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Abstract- In this paper the task of training subsymbolic 
systems is considered as a combinatorial optimization problem 
and solved with the heuristic scheme of the reactive tabu search 
(RTS). An iterative optimization process based on a “modified 
local search” component is complemented with a meta-strategy 
to realize a discrete dynamical system that discourages limit 
cycles and the confinement of the search trajectory in a limited 
portion of the search space. The possible cycles are discouraged 
by prohibiting (i.e., making tabu) the execution of moves that 
reverse the ones applied in the most recent part of the search. 
The prohibition period is adapted in an automated way. The 
confinement is avoided and a proper exploration is obtained by 
activating a diversification strategy when too many configurations 
are repeated excessively often. The RTS method is applicable 
to nondifferentiable functions, is robust with respect to the 
random initialization, and effective in continuing the search after 
local minima. Three tests of the technique on feedforward and 
feedback systems are presented. 

I. INTRODUCTION 

PTIMIZATION is not sufficient for a successful learning 0 scheme (consider, for example, the problems of gen- 

eralization, noise-robustness, feature and example selection), 

but the minimization of a suitable “performance function” zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE 
often is a crucial component of learning. Derivative-based 

optimization methods like backpropagation (BP) [39] have 

been used with success in many practical contexts, but they 

stop at the first local minimum. When this happens, they can 

be restarted from a new random point, but in this case the 

previous work is wasted. In addition, the random initialization 

problem is not trivial [28] and the calculation of derivatives 

(provided that E is differentiable) is expensive and error-prone 

[40], especially if analog VLSI (very large scale integration) 

hardware is used. 

In this paper a radically different approach to the learning 

task is presented. First the task is transformed into a combi- 

natorial optimization problem so that the points of the search 

space are the vertices of a binary hypercube (or the set of 

binary strings with a specified length). Of course, in a digital 

computer each weight is represented by a fixed number of bits 

so that the problem is intrinsically combinatorial, although 

its nature is hidden from us by the floating point hardware 

and software. The problem is then solved with an heuristic 

method based on the construction of a search trajectory by a 

discrete dynamical system, with a dynamics designed to bias 
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the motion toward points with low E values and to discourage 

the occurrence of limit cycles and the confinement in a limited 

portion of the search space. The bias is obtained by a modified 
local search component that evaluates a set of elementary 

moves applied to the current point (the neighborhood) and 

selects the best one. To this basic component one adds the 

prohibition of the inverses of recently executed moves, to 

discourage cycles, and a diversification strategy, to avoid the 

confinement of the solution trajectory. 

In the presented application of the reactive tabu search 

(RTS) [6], the neighborhood of a point in the search space 

consists of the strings differing by a single bit, and the 

selected move is the one that causes the largest decrease in E 
among those that have not been already executed in the most 

recent part of the search. The prohibition period is regulated 
by a cycle-detection and reaction mechanism based on the 

previous history of the process. RTS escapes rapidly from 

local minimizers, it is applicable to nondifferentiable and even 

discontinuous functions, being based only on the availability 

of E values, and is very robust with respect to the choice of 

the initial configuration. In addition, the possibility of fine- 

tuning the number of bits for each parameter is useful to 

decrease the size of the search space, to increase the expected 

generalization, and to realize cost-effective VLSI devices. 

The design criteria of the RTS technique for a search space 

given by binary strings are summarized in Section 11, and the 

application of RTS to the training of subsymbolic systems is 

described in Section 111. The results of two experimental tests 

on feedforward systems for classification tasks are discussed 

in Sections IV-A and IV-B. Finally, one test on a feedback 

system for nonlinear control is analyzed in Section IV-C. 

11. REACTIVE TABU SEARCH: A METHOD 

Let us define our notation. An instance of a combinatorial 

optimization (CO) problem [38] is a pair ( F ,  E ) ,  where F 
is a set of feasible points with finite cardinality (we do not 

consider the case of a countably infinite set) and E is the 

cost function, i.e., a mapping: E :  F + RI. A solution zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf is 

globally optimal if 

DESIGNED TO DISCOURAGE CYCLES 

E ( f )  5 E ( y )  for all 9 E F. 

For many interesting CO problems, the computational com- 

plexity for finding the globally optimal solution is not ac- 

ceptable, so that one must resort to heuristic search methods 

for finding suboptimal points [ 181, [ 141. The neighborhood 

function N ( f )  associates to each point f a subset of F 

N :  F + 2F  
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A point zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf is locally optimal with respect to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAN or a local 

minimizer if 

E(f) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 E(9)  for all zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA9 E zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA”. 

The minimizer is strict if E ( f )  < E(g). It is useful to 
define the neighborhood N ( f )  as the set of points that can 

be obtained by applying to f a set of elementary moves M 

N ( f )  = {g E F such that g = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp(f) for p E M } .  

