
TRAINING MULTILAYER PERCEPTRONS WITH THE
EXTENDED KALMAN ALGORITHM

Sharad Singhal and Lance Wu

Bell Communications Research, Inc.

Morristown, NJ 07960

ABSTRACT

A large fraction of recent work in artificial neural nets uses

multilayer perceptrons trained with the back-propagation

algorithm described by Rumelhart et. a1. This algorithm

converges slowly for large or complex problems such as

speech recognition, where thousands of iterations may be

needed for convergence even with small data sets. In this

paper, we show that training multilayer perceptrons is an

identification problem for a nonlinear dynamic system which

can be solved using the Extended Kalman Algorithm.

Although computationally complex, the Kalman algorithm

usually converges in a few iterations. We describe the

algorithm and compare it with back-propagation using two­

dimensional examples.

INTRODUCTION

Multilayer perceptrons are one of the most popular artificial neural net

structures being used today. In most applications, the "back propagation"

algorithm [Rllmelhart et ai, 1986] is used to train these networks. Although

this algorithm works well for small nets or simple problems, convergence is

poor if the problem becomes complex or the number of nodes in the network

become large [Waibel et ai, 1987]. In problems sllch as speech recognition,

tens of thousands of iterations may be required for convergence even with

relatively small elata-sets. Thus there is much interest [Prager anel Fallsiele,

1988; Irie and Miyake, 1988] in other "training algorithms" which can

compute the parameters faster than back-propagation anel/or can handle much

more complex problems.

In this paper, we show that training multilayer perceptrons can be viewed as

an identification problem for a nonlinear dynamic system. For linear dynamic

Copyright 1989. Bell Communications Research. Inc.

133

134 Singhal and Wu

systems with white input and observation noise, the Kalman algorithm

[Kalman, 1960] is known to be an optimum algorithm. Extended versions of

the Kalman algorithm can be applied to nonlinear dynamic systems by

linearizing the system around the current estimate of the parameters.

Although computationally complex, this algorithm updates parameters

consistent with all previously seen data and usually converges in a few

iterations. In the following sections, we describe how this algorithm can be

applied to multilayer perceptrons and compare its performance with back­

propagation using some two-dimensional examples.

THE EXTENDED KALMAN FILTER

In this section we briefly outline the Extended Kalman filter. Mathematical

derivations for the Extended Kalman filter are widely available in the

literature [Anderson and Moore, 1979; Gelb, 1974] and are beyond the scope

of this paper.

Consider a nonlinear finite dimensional discrete time system of the form:

x(n+l) = In(x(n» + gn(x(n»w(n),

den) = hn(x(n»+v(n).

(1)

Here the vector x (n) is the state of the system at time n, w (n) is the input,

den) is the observation, v(n) is observation noise and In('), gn('), and hn(')
are nonlinear vector functions of the state with the subscript denoting possible

dependence on time. We assume that the initial state, x (0), and the

sequences {v (n)} and {w (n)} are independent and gaussian with

E [x (O)]=x(O), E {[x (O)-x (O)][x (O)-i(O»)I} = P(O),

E [w (n)] = 0, E [w (n)w t (l)] = Q (n)Onl'
E[v(n)] = 0, E[v(n)vt(l)] = R(n)onb

(2)

where Onl is the Kronecker delta. Our problem is to find an estimate i (n +1)
of x (n +1) given d (j) , O<j <n. We denote this estimate by i (n +11 n).

