous

publication [1] for the acoustic models. A shallow autoregres-

sive network (SAR) [24] is used to model MGC and a deep au-

toregressive network (DAR) [25] is used for quantized mel scale

F0. The SAR contains two 512-unit non-linear feedforward lay-

ers followed by two 256-unit bi-directional layers, and a linear

output layer. Similarly, the DAR contains two 512-unit feedfor-

ward layers, a 256-unit bi-directional recurrent layer and a 128-

unit uni-directional recurrent layer that receives a feedback link

from the previously generated samples and a linear layer that

maps to the desired output. For the multi-speaker model, a 10-

dimensional one-hot vector representing speakers is appended

to every frame of the linguistic sequence. The acoustic model is

trained using stochastic gradient with the utterance order shuf-

fled to make sure the model learns the optimal representation

for all speakers.

A speaker-independent WaveNet vocoder [26] was trained

using the combined training data of all speakers. This model

contained 40 dilated layers similar to the original WaveNet [27].

It was directly trained using the natural MGC and quantized

mel-scale F0s from all the speakers, without speaker one-hot

vectors. The target waveform had a sampling rate of 16 kHz

and was quantized using the 10-bit µ-law standard.

3.3. Strategies for handling imbalanced corpus

The main investigation in this paper is which methodology ef-

ficiently uses an imbalanced multi-speaker corpus to improve

performance for the generated speech of all speakers involved.

Multiple strategies are compared in the experiments:

• SD: The conventional speaker-dependent models, each

of which is trained using one target speaker’s data listed

in Table 1. This is our baseline strategy.

• UN: A multi-speaker model trained with an under-



Table 1: Data sets of target speakers.

Speaker ID XS01 XS02 S03 S04 S05 M06 M07 M08 L09 XL10

Training (unique utterances):

Speaker-Dependent 735 994 1393 1568 1749 3024 3983 4364 5516 8750

Sampling 1st 728 938 1227 1341 1444 1901 2088 2179 2320 2532

Sampling 2nd 729 955 1214 1340 1442 1892 2074 2185 2312 2516

Sampling 3rd 722 944 1242 1329 1418 1916 2122 2186 2325 2554

Ensemble (Sampling 1+2+3) 735 994 1391 1559 1742 2869 3541 3807 4424 5630

Validation 50 50 50 50 50 50 50 50 50 50

Testing 100 100 100 100 100 100 100 100 100 100

XS01 XS02 S03 S04 S05 M06 M07 M08 L09 XL10

SD 4.96 4.68 4.96 4.63 4.87 5.01 4.75 4.85 5.58 4.38

UN 4.98 4.79 4.98 4.66 4.94 5.08 4.98 4.95 5.72 4.81

MU 4.78 4.59 4.78 4.46 4.69 4.77 4.66 4.69 5.32 4.42

OV 4.79 4.55 4.77 4.47 4.67 4.82 4.70 4.71 5.44 4.50

E1 4.91 4.66 4.88 4.56 4.82 4.94 4.86 4.83 5.52 4.65

E2 5.01 4.76 4.95 4.61 4.91 4.97 4.86 4.88 5.60 4.69

E3 4.88 4.65 4.85 4.54 4.76 4.88 4.81 4.83 5.54 4.61

EN 4.73 4.53 4.73 4.41 4.68 4.77 4.70 4.71 5.29 4.51

Better than SD Best system

Figure 2: Mel-ceptral distortion (smaller is better).

sampled corpus containing 753×10 utterances. Each

speaker contributes 735 utterances to this corpus, where

735 is the number of utterances from speaker XS01, who

has the least amount of training data.

• MU: The conventional multi-speaker models trained with

all the data from every speaker, i.e., all 32,076 training

utterances from the original corpus.

• OV: A multi-speaker model trained with an over-sampled

corpus. We used all utterances and then sampled more

from minority speakers so that each got the same fre-

quency in training. The amount of training data is

8,750×10 utterances.

• E1, E2, E3: Multi-speaker models trained with resam-

pled corpora. In total, 3,000 utterances are sampled with

replication from each speaker. The number of training

utterances is 3,000×10, and the number of unique utter-

ances obtained in each sampling session is listed in Table

1.

• EN: A non-parametric ensemble model. We simply com-

bined the generated acoustic features obtained from the

E1, E2 and E3 models using the combination functions

discussed in Section 2.2.

4. Evaluations

4.1. Objective evaluations

Figure 2 shows mel-cepstral distortion between the generated

and natural MGC while Fig.3 shows correlation between the

generated F0 sequence inferred from the quantization output

and the natural sequence. These figures show objective results

separately for each speaker with color codes indicating the best

system as well as the system which is better than the SD base-

XS01 XS02 S03 S04 S05 M06 M07 M08 L09 XL10

SD 0.902 0.894 0.857 0.866 0.856 0.830 0.918 0.875 0.746 0.918

UN 0.903 0.901 0.859 0.885 0.840 0.808 0.899 0.869 0.730 0.898

MU 0.917 0.925 0.902 0.908 0.877 0.850 0.934 0.896 0.794 0.925

OV 0.909 0.911 0.856 0.885 0.832 0.821 0.906 0.879 0.720 0.906

E1 0.915 0.915 0.878 0.897 0.859 0.826 0.924 0.893 0.749 0.916

E2 0.914 0.914 0.873 0.890 0.859 0.826 0.919 0.879 0.759 0.908

E3 0.912 0.919 0.886 0.896 0.858 0.836 0.919 0.882 0.778 0.912

EN 0.932 0.936 0.901 0.915 0.884 0.858 0.940 0.904 0.798 0.926

Better than SD Best system

Figure 3: F0 correlation (bigger is better).

line. Even though objective evaluations do not directly reflect

the quality of synthetic speech perceived by humans, they do

demonstrate the potential of the proposed methods.