In the present work, F is the set of all binary strings 

with a finite length L: F = (0, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAl}L and the elementary 

moves p,(i = 1, . . . . L )  change the ith bit of the string f = 

(1) 

where f i  is the negation of the zth bit: fi = (1 - f,). Obviously, 

two moves commute and p, is idempotent (i.e., p: = 1, the 

identity move) and therefore its inverse is pL1 = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBApt .  
The TS strategy [20] has been used to solve a growing 

number of complex combinatorial optimization problems in 

an effective and efficient manner, mainly by the operations 

research community. To our best knowledge, the first applica- 

tions of the standard TS for training an associative memorj are 

in [2] and [42]. In [12] and [19] the tabu dynamics is adapted 

to produce a viable neural search technique, that remedies 

the one-shot descent offered by the Hopfield model [24]. In 

this work the framework is that of combinatorial optimization 

(CO) and the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBARTS discrete dynamics is not married with the 

continuous Hopfield network. 

The TS scheme uses an iterative local search algorithm (like 

“steepest descent”) to bias the search toward points with low 

E values. In addition, the TS incorporates strategies to avoid 

the occurrence of limit cycles.’ The two goals are attained by 

using the following design principles 

ModiJed Local Search. At each step of the iterative 

process, the best move is selected from a set of admissible 

elementary moves that lead to points in the neighborhood 

of the current state. The best move is the one that produces 

the lowest value of the cost function E. Note that the best 

move is executed even if E increases with respect to the 

value at the current point, while the standard local search 

technique stops if the best move increases E. Increases 

are allowed because they are necessary to exit from local 

minimizers of E. 
Cycle Avoidance. The inverses of the moves executed 

in the most recent part of the search are prohibited (the 

names “tabu” or “taboo” derive from this prohibition). 

In detail, at a given iteration t of the search, the set of 

moves M is partitioned into the set of the tabu moves, 

the usefulness of which will become clear in what follows, 

and the set A(t) of the admissible moves, i.e., of the moves 

that can be applied to the current point: M ( t )  = A(t)  
A(t) n = 0. 

At the beginning, the search starts from an initial configu- 

ration f ( O ) ,  that can be generated randomly, and all moves are 

t u .  I I  E .Y. I I  > 0. R is the “repetition penod,” or “length’ of the cycle. 

[fl.  . . . 1 f2.. . ., fL] 

P%([fl. . . .  . fi l . . .  . fL1)  = [fl. . . .  . f 2 .  . . .  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 fL1 

‘ A  search trajectory converges to a lirmt cycle if f ( r + r z R )  = f ( ‘ ) . V t  2 

admissible: A(”) = M .  I(’) = 0. The trajectory f t )  is then 

generated where the successor of the current point is obtained 

by a suitable move p ( t )  from the set A(t) .  For example, if 

contains a finite number of moves, one can select the 

best admissible move 

f ( t+ l )  = , ~ ( ~ ) ( f ( ~ ) )  where p ( t )  = arg min E ( ~ ( f ( ~ 1 ) ) .  
v E d ( ‘ )  

If more moves cause the same E value, the move to apply 

is selected randomly from them. If the admissible moves are 

expensive to evaluate, for example if A(t) is very large, one 

can sample A(t) randomly and take the best out of S(t )  c A(t).  
The cardinality of the “sample” set S( t )  is called SAMPLE. 

Let us now motivate the introduction of prohibited moves. 

In isolation, the above cited “modified local search” principle 

can generate limit cycles. Let us suppose that the current point 

f ( t )  is a strict local minimizer: the cost function at the next 

point must increase: ~ ( f ( ~ + l ) )  = E ( / L ( ~ ) ( ~ ( ~ ) ) )  > ~ ( f ( ~ ) ) ,  

and there is the possibility that the move at the next step will 

be its inverse ( ~ ( ~ + l )  = ,u(~)-’) so that the state after two 

steps will come back to the starting configuration 

At this point, if the set of admissible moves is the same, the 

system will be “trapped” forever in a limit cycle of length 

2 But this cycle is avoided if the inverses of the moves 

executed in the most recent part of the search are prohibited. 
The prohibition must be canceled after a certain number of 

iterations T because the tabu moves can be necessary to reach 

the optimum in a later phase of the search. The number of 

iterations T that a move remains in the set is called 

“list size” in the original terminology, a term referring to a 

realization of the scheme in which the forbidden moves are 

inserted into a first-in first-out list (i.e., a queue of length T 
where a move enters as soon as it has been executed and 

exits after T steps). If the selection of a move is pictured as 

the firing of a neuron, the prohibition is a sort of refractory 

period for that neuron. In RTS the prohibition period T( t )  is 

time-dependent and the set of prohibited moves is 

= { p  E M such that its most recent use 

has been at time 7 2 ( t  - T( t ) ) } .  (2) 

A worked out example of the tabu search technique is 

presented in the Appendix. Let us mention that the following 

competing requirements hold: 

T must be large to avoid cycles. In detail, T must be larger 

than (R/2)  - 1 to make cycles of length R impossible 

(note thdt R is even for binary strings). 

T must be sufficiently small to avoid over-constraining 

the trajectory, and in any case it must be smaller than or 

equal to I, - 2. 