If the nonlinearities in (1) are sufficiently smooth, we can expand them llsing

Taylor series about the state estimates i (n In) and i (n In -1) to obtain

In(x(n» = I" (i(n In» + F(n)[x(n)-i(n In)] + ...
gn(x(n» = gil (i(n In» + ... = C(n) + ...
hn(x(n» = hll(i(n In-I» + J-f1(n)[x(n)-i(n In-1)] +

where

C(ll) = gn(i(n Ill»,
din (x) dh ll (x)

F (ll) = ---. -- , I-P (n) = --., --- (3)
ax x = .i (II III) Ox x=i(IIII1-1)

i.e. G (n) is the value of the function g" (.) at i (n In) and the ij th

components of F (n) and H' (n) are the partial derivatives of the i th

components of f II (.) and hll (-) respectively with respect to the j th component

of x (n) at the points indicated. Neglecting higher order terms and assuming

Training Multilayer Perceptrons 135

knowledge of i (n In) and i (n In-I), the system in (3) can be approximated

as

where

x(n+l) = F(n)x(n) + G(n)w(n) + u(n) n>O

z (n) = HI (n)x (n)+ v (n) + y (n),

u(n) = /n(i(n In» - F(n)i(n In)

y(n) = hn(i(n In-I» - H1(n)i(n In-1).

(4)

(5)

It can be shown [Anderson and Moore, 1979] that the desired estimate

i (n + 11 n) can be obtained by the recursion

i(n+1In) =/n(i(n In» (6)
i(n In) = i(n In-I) + K(n)[d(n) - hn(i(n In-1»] (7)
K(n) = P(n In-I)H(n)[R(n)+HI(n)P(n In-I)H(n)tl (8)
P(n+Iln) = F(n)P(n In)FI(n) + G(n)Q(n)G1(n) (9)

P(n In) = P(n In-I) - K(n)HI(n)P(n In-I) (10)

with P(11 0) = P (0). K (n) is known as the Kalman gain. In case of a linear

system, it can be shown that P(n) is the conditional error covariance matrix

associated with the state and the estimate i (n +1/ n) is optimal in the sense

that it approaches the conditional mean E [x (n + 1) I d (0) ... d (n)] for large

n . However, for nonlinear systems, the filter is not optimal and the estimates

can only loosely be termed conditional means.

TRAINING MULTILAYER PERCEPTRONS

The network under consideration is a L layer perceptronl with the i th input

of the k th weight layer labeled as :J-l(n), the jth output being zjk(n) and the

weight connecting the i th input to the j th output being (}i~j' We assume that

the net has m inputs and I outputs. Thresholds are implemented as weights

connected from input nodes2 with fixed unit strength inputs . Thus, if there

are N (k) nodes in the k th node layer, the total number of weights in the

system is

L

M = ~N(k-l)[N(k)-l]. (11)
k=1

Although the inputs and outputs are dependent on time 11, for notational

brevity, we wil1 not show this dependence unless explicitly needed .

l. We use the convention that the number of layers is equal to the number of weight layers . Thus

we have L layers of Wl'iglrls labeled 1 · L and I ~ + I layers of /lodes (including the input and

output nodes) labeled O · . . L . We will refer to the kth weight layer or the kth node layer

unless the context is clear.

2. We adopt the convention that the 1st input node is the threshold. i.e. lit., is the threshold for

the j th output node from the k th weight layer.

136 Singhal and Wu

In order to cast the problem in a form for recursive estimation, we let the

weights in the network constitute the state x of the nonlinear system, i.e.

x = [Ob,Ot3 ... 0k(O),N(l)]t. (12)

The vector x thus consists of all weights arranged in a linear array with

dimension equal to the total number of weights M in the system. The system

model thus is

x(n+l)=x(n) n>O,
den) = zL(n) + v(n) = hn(x(n),zO(n)) + v(n),

(13)

(14)

where at time n, zO(n) is the input vector from the training set, d (n) is the

corresponding desired output vector, and ZL (n) is the output vector

produced by the net. The components of hn (.) define the nonlinear

relationships between the inputs, weights and outputs of the net. If r(·) is the

nonlinearity used, then ZL (n) = hn (x (n),zO(n)) is given by

zL(n) = r{(OL)tr{(OL-l)tr ... r{(OlyzO(n)}· .. }}.. (15)

where r applies componentwise to vector arguments. Note that the input

vectors appear only implicitly through the observation function hn (.) in (14).

