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ABSTRACT 

A large fraction of recent work in artificial neural nets uses 

multilayer perceptrons trained with the back-propagation 

algorithm described by Rumelhart et. a1. This algorithm 

converges slowly for large or complex problems such as 

speech recognition, where thousands of iterations may be 

needed for convergence even with small data sets. In this 

paper, we show that training multilayer perceptrons is an 

identification problem for a nonlinear dynamic system which 

can be solved using the Extended Kalman Algorithm. 

Although computationally complex, the Kalman algorithm 

usually converges in a few iterations. We describe the 

algorithm and compare it with back-propagation using two­

dimensional examples. 

INTRODUCTION 

Multilayer perceptrons are one of the most popular artificial neural net 

structures being used today. In most applications, the "back propagation" 

algorithm [Rllmelhart et ai, 1986] is used to train these networks. Although 

this algorithm works well for small nets or simple problems, convergence is 

poor if the problem becomes complex or the number of nodes in the network 

become large [Waibel et ai, 1987]. In problems sllch as speech recognition, 

tens of thousands of iterations may be required for convergence even with 

relatively small elata-sets. Thus there is much interest [Prager anel Fallsiele, 

1988; Irie and Miyake, 1988] in other "training algorithms" which can 

compute the parameters faster than back-propagation anel/or can handle much 

more complex problems. 

In this paper, we show that training multilayer perceptrons can be viewed as 

an identification problem for a nonlinear dynamic system. For linear dynamic 
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systems with white input and observation noise, the Kalman algorithm 

[Kalman, 1960] is known to be an optimum algorithm. Extended versions of 

the Kalman algorithm can be applied to nonlinear dynamic systems by 

linearizing the system around the current estimate of the parameters. 

Although computationally complex, this algorithm updates parameters 

consistent with all previously seen data and usually converges in a few 

iterations. In the following sections, we describe how this algorithm can be 

applied to multilayer perceptrons and compare its performance with back­

propagation using some two-dimensional examples. 

THE EXTENDED KALMAN FILTER 

In this section we briefly outline the Extended Kalman filter. Mathematical 

derivations for the Extended Kalman filter are widely available in the 

literature [Anderson and Moore, 1979; Gelb, 1974] and are beyond the scope 

of this paper. 

Consider a nonlinear finite dimensional discrete time system of the form: 

x(n+l) = In(x(n» + gn(x(n»w(n), 

den) = hn(x(n»+v(n). 

(1) 

Here the vector x (n) is the state of the system at time n, w (n) is the input, 

den) is the observation, v(n) is observation noise and In('), gn('), and hn(') 
are nonlinear vector functions of the state with the subscript denoting possible 

dependence on time. We assume that the initial state, x (0), and the 

sequences {v (n)} and {w (n)} are independent and gaussian with 

E [x (O)]=x(O), E {[x (O)-x (O)][x (O)-i(O»)I} = P(O), 

E [w (n)] = 0, E [w (n )w t (l)] = Q (n )Onl' 
E[v(n)] = 0, E[v(n)vt(l)] = R(n)onb 

(2) 

where Onl is the Kronecker delta. Our problem is to find an estimate i (n +1) 
of x (n +1) given d (j) , O<j <n. We denote this estimate by i (n +11 n). 

If the nonlinearities in (1) are sufficiently smooth, we can expand them llsing 

Taylor series about the state estimates i (n In) and i (n In -1) to obtain 

In(x(n» = I" (i(n In» + F(n)[x(n)-i(n In)] + ... 
gn(x(n» = gil (i(n In» + ... = C(n) + ... 
hn(x(n» = hll(i(n In-I» + J-f1(n)[x(n)-i(n In-1)] + 

where 

C(ll) = gn(i(n Ill», 
din (x) dh ll (x) 

F (ll ) = ---. -- , I-P (n ) = --., --- (3) 
ax x = .i (II III) Ox x=i(IIII1-1) 

i.e. G (n) is the value of the function g" (.) at i (n In) and the ij th 

components of F (n) and H' (n) are the partial derivatives of the i th 

components of f II (.) and hll (-) respectively with respect to the j th component 

of x (n) at the points indicated. Neglecting higher order terms and assuming 
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knowledge of i (n In) and i (n In-I), the system in (3) can be approximated 

as 

where 

x(n+l) = F(n)x(n) + G(n)w(n) + u(n) n>O 

z (n ) = HI (n )x (n )+ v (n) + y (n ), 

u(n) = /n(i(n In» - F(n)i(n In) 

y(n) = hn(i(n In-I» - H1(n)i(n In-1). 