The under-sampling strategy UN with data pooled from 10

speakers does not seem to have any significant improvement

over the baseline SD even for minority speaker XS01, whose

entire data is included in UN. This result suggests that a multi-

speaker model is not always better than the single speaker

model, especially when the amount of pooled data is still lim-

ited. The over-sampling strategy OV is better than SD overall,

but there is noticeable degradation in the case of majority speak-

ers in terms of the F0 correlation metric. The conventional

multi-speaker model MU shows consistent improvements over

the baseline SD for most speakers. We conclude that simply

pooling the data of all speakers is a reasonable strategy.

The sampling strategies E1, E2, and E3 seem to be better

than the baseline SD but worse than MU. The performances vary

for each session due to the stochastic nature of the sampling

method. Surprisingly simply combining the generated features

of E1, E2, and E3 using the average functions described in Sec-

tion 2.2 produced a better result than each individual subsystem.

In general, the ensemble strategy EN had the best results. Note

that the amount of unique utterances from majority speakers

(XL10, L09, etc.) used for the ensemble model is significant

lower than the SD and MU due to the random sampling artifact,

as shown in Table 1.

4.2. Subjective evaluations

We conducted a subjective listening test with samples synthe-

sized using SD, MU and EN strategies1. Recorded speech is not

included in our test, but we use WaveNet vocoder to synthesize

1Samples are available at https://nii-yamagishilab.

github.io/sample-tts-speaker-imbalanced/

https://nii-yamagishilab.github.io/sample-tts-speaker-imbalanced/
https://nii-yamagishilab.github.io/sample-tts-speaker-imbalanced/
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Figure 4: AB preference test results for TTS samples of three

strategies.

speech from natural acoustic features as the reference, namely

a copy synthesis strategy CO. All samples are normalized us-

ing the sv56 program. Each strategy contains 1,000 utterances,

100 utterances per speaker. We prepared a simple AB pref-

erence test in which a participant was asked to answer which

sample sounds better between two presented. The presented

samples are spoken by the same speaker with the same con-

tent and duration but generated from different strategies. We

compared four pairs: MU-SD, EN-SD, EN-MU and the anchor

test EN-CO. Each session contains one unique sentence from

each of the ten target speakers, which make 40 questions in to-

tal. The question orders and sample positions are shuffled to

prevent cognitive bias. Each paid participant could do ten ses-

sions at most. We gathered answers from 997 sessions (three

are discarded for incompleteness) provided by 175 participants

*ALL

EN CO

0 25 50 75 100

*XL10

*L09

*M08

M07

*M06

*S05

S04

*S03

*XS02

*XS01

Figure 5: Anchor AB preference test results for copy synthesis

and ensemble strategy samples.

to evaluate performance of the proposed methods. The results

are calculated on both a per speaker and per strategy basis.

The preference results of the TTS samples are shown in

Fig.4, where (*) indicates systems whose results are statisti-

cally significant according to the 95% confidence level of an

exact binomial test. Between the multi-speaker model and sin-

gle model, the result is in favor of the MU over the SD, as pre-

sented in Fig.4(a). When considering each speaker separately,

we can see that speakers with less data benefit the most from

the multi-speaker model, while speakers with the most data do

not seem to suffer any performance degradation. A similar pat-

tern can be seen between the ensemble model and the single

model (as in Fig.4(b)), with an even stronger improvement ob-

served with the EN strategy. Figure 4(c) shows direct compar-

isons between the multi-speaker model MU and the ensemble

model EN. We obtained statistically significant results favoring

EN for many speakers except for M07, who fared best with the

MU strategy. The results of speakers XS02, S04 and XL10 while

not significant, do seem to favor EN as well. To conclude, our

proposed ensemble strategy showed significant improvements

over the conventional multi-speaker model. The trade-off is the

increased number of parameters as well as increased training

and inference times due to the fact that multiple models are re-

quired. The anchor test between our proposed strategy EN and

the copy synthesis CO is shown in Fig.5. As expected CO dom-

inated, with statistically significant results for all cases except

speakers S04 and M07.

5. Conclusions

We investigated the effect of a speaker-imbalanced corpus on

the performance of a neural multi-speaker acoustic model. The

results showed that simply combining all the available data

without any resampling led to a well-rounded performance

for all speakers involved. Moreover the multi-speaker model

greatly benefited from a simple ensemble setup with just three

subsystems sharing the same network structure but trained on

different subsets of a corpus obtained through the sampling

method. The one disadvantage is that the ensemble setup in-

creases the number of parameters and the inference times. For

future work, we plan to distill knowledge from an ensemble

teacher network to a singular-structure student to inherit the

good performance while avoiding increased parameters and

processing times [23]. We also intend to introduce diversity

to the network structure along with diversity in training data in

order to capitalize on the strengths and reduce the weaknesses

of different network structures [22].
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