The initial state (before training) x (0) of the network is defined by populating

the net with gaussian random variables with a N(x(O),P(O)) distribution where

x (0) and P (0) reflect any apriori knowledge about the weights. In the absence

of any such knowledge, a N (0,1/f. I) distribution can be used, where f. is a

small number and I is the identity matrix. For the system in (13) and (14),

the extended Kalman filter recursion simplifies to

i(I1+1) = i(n) + K(n)[d(n) - hn(i(n),zO(n))]
K (n) = P(n)H (n)[R (n)+H' (n)P(n)H(n)]-1
Pen +1) = P(n) - K (n)Ht (n)P (n)

where P(n) is the (approximate) conditional error covariance matrix .

(16)

(17)

(18)

Note that (16) is similar to the weight update equation in back-propagation

with the last term [ZL - hn (x ,ZO)] being the error at the output layer.

However, unlike the delta rule used in back-propagation, this error is

propagated to the weights through the Kalman gain K (n) which updates each

weight through the entire gradient matrix H (n) and the conditional error

covariance matrix P (n). In this sense, the Kalman algorithm is not a local

training algorithm . However, the inversion required in (17) has dimension

equal to the llumber of outputs I, 110t the number of weights M, and thus

does not grow as weights arc added to the problem.

EXAMPLES AND RESULTS

To evaluale the Olltpul and the convergence properties of the extended

Kalman algorithm. we constructed mappings using two-dimensional inputs

with two or four outputs as shown in Fig. 1. Limiting the input vector to 2

dimensions allows liS to visualize the decision regiolls ohtained by the net and

Training Multilayer Perceptrons 137

to examine the outputs of any node in the net in a meaningful way. The x­

and y-axes in Fig. 1 represent the two inputs, with the origin located at the

center of the figures. The numbers in the figures represent the different

output classes.

2 1

- - t------+-----I

1 2

I
(a) REGIONS (b) XOR

Figure 1. Output decision regions for two problems

The training set for each example consisted of 1000 random vectors uniformly

filling the region . The hyperbolic tangent nonlinearity was used as the

nonlinear element in the networks. The output corresponding to a class was

set to 0.9 when the input vector belonged to that class, and to -0.9 otherwise.

During training, the weights were adjusted after each data vector was

presented. Up to 2000 sweeps through the input data were used with the

stopping criteria described below to examine the convergence properties. The

order in which data vectors were presented was randomized for each sweep

through the data. In case of back-propagation, a convergence constant of 0.1

was used with no "momentum" factor. In the Kalman algorithm R was set to

I ·e-k / 50 , where k was the iteration number through the data. Within each

iteration, R was held constant.

The Stopping Criteria

Training was considered complete if anyone of the following con~itions was

satisfied:

a. 2000 sweeps through the input data were used,

h. the RMS (root mean squared) error at the output averaged over all

training data during a sweep fell below a threshold 11' or

c. the error reduction 8 after the i th sweep through the data fell below a

threshold I::., where 8; = !3b;_1 + (l-,B) I ei-ei_l I. Here !3 is some

positive constant less than unity, and ei is the error defined in b.

In our simulations we set ;3 = 0.97, II = 10-2 and 12 = 10-5•

138 Singhal and Wu

Example 1 - Meshed, Disconnected Regions:

Figure l(a) shows the mapping with 2 disconnected, meshed regions

surrounded by two regions that fill up the space. We used 3-layer perceptrons

with 10 hidden nodes in each hidden layer to Figure 2 shows the RMS error

obtained during training for the Kalman algorithm and back-propagation

averaged over 10 different initial conditions. The number of sweeps through

the data (x-axis) are plotted on a logarithmic scale to highlight the initial
reduction for the Kalman algorithm. Typical solutions obtained by the

algorithms at termination are shown in Fig. 3. It can be seen that the Kalman

algorithm converges in fewer iterations than back-propagation and obtains

better solutions.