(4) 

(5) 

It can be shown [Anderson and Moore, 1979] that the desired estimate 

i (n + 11 n) can be obtained by the recursion 

i(n+1In) =/n(i(n In» (6) 
i(n In) = i(n In-I) + K(n)[d(n) - hn(i(n In-1»] (7) 
K(n) = P(n In-I)H(n)[R(n)+HI(n)P(n In-I)H(n)tl (8) 
P(n+Iln) = F(n)P(n In)FI(n) + G(n)Q(n)G1(n) (9) 

P(n In) = P(n In-I) - K(n)HI(n)P(n In-I) (10) 

with P(11 0) = P (0). K (n) is known as the Kalman gain. In case of a linear 

system, it can be shown that P(n) is the conditional error covariance matrix 

associated with the state and the estimate i (n +1/ n) is optimal in the sense 

that it approaches the conditional mean E [x (n + 1) I d (0) ... d (n)] for large 

n . However, for nonlinear systems, the filter is not optimal and the estimates 

can only loosely be termed conditional means. 

TRAINING MULTILAYER PERCEPTRONS 

The network under consideration is a L layer perceptronl with the i th input 

of the k th weight layer labeled as :J-l(n), the jth output being zjk(n) and the 

weight connecting the i th input to the j th output being (}i~j' We assume that 

the net has m inputs and I outputs. Thresholds are implemented as weights 

connected from input nodes2 with fixed unit strength inputs . Thus, if there 

are N (k) nodes in the k th node layer, the total number of weights in the 

system is 

L 

M = ~N(k-l)[N(k)-l]. (11) 
k=1 

Although the inputs and outputs are dependent on time 11, for notational 

brevity, we wil1 not show this dependence unless explicitly needed . 

l. We use the convention that the number of layers is equal to the number of weight layers . Thus 

we have L layers of Wl'iglrls labeled 1 · L and I ~ + I layers of /lodes (including the input and 

output nodes) labeled O · . . L . We will refer to the kth weight layer or the kth node layer 

unless the context is clear. 

2. We adopt the convention that the 1st input node is the threshold. i.e. lit., is the threshold for 

the j th output node from the k th weight layer. 
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In order to cast the problem in a form for recursive estimation, we let the 

weights in the network constitute the state x of the nonlinear system, i.e. 

x = [Ob,Ot3 ... 0k(O),N(l)]t. (12) 

The vector x thus consists of all weights arranged in a linear array with 

dimension equal to the total number of weights M in the system. The system 

model thus is 

x(n+l)=x(n) n>O, 
den) = zL(n) + v(n) = hn(x(n),zO(n)) + v(n), 

(13) 

(14) 

where at time n, zO(n) is the input vector from the training set, d (n) is the 

corresponding desired output vector, and ZL (n) is the output vector 

produced by the net. The components of hn (.) define the nonlinear 

relationships between the inputs, weights and outputs of the net. If r(·) is the 

nonlinearity used, then ZL (n) = hn (x (n ),zO(n)) is given by 

zL(n) = r{(OL)tr{(OL-l)tr ... r{(OlyzO(n)}· .. }}.. (15) 

where r applies componentwise to vector arguments. Note that the input 

vectors appear only implicitly through the observation function hn ( . ) in (14). 

The initial state (before training) x (0) of the network is defined by populating 

the net with gaussian random variables with a N(x(O),P(O)) distribution where 

x (0) and P (0) reflect any apriori knowledge about the weights. In the absence 

of any such knowledge, a N (0,1/f. I) distribution can be used, where f. is a 

small number and I is the identity matrix. For the system in (13) and (14), 

the extended Kalman filter recursion simplifies to 

i(I1+1) = i(n) + K(n)[d(n) - hn(i(n),zO(n))] 
K (n) = P(n)H (n )[R (n )+H' (n )P(n )H(n )]-1 
Pen +1) = P(n) - K (n )Ht (n)P (n) 

where P(n) is the (approximate) conditional error covariance matrix . 

(16) 

(17) 

(18) 

Note that (16) is similar to the weight update equation in back-propagation 

with the last term [ZL - hn (x ,ZO)] being the error at the output layer. 

However, unlike the delta rule used in back-propagation, this error is 

propagated to the weights through the Kalman gain K (n) which updates each 

weight through the entire gradient matrix H (n) and the conditional error 

covariance matrix P (n ). In this sense, the Kalman algorithm is not a local 

training algorithm . However, the inversion required in (17) has dimension 

equal to the llumber of outputs I, 110t the number of weights M, and thus 

does not grow as weights arc added to the problem. 

EXAMPLES AND RESULTS 

To evaluale the Olltpul and the convergence properties of the extended 

Kalman algorithm. we constructed mappings using two-dimensional inputs 

with two or four outputs as shown in Fig. 1. Limiting the input vector to 2 

dimensions allows liS to visualize the decision regiolls ohtained by the net and 
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to examine the outputs of any node in the net in a meaningful way. The x­

and y-axes in Fig. 1 represent the two inputs, with the origin located at the 

center of the figures. The numbers in the figures represent the different 

output classes. 