A. The RTS Algorithm 

The RTS algorithm [6] is here briefly summarized to un- 

derstand its use in the area of subsymbolic machine learning 

studied in Section 111. Because the longest possible cycle in the 

search space F = (0, l}L has length R = 2L  (the list of the 
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- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAc bes tmove  (see zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAF ig  ?) 

f W 1 i  = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA/ L ( f i f i )  

A b )  - t 
t - ( t + l )  

( l 'pdate t i m e  and brstLso.far ) 

if E( f ( ' 1 )  < Eathen 

Eb - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE( J " ' )  [ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf b  - f"' zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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Gray codes-see Section IIILcorresponding to the integers 

0.1. . . . . 2L  - 1 is an example of a cycle of maximum length 

obtainable with the elementary moves p?), the basic Tabu 

Search mechanism cannot guarantee the absence of cycles. In 

addition, the choice of a fixed T without a priori knowledge 

about the possible search trajectories that can be generated in a 

given (F .  E )  problem is difficult. If the search space possesses 

an inhomogeneous structure, a size T that is appropriate in 

a region of F may be inappropriate in other regions. For 

example, T can be too small to avoid cycles, or too large, 

so that only a small fraction of the movements are admissible 

and the search is inefficient. 

RTS automatically changes the prohibition period T( t )  dur- 

ing the search so that its value is appropriate to the local 

structure of the problem (basic reaction) and adopts a second- 

level reaction to deal with cycles that are not avoided by using 

the first reaction. The most recent iteration when each move 

p L  has been applied is recorded and each configuration f ( t )  

touched by the search trajectory is stored in memory with the 

most recent time when it was encountered. Let us introduce 

the functions: 

A ( p ) :  the last iteration when ji has been used (A(j1) = 
--x if p has never been used). 

l I ( f ) :  the last iteration when f has been encountered 

( I I ( f )  = --x if f has not been encountered). 

@ ( f ) :  the number of repetitions of configuration f in the 

search trajectory ("repetition counter"). At the beginning 

@ ( f )  = 0 for all configurations. 

There can be situations where f has been encountered but 

is not contained in the memory (in this case n ( f )  = --x and 

@( f )  = 0). In fact the allotted memory size can be insufficient 

or the algorithm can cancel the memory content at specific 

times (in particular see the function diversify-search of 

Fig. 3). 

At iteration f ,  the set A(') contains the moves that have not 

been used in the most recent part of the trajectory 

A(t) = { p  E M such that A ( p )  < ( t  - T( ' ) ) } .  (3) 

Note that checking the tabu status of a move requires only a 

couple of CPU cycles if the function A ( p )  is realized with an 

array in memory. 

Fig. 1 describes the main structure of the RTS algorithm.2 

The initialization part is followed by the main loop that 

continues to be executed until a satisfactory solution is found 

or a limiting number of iterations is reached. In this loop, 

the current configuration is compared with the previously 

visited points stored in the memory by calling the function 

memorybasedreaction (Fig. 2) that returns two possible 

values (DONOTXSCAPE or ESCAPE). In the first case the 

next move is selected by calling best-move (Fig. 3); in the 

other case the algorithm enters a diversification phase based 

on a short random walk, see the function diversifysearch 

?The structure of the program is illustrated with simple selection (con- 
ditional) and iteration keywords ( i f .  . . then. . . else. repeat), the assign- 
ment operator (S +- I .  means that the value of variable S is overwritten 
with the value of I r )  and functions that can retum values to the calling 
routine. Compound statements are indented, function names are in boldface, 
and comments are in italics. 

(Init ial ize the data structures for  tabu:) 

1 - 0  

T'0' c 1 

tT  - 0  

c - 0  

R,, P - 1 

J ' " '  - random f E F 

f b  - fro) 
Eh - E(f"') 

( i terat ion counter)  

(prohibit ion period) 

( last time T W Q S  changed) 

(se t  of often-repeated configurations) 

(moi~ing average of repeti t ion in terva l )  

( i n i t i a l  configuration) 

(best so far f) 

(bed so fur E )  

repeat 

Fig. 1. RTS: main structure 

(Fig. 3). For each new configuration on the trajectory, the 

lowest E value found during the search is saved with the 

associated configuration f ,  because otherwise this point could 

be lost when the trajectory escapes from a local minimizer. 

The couple ( fb ,  Eb) is the suboptimal solution provided by 

the algorithm when it terminates. 

In machine learning applications, it is useful to terminate 

the search when the generalization is maximal to avoid over- 

training the system. In the applications presented in Sections 

IV-A, IV-B, and IV-C, the expected generalization will be 

estimated on a validation set (called test set). 

B. Reactive Schemes of RTS 

The reactive mechanisms of the algorithm modify the dis- 

crete dynamical system that defines the trajectory so that limit 

cycles and confinements (that can be compared to chaotic 

attractors in dynamical systems) are discouraged. The reaction 

is based on the past history of the search, and it causes possible 

changes of T ( t )  or the activation of a diversifying phase. Short 

limit cycles are avoided by modifying T( t ) .  In particular, see 

the function memory-based-reaction defined in Fig. 2, 
the current configuration f is compared with the configurations 

visited previously and stored in memory. If f is found, its last 

visit time zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAlI( f )  and repetition counter zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa( f )  are updated. Then, 

if its repetition count is greater than the threshold REP, f is 

included into the set C, and if the size IC1 is greater than the 

threshold CHAOS, the function returns immediately with the 



1188 

C + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAC U f (add f t o  set zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof often-repeated config ) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
if zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIC1 > CHAOS then 