1

0.8

Average 0.6
RMS

Error 0.4
backprop

0.2
Kalman

0

1 2 5 10 20 50 100 200 500 10002000

No. of Iterations

Figure 2. Average output error during training for Regions problem using the

Kalman algorithm and backprop

I I

(a) (b)
Figure 3. Typical solutions for Regions problem using (a) Kalman algorithm

and (h) hackprop.

Training Multilayer Perceptrons 139

Example 2 - 2 Input XOR:

Figure 1(b) shows a generalized 2-input XOR with the first and third

quadrants forming region 1 and the second and fourth quadrants forming

region 2. We attempted the problem with two layer networks containing 2-4

nodes in the hidden layer. Figure 4 shows the results of training averaged

over 10 different randomly chosen initial conditions. As the number of nodes

in the hidden layer is increased, the net converges to smaller error values.

When we examine the output decision regions, we found that none of the nets

attempted with back-propagation reached the desired solution. The Kalman

algorithm was also unable to find the desired solution with 2 hidden nodes in

the network. However, it reached the desired solution with 6 out of 10 initial

conditions with 3 hidden nodes in the network and 9 out of 10 initial

conditions with 4 hidden nodes. Typical solutions reached by the two

algorithms are shown in Fig. 5. In all cases, the Kalman algorithm converged

in fewer iterations and in all but one case, the final average output error was

smaller with the Kalman algorithm.

1

0.8

Average 0.6

RMS
Error 0.4

Kalman 3 nodes
0.2

Kalman 4 nodes

0

1 2 5 10 20 50 100 200 500 10002000

No. of Iterations

Figure 4. Average output error during training for XOR problem using the

Kalman algorithm and backprop

CONCLUSIONS

In this paper, we showed that training feed-forward nets can be viewed as a

system identification problem for a nonlinear dynamic system. For linear

dynamic systems, the Kalman tllter is known to produce an optimal estimator.

Extended versions of the Kalman algorithm can be used to train feed-forward

networks. We examined the performance of the Kalman algorithm using

artifkially constructed examples with two inputs and found that the algorithm

typically converges in a few iterations. We also llsed back-propagation on the

same examples and found that invariably, the Kalman algorithm converged in

140 Singhal and Wu

l

2 1

~

1 2

I
2

I I

Figure 5.

(a) (b)
Typical solutions for XOR problem using (a) Kalman algorithm and

(b) backprop.

fewer iterations. For the XOR problem, back-propagation failed to converge

on any of the cases considered while the Kalman algorithm was able to find

solutions with the same network configurations.

References

[1] B. D. O. Anderson and J. B. Moore, Optimal Filtering, Prentice Hall,

1979.

[2] A. Gelb, Ed., Applied Optimal Estimation, MIT Press, 1974.

[3] B. Irie, and S. Miyake, "Capabilities of Three-layered Perceptrons,"

Proceedings of the IEEE International Conference on Neural Networks,

San Diego, June 1988, Vol. I, pp. 641-648.

[4] R. E. Kalman, "A New Approach to Linear Filtering and Prediction

Problems," 1. Basic Eng., Trans. ASME, Series D, Vol 82, No.1, 1960,

pp.35-45.

[5] R. W. Prager and F. Fallside, "The Modified Kanerva Model for

Automatic Speech Recognition," in 1988 IEEE Workshop on Speech

Recognition, Arden House, Harriman NY, May 31-Jllne 3,1988.

[6] D. E. Rumelharl, G. E. Hinton and R. J. Williams, "Learning Internal

Representations by Error Propagation," in D. E. Rllmelhart and

J. L. McCelland (Eds.), Parallel Distributed Processing: Explorations in

the Microstructure oj' Cognition. Vol 1: Foundations. MIT Press, 1986.

[7J A. Waibel, T. Hanazawa, G. Hinton, K. Shikano and K . Lang

"Phoneme Recognition Using Time-Delay Neural Networks," A 1R

internal Report TR-I-0006, October 30, 1987.