2 1 

- - t------+-----I 

1 2 

I 
(a) REGIONS (b) XOR 

Figure 1. Output decision regions for two problems 

The training set for each example consisted of 1000 random vectors uniformly 

filling the region . The hyperbolic tangent nonlinearity was used as the 

nonlinear element in the networks. The output corresponding to a class was 

set to 0.9 when the input vector belonged to that class, and to -0.9 otherwise. 

During training, the weights were adjusted after each data vector was 

presented. Up to 2000 sweeps through the input data were used with the 

stopping criteria described below to examine the convergence properties. The 

order in which data vectors were presented was randomized for each sweep 

through the data. In case of back-propagation, a convergence constant of 0.1 

was used with no "momentum" factor. In the Kalman algorithm R was set to 

I ·e-k / 50 , where k was the iteration number through the data. Within each 

iteration, R was held constant. 

The Stopping Criteria 

Training was considered complete if anyone of the following con~itions was 

satisfied: 

a. 2000 sweeps through the input data were used, 

h. the RMS (root mean squared) error at the output averaged over all 

training data during a sweep fell below a threshold 11' or 

c. the error reduction 8 after the i th sweep through the data fell below a 

threshold I::., where 8; = !3b;_1 + (l-,B) I ei-ei_l I. Here !3 is some 

positive constant less than unity, and ei is the error defined in b. 

In our simulations we set ;3 = 0.97, II = 10-2 and 12 = 10-5• 



138 Singhal and Wu 

Example 1 - Meshed, Disconnected Regions: 

Figure l(a) shows the mapping with 2 disconnected, meshed regions 

surrounded by two regions that fill up the space. We used 3-layer perceptrons 

with 10 hidden nodes in each hidden layer to Figure 2 shows the RMS error 

obtained during training for the Kalman algorithm and back-propagation 

averaged over 10 different initial conditions. The number of sweeps through 

the data (x-axis) are plotted on a logarithmic scale to highlight the initial 
reduction for the Kalman algorithm. Typical solutions obtained by the 

algorithms at termination are shown in Fig. 3. It can be seen that the Kalman 

algorithm converges in fewer iterations than back-propagation and obtains 

better solutions. 

1 

0.8 

Average 0.6 
RMS 

Error 0.4 
backprop 

0.2 
Kalman 

0 

1 2 5 10 20 50 100 200 500 10002000 

No. of Iterations 

Figure 2. Average output error during training for Regions problem using the 

Kalman algorithm and backprop 

I I 

(a) (b) 
Figure 3. Typical solutions for Regions problem using (a) Kalman algorithm 

and (h) hackprop. 
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Example 2 - 2 Input XOR: 

Figure 1(b) shows a generalized 2-input XOR with the first and third 

quadrants forming region 1 and the second and fourth quadrants forming 

region 2. We attempted the problem with two layer networks containing 2-4 

nodes in the hidden layer. Figure 4 shows the results of training averaged 

over 10 different randomly chosen initial conditions. As the number of nodes 

in the hidden layer is increased, the net converges to smaller error values. 

When we examine the output decision regions, we found that none of the nets 

attempted with back-propagation reached the desired solution. The Kalman 

algorithm was also unable to find the desired solution with 2 hidden nodes in 

the network. However, it reached the desired solution with 6 out of 10 initial 

conditions with 3 hidden nodes in the network and 9 out of 10 initial 

conditions with 4 hidden nodes. Typical solutions reached by the two 

algorithms are shown in Fig. 5. In all cases, the Kalman algorithm converged 

in fewer iterations and in all but one case, the final average output error was 

smaller with the Kalman algorithm. 

1 

0.8 

Average 0.6 

RMS 
Error 0.4 

Kalman 3 nodes 
0.2 

Kalman 4 nodes 

0 

1 2 5 10 20 50 100 200 500 10002000 

No. of Iterations 

Figure 4. Average output error during training for XOR problem using the 

Kalman algorithm and backprop 

CONCLUSIONS 

In this paper, we showed that training feed-forward nets can be viewed as a 

system identification problem for a nonlinear dynamic system. For linear 

dynamic systems, the Kalman tllter is known to produce an optimal estimator. 

Extended versions of the Kalman algorithm can be used to train feed-forward 

networks. We examined the performance of the Kalman algorithm using 

artifkially constructed examples with two inputs and found that the algorithm 

typically converges in a few iterations. We also llsed back-propagation on the 

same examples and found that invariably, the Kalman algorithm converged in 
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l 

2 1 

~ 

1 2 

I 
2 

I I 

Figure 5. 

(a) (b) 
Typical solutions for XOR problem using (a) Kalman algorithm and 

(b) backprop. 

fewer iterations. For the XOR problem, back-propagation failed to converge 

on any of the cases considered while the Kalman algorithm was able to find 

solutions with the same network configurations. 
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