- [ c - O  return ESCAPE (reactzon zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA111) 
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if zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( 1  - t T )  > R,,,then 

[ t T - 1  

T ( l f ' )  + Max(T(') x DECREASE, 1 )  ( react ion 11) 

return DO-NOT-ESCAPE 

Fig. 2. RTS: The function memory-basedreac t ion .  

function bes t m o v e  

comment: The  func t i on  returns the move to  be applied t o  the current configuration zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
If SAMPLE < zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIA(*)I a subset of the admissible moves is  tested 

S - {MOZ(SAMPLE Id(')l)moves randomly extracted out of A ( ' ) ]  

 SAMPLE 2 ld(*jl, all moves are taken)  

p - argminUEs ~ ( u ( f ( ' ) ) )  

return p 

function diversifysearch 

comment: T h e  functzon executes a sequence of random steps, that become tabu as soon as they are 

applied 

Clean the memory structuren and $J zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
S t {Mzn(l + R,,,/2. IMI) moves randomly sampled out of .M} 

repeat for U E S 
f(*t ') + 

A(u )  +- t 

(Update t i m e ,  and best-so-far:) 

t - ( 1  + 1 )  

i fE(f( ' ))  < Ebthen 

Eb + E(f(')) 

f b  - f") 
Fig. 3. RTS: The functions b e s t - m o v e  and d i v e r s i f y s e a r c h .  

value ESCAPE. If the repetition interval R is sufficiently short 

(if R < 2( L- l)), one can discourage cycles by increasing T( t )  
in the following way: T(t+l) + T( t )  x INCREASE. Precisely, 

the largest T that leaves at least two admissible moves is T = 
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L zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- 2, so that only cycles of length R < 2(T + 1) = 2 ( L  - 1) 
can be safely avoided by using the tabu set 7. At least two 

moves must always be admissible (otherwise the move is not 

influenced by the E values), so that an upper bound of L - 2 

is set on T( t )  (this explains the “Min” operator in reaction I). 
If f is not found, it is stored in memory, the most recent 

time when it was encountered is recorded ( I I ( f )  + t )  and its 

repetition counter is set to one zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(@( . f )  +- 1). 

If T is not allowed to decrease, its value value will remain 

large after a phase of the search with many repetitions, even 

in later phases, when a smaller value would be sufficient to 

avoid short cycles. Therefore, T( t )  is reduced by the factor 

DECREASE < 1 if it remains constant for a number of iterations 

greater than the moving average of repetition intervals R,,., 
(reaction zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI1 in Fig. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2) .  

The best move can be selected either by testing all ad- 

missible moves or by sampling a subset of them. The two 

possibilities are selected with the parameter SAMPLE: all moves 

in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA(*) are tested if SAMPLE zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 IA(’)l (in particular if SAMPLE 

= x), otherwise only SAMPLE different moves are randomly 

extracted from A(t) and tested. 

When the first-level reactions that modifies T(‘) (reactions 

I and I1 in Fig. 2 )  are not sufficient to guarantee that the 

trajectory is not confined in a limited portion of the search 

space, the search dynamics enter a phase of “random walk” 

(reaction I11 in Fig. 2 and function diversifysearch of 

Fig. 3). The number of random steps is proportional to the 

moving average R,,,, the rationale being that more steps are 

necessary to escape from a region that causes long cycles. 
Note that the execution time of the random steps is registered 

(,\(U) + t ) ,  so that they become tabu; see (3). When the 

‘‘random walk’ phase begins, the memory structure is cleaned 

but this is not equivalent to a random restart because R,,, 
and T(‘) are not changed, and, when this phase terminates, 

the prohibition of the most recent random steps discourages 

the trajectory from returning into the old region. 

In passing, let us note that the space and time complexity of 
the reaction scheme amounts to some bytes and to a small and 

approximately constant number of machine cycles per itera- 

tion, provided that a compressed version of the configuration 

is stored and that the hashing mechanism is used for obtaining 

the values n(f)  and 4 ( f ) .  In the hashing scheme f is stored in 

a memory location whose address is a function address = hash 
( f ) .  The number of possible addresses Na must be larger than 

the maximum number of items to store N, (say N,  > 2Nz)  and 

the hash() function must “scatter” the addresses of different 

f ’ s  so that the probability that two of them obtain the same 

address is small. In the straightforward application presented, 

the compressed information is simply the floating point value 

of E for the given configuration. The choice is effective if the 

probability that two different configurations have the same E 
value is small. 

Let us note that the tabu search dynamics is designed 

to explore the search space in an efficient way. It can be 

demonstrated that the probability of visiting points at large 

Hamming distances with respect to a starting configuration is 

much higher than in the case of a random walk in the search 

space. The RTS algorithm is studied in detail in [6], while [5] 

is dedicated to a study of the parallel properties. Benchmarks 

and comparisons with respect to simulated annealing [9], 
repeated local minima search, genetic algorithms, and “mean 

field theory” neural nets [lo] have been executed with fully 

satisfactory results. 

111. THE APPLICATION FOR TRAINING NEURAL NETS 

We consider two paradigmatic systems in the area of neural 

networks: the multi-layer perceptron (MLP) (see the applica- 

tions considered in Sections IV-A-IV-B), and the recurrent 

neural network of [43] (see Section IV-C). The notation for 

the MLP system and the tranformation into a combinatorial 

optimization task are described in this section; the feedback 

system considered will be illustrated in Section IV-C. 

Input units of an MLP are denoted by I,, “hidden” units 

by H ,  (we consider a single hidden layer) and output units 

by 0,. The parameters of the system are denoted by w J k  

(weights between input and hidden layer) and by W,, (weights 

between hidden and output layer). The function that maps an 

input pattern I, whose components are real numbers, into the 

associated output vector 0 is constructed as follows. First the 

“net input” h, of the hidden units is computed 

Threshold values are incorporated by fixing the activation 

value of one unit in the input and one unit in the hidden 

layer to one. Then the activation HJ is obtained by using a 

“sigmoidal” function 

At the next layer, first the net input for the output units is 

computed as 

* I  = CW,,H, .  (6) 
/ 

and, finally, the output is obtained as follows 

The system is trained by using a set of P example patterns 

(i.e., of associations between input I, and desired output 

D(1,)) and by minimizing with respect to w the usual sum- 

of-squared-errors measure 

E(w) = z ( 0 , ( W .  1,) - o t ( I p ) ) 2 .  (8) 
P.1 

Each weight of the network is described by a binary string 

of B, bits. The B,. bits are the Gray code of an integer in 

[O. 2 B w  - 11. The Gray code has the property that the nearby 

integers zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA71 - 1 and n + 1 are obtained by changing a single 

bit of the code of 71. (i.e., the codes of n + 1 and n - 1 have a 
Hamming distance of one with respect to the code of n). The 

conversions between the binary encoding bB,, bgU -1 . . . bl  and 



1190 

L zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Current zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAPoinf = 

. . . .*. . zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
-2.5 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

the Gray encoding zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAg B , , g B , - 1  . . . g1 are as follows (see, for 

example, [ 161) 

(9) 

(10) 

where C€ is the exclusive-or operator and the second transfor- 

mation must be done for decreasing values of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAk ,  starting from 

IC = B,. When the network is evaluated, the Gray code for 

each weight is transformed into the base-two binary code of 

a positive integer n and, finally, into a floating point value w 
in the range [-Ws/2, +W,/2], as follows 

g k  = bk  i f k = B ,  

bk  = g k  i f k = B ,  

g k  = bk+i @ b k  if k < B, 

{ bk  = bk+l CE gk if k < B, 

{ 

~~ 
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of the encoding and of the associated elementary moves are 

critical to the success of the method. 

n 
W, . 

2 B m  - 1 2 

If the memory is sufficient, the conversion can be executed 

with a lookup table. The binary string for the optimization 

algorithm is obtained by concatenating the Gray codes for the 

weights. 

Given a weight w, by changing one of the B, bits in the 

encoding (and by repeating the operation for all possible bits), 

one obtains B, weights in the neighborhood. For the cited 

property of the Gray code, the neighborhood contains the 

nearest weights on the discretized grid, plus a cloud of points 

at growing distances in weight space. 

In Fig. 4 we show a typical neighborhood in the X - Y 
plane obtained with B, = 5, so that the binary string for 

the (z,y) point has 10 bits, and with W, = 10, so that each 

coordinate ranges from -5.0 to 5.0. The reachable points are 

at the intersections of the grid lines; the 10 neighbors of the 

point zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(x = -1.875, y = -1.875) are illustrated with boxes. 

Note that the property that nearest points in w-space are always 

contained in the neighborhood does not hold if the standard 

base-two binary encoding is used. For example, the integer 

coded with the 10-bit binary string [1000000000] follows the 

integer coded with [0111111111], but more than one basic 

move is necessary to accomplish the transition in the binary 

string (in fact 10 moves are needed in this case). Because the 

neighborhood contains the nearest points, RTS can reproduce 

a discretized form of steepest descent (BP) if the additional 
neighbors do not provide better E values. The proper choice 

A. Neighborhood Evaluation 

The evaluation of the points in the neighborhood requires 

much less CPU time than the evaluation of the same number of 

arbitrary points. For the MLP neural net, an efficient scheme 

is based on storing all the intermediate results of the forward 

pass for the current configuration. When a single weight is 

modified because of a change in one of its bits, the change is 

propagated forward in a very fast manner. 

Let us consider networks with a single hidden layer. The 

intermediate values for the network corresponding to the 

current configuration are saved when the output corresponding 

to a given input pattern is calculated (let us call these values 

h-current, and o-currenti). 
When a basic move is executed, only one bit of the string 

is changed, and therefore a single weight of the network is 

modified. Let us distinguish the case of a change in a first- 

layer weight (Aw3k) from that of a change in a second-layer 

weight (AWij). In the first case, if Awjk is the change in a 

weight in the first layer, (4) is used to find the change in the 

"net input" of the affected neuron in the hidden layer 

and then the activation Hj is calculated using (5). Because 

partial derivatives are not needed, the squashing function does 

not need to be differentiable and a realization with a lookup- 

table is sufficient even if the table size is limited by the 

available memory space (a table with 216 entries is sufficient 

for many classification tasks). If the "sigmoidal" function is 

calculated with a lookup-table, the calculation of the activation 

from the net input requires only a couple of machine cycles. 

Finally the activations oi of the output units are obtained as 

where AHj  = Hj - H-currentj, and the outputs 0; are 

obtained with a second table-lookup. 

If the change is in the second layer (AWij), the computation 

is even faster: oi is updated as 

and the outputs Oi are calculated with a single table lookup. 

Let us summarize the average cost for evaluating the neigh- 
borhood for a network with NI input, NH hidden, and NO 
output units, assuming that all weights have the same number 

of bits and therefore each weight has the same probability 

of being changed. Because there are NH x NI  weights 

connecting the input to the hidden layer and NO x NH weights 

connecting the hidden to the output layer, the operations 

of (12) and (13) are needed SAMPLE x N I / ( N o  + N I )  
times, while the operations of (14) are needed SAMPLE x 
N o / ( N o  + N I )  times, on the average. Therefore, if A and M 
are the CPU times required by a single addition (or subtraction) 

and multiplication and C, is the time required by the transfer 



BATTITI AND TECCHIOLLI: TRAINING NEURAL NETS WITH THE REACTlVE TABU SEARCH 1191 

function (possibly realized by the lookup-table), the average 

total computational complexity zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAC,v for each example pattern is zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
NI 

(NI + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAN o )  
x (2A + M + C, + No(A + 
+ SAMPLE 

CA,- = SAMPLE 

+ Cu) )  

(A + M + C,). (15) 
NO 

(NI + N o )  

Let us consider the case of a single output unit (as in the case 

of a two-class discrimination) and a large number of input 

units. After keeping only the dominating terms in the sum one 

obtains zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
c , y  % SAMPLE(3A + 2M + ‘LC,). (16) 

This result can be compared with the asymptotic approxima- 

tion 

Cx NH(NI(A + M )  + Cu) (17) 

for the feedforward pass of the MLP net that can be larger 

than (16) in the case of a large number of input and hidden 

units (in particular if N H  x N I  >> SAMPLE, a common case 

in the applications illustrated in Section IV). 

Because some MLP nets that are relevant for the applica- 

tions have a large number of weights (say more than 1000) 

it is crucial to reduce the number of bits per weight as 

much as possible and to employ the partial evaluation of 

the neighborhood that was explained in Section zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI1 (by setting 

SAMPLE << L). In addition to reducing the time complexity 

of evaluating the neighborhood, a compact encoding of the 

network helps in reaching higher generalization performances. 

IV. EXPERIMENTAL TESTS 

Two tests of RTS are presented for the MLP feedforward 

neural net and one for a feedback net used in a nonlinear 

control application. The first test (Section IV-A) is the XOR 

problem. The MLP neural net has a single hidden layer with 

two units and the same “squashing” function as the one used 
in [39]; see (5) and (7). Although the significance of the 

problem for automated learning is dubious (in fact the parity 

problem is such that patterns differing by a single bit produce 

opposite outputs), the task is paradigmatic for the presence of 

local minima (see, for example, [13]), and for the sensitive 

dependence of learning on the initial conditions [28]. 
The second problem considered (Section IV-B) is a bench- 

mark task derived from a real-world application in experi- 

mental high energy physics (HEP), where a classifier with an 

MLP structure is used to discriminate patterns derived from a 

collision in the large electron-positron (LEP) collider into two 

classes: “background noise” or “potentially relevant event” 

related to the “bottom quark.” The classifier is trained with 

examples of “background noise” patterns derived from the 

experimental setup and examples of “bottom” patterns derived 

from a simulator. 

The last task (Section IV-C) is a version of the “truck and 

trailer backup” problem [34]. The controller is a discrete-time 

fully recurrent network that defines the backup motion of 

the truck when it is initialized randomly in a given region. 

Contrary to the two previous tasks, in this case the only 

information used for the training is the final positions and 

orientations reached by the truck-and-trailer system and the 

possible violation of constraints (there is no teacher giving the 

correct control variable for a given configuration). 

To eliminate the possible effects of a coarse lookup table, 

in all tests we use the standard double-precision “squashing 

function” ( ~ ( h , )  = 1/(1 + (shifted with the subtraction 

of 0.5 for the control task). The initial binary string at iteration 

zero of RTS is generated by randomly setting each bit with 

equal probability for the values one and zero. 

A. The XOR Function 

To estimate the effects of the number of bits per weight and 

the neighborhood sample, a total of 100 tests per data point 

were executed, by varying the B,. parameter (two, four, and 

eight bits) and the SAMPLE value. The size of the complete 

neighborhood is B, x 9: 9 being the total number of weights, 

including thresholds. 

The network has two hidden units (2-2-l), the W, parameter 

is equal to 20, and a training session is terminated when all 

patterns are less than 0.2 away from the target. In Fig. 5 
we show the average number of RTS iterations (with its 

standard deviation) as a function of the number of points in 

the neighborhood (SAMPLE). The three curves are for growing 

numbers of bits per weight. It can be observed that the average 

number of steps decreases rapidly in passing from SAMPLE = 2 

to SAMPLE = 5 (for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAB,: = 2,4), and slowly afterwards, while 

it reaches a minimum at around SAMPLE = 4 for B?,, = 8. 

The CPU time is approximately proportional to the number 

of configurations evaluated, (see Fig. 5 (bottom)), and it 

reaches the minimum for a small SAMPLE value, approximately 

SAMPLE = 7 for B, = 2.4 and SAMPLE = 4 for B,, = 8. For 

this problem two bits are sufficient, but four bits produce a 

faster convergence, while eight bits are excessive and slow 

down the search; see the curve marked with diamonds in 

Fig. 5(b). 
As it is expected, RTS is very effective in escaping from 

local minima and in continuing the search until the desired so- 
lution is reached. In all tests the algorithm converges in 100% 

of the cases, although a large number of local minima are 

encountered during the search. For example, the XOR problem 

was run with two bits per weight and with the complete 

neighborhood evaluation, and the number of local minima 

encountered was counted (i.e., the number of configurations 

such that all elementary moves produced a strictly higher E 
value). On the average (100 training tests), seven local minima 

were encountered during each search. The average number of 

TABU steps is 86.8, so that the frequency of encounter is 

approximately of one local minimum every 12 steps. 

A comparison with on-line BP, with learning rate = 0.1, 

momentum = 0.0, was executed by varying the initial scale 
Wi chosen for randomizing the weights and by counting 

the number of successes (for a maximum of lo6 iterations). 

The average number of iterations for convergence (for the 

successful cases) and its standard deviation are listed in the 

last column of Table I. Our results are qualitatively similar to 
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Fig. 5. (a) Average number of RTS steps and standard deviation of the 
average for the XOR problem, as a function of the number of points in the 
neighborhood. (b) Average number of points evaluated and standard deviation 
of the average. The three curves correspond to experiments with a growing 
number of bits per weight: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAB,, = 2.  B, = 4. B,, = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA8.  

TABLE I 
ON-LINE BACKPROPACATION FOR THE XOR PROBLEM (MAX. lo6 
ITERATIONS): SUCCESSES AND AVERAGE NUMBER OF ITERATIONS 

those of [28]: a careful selection of the starting configuration 

is critical to the success of BP. In particular, when the initial 

scale is the one corresponding to the initialization of the TABU 

algorithm (Ws = 20), BP converges only in 31 cases out of 
100, with a very large average number of iterations. 

It should be remembered that on-line BP has been used 

effectively by developers on a series of significant applications, 

so that the above problems related to the initialization or to 

the presence of local minima should not discourage its usage 

(see also [23] for a discussion of cases where local minima are 

absent). A proper initialization is also critical to the success 

of “batch’ BP. Table 2 lists the performance results of batch 

BP with constant learning rate = 0.1 . 
Available techniques to increase the “safety requirements” 

and the speed of convergence of BP, are, for example, the use 

of adaptibG lcanling i&S for on-line BP [30], the use of “line 

searches,” and second-order information for batch BP; see [7] 

and [3] and the references contained. 

B. Event Discrimination in High Energy Physics 

Experimental HEP facilities need state-of-the-art discrimi- 

nation systems for selecting and classifying the relevant events. 

In a typical facility, colliding particles produce streams of 

secondary particles-called “jets”-that leave traces in a large 
number of spatially arranged detectors. The frequency of 

events (that include “false alarms” and spurious signals) is 

so high that the registration of the event parameters onto 

secondary storage has to be restricted only to a subset of 

“potentially relevant” events. To this end on-line “triggering” 

mechanisms estimate the interest of the event, so that only 

the events whose estimated interest is greater than a selected 

threshold are registered. 

MLP’s are being used as pattern classifiers for the trig- 

gering, possibly with analog VLSI or dedicated hardware 

implementations. In particular neural nets have been proposed 

for discriminating bottom quark jets at LEP, the large electron- 

positron collider at the CERN laboratories [35]. 
In this paper we consider the task of recognizing two-jet 

events produced by the bottom quark as a benchmark for 

the RTS algorithm, both because of its applicative interest 

and because the large number of events available permits 

a statistically significant test of the relative performance of 

different algorithms. The same benchmark task has been used 

in [7] for comparing different training algorithms: i) the BP 

algorithm [39], ii) a version of gradient descent with adaptive 

step, iii) the conjugate-gradient technique, iv) the one-step 

secant method with fast line searches [3], and v) two versions 

of the stochastic search technique of [41], [15] (in particular 

the new proposal called affine shaker). 

The patterns used for training and testing the neural clas- 

sifiers have been produced with the COJETS event generator 

[36], using the natural frequencies. A total of 100000 e+e- 
events have been generated at center-of-mass-system energy of 

91 Gev. Of these only two-jet events have been retained, and 

among these only the jets with at least four particles have been 

selected. Each jet is described by a pattern with 17 features 

W l .  
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ization results. 

Event discrimination in HEP zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(B!, ,  = 4 ) .  (a) Typical case with correctness on training set, (b) Average training correctness, and (c) average general- 

The jets originated by the bottom quark have been subdi- 

vided randomly into two equal sets with 7741 events each, 

to be used for training and testing, respectively. Similarly, the 

jets produced by the other quarks (“background’) have been 

subdivided into two sets of 25463 events each. Finally, the 

training set for the benchmark task has been obtained by select- 

ing randomly 5000 “bottom” patterns and 5000 “background” 

patterns from two of the above sets, while a testing set with the 

same number of patterns has been obtained randomly from the 

other two sets. The desired output value is one for “bottom,” 

zero for “background.” When the generalization is measured, 

patterns with output value greater than 0.5 are classified as 

“bottom,” while those with output less than or equal to 0.5 are 

classified as “background.” 

The MLP network architecture has 17 input, 10 hidden, and 

one output unit. The total number of weights (including the 

thresholds) is 191, and the length of the binary string for the 

presented tests ranges from L = 191 (for B, = 1) to L = 764 

(for B,, = 4). The scale parameter is W, = 10, the number of 

points in the neighborhood that are sampled is SAMPLE = 8. 

Three series of tests with Bt{, = 1.2,  and 4 have been 

executed. For each number of bits per weight, 10 different 



IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 6, NO. 5, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBASEPTEMBER 1995 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
80 

75 

70 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

~ 

1194 

- 
I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
0 

C 

: 
0 In zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
a 

U 
L 

?! z 
z zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
e 

I 
m 

e 
C 

C 

v) 

0 

0 
L 

L 

s 
z 

L 

I 

f 
L 
In 

C 

In 

a - 
e z 
z 

- 

- 

- 

IO0 
B w = ~  ~ 

100 

95 

90 

85 

80 

75 

95 

85 I 

B w = ~  - 
- 

- 

- 

- 

- 

95 

90 

85 

80 

75 

- 

- 

- 

- 

- 

50 I 
0 500 1000 1500 2000 

Reactive Tabu Search Iterations 

(b) 

100 
BW=2 ~ 

50 I 
0 500 1000 1500 2000 

Reactive Tabu Search Iterations 

(C) 

Fig. 7. Event discrimination in HEP (B, = 2).  (a) Typical case with 
correctness on training set, (b) average training correctness, and (c) average 
generalization results. 

training sessions are completed after starting from different 

random initial points. To avoid “over-training,” RTS is stopped 

when the maximum generalization levels are reached (2000 
RTS iterations are sufficient). 

For each series we present three plots. The first plot il- 

lustrates the evolution of the training session for one typical 

case (out of the 10 tests), by showing the percent of correct 

recognition obtained when the current network is tested on 

the training set. The correctness is checked at each step. The 

second plot shows the correctness on the training set (checked 

every 10 RTS iterations) averaged over the 10 tests, with the 

standard deviation o of the correctness distribution at each 

checkpoint. The third plot shows the average generalization 

performance (i.e., the percent of correct recognition obtained 

by testing the current network on the testing set). 

Fig. 6 shows the results for the case with zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAB, = 4. 

The performance on the training set starts at the 50% level 

(corresponding to a random classification), reaches the 62% 

level during the first hundreds of iterations, and then it tends 

to grow in a slower manner. Note that the performance curve 

on the training set does not increase monotonically, as it is 

clear from the jumps in the top curve of Fig. 6 in some 

cases the best admissible move is such that the performance 

decreases (see also Section 11-A). The average generalization 

result reaches a “plateau” at about 1000 RTS iterations. 

The best generalization results are in good agreement with 

those obtained in [7] with continuous weight values and 

a selection of optimization techniques. This result indicates 

that the approximation capabilities of nets with four bits per 

weight are in this case sufficient to reach performances that 

are obtainable with “floating point” weights represented with 

64 bits. Let us recall that, in a practical application, the 

threshold for the acceptance of a potential “bottom” event can 

be higher than 0.5, so that more “bottom” events are classified 

as “background’ and rejected, but the surviving events have a 

larger probability of being true “bottom” events. 

Finally, Fig. 8 presents the results obtained with B, = 1, 

so that the weights have two possible values: -5.0 or 5.0. the 

standard deviation of the correctness results is larger, and the 

brisk moves in weight-space are evident by the performance 

jumps in the typical case (top curve of Fig. 8). The plateaus 

are produced by the exploration of a suboptimal region, 

while sudden jumps indicate that a new suboptimal region 

is explored (let us recall that RTS is designed to escape from 

local minimizers). 

The average generalization results obtained with B, = 1 

are excellent if compared with the best results obtained in [7] 
for the case of weights with continuous values trained with 

continuous optimization techniques. The highest correctness 

level obtained with all the methods used in the cited paper is 

about 62% (std.dev. = 0.5%). Although nets with continuous 

weights (represented by 64-bits floating point values) contain 

as a special case nets with the two above possible values, 

during the extensive series of experiments with continuous 

values such highly-accurate nets were not produced. The 
superior performance of the RTS algorithm can be explained 

by the following facts: 

Different initialization: The weights of nets trained with 
the reactive tabu search are initialized with a uniform 

distribution on the binary strings, corresponding to a uni- 

form distribution on the discretized weights in the range 

[-Ws/2, Ws/2],  while the nets with continuous-valued 

weights in [7] are initialized with small random values 

(with a uniform distribution in the range [-0.5,0.5]). 
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Fig. 8. Event discrimination in HEP (€ILr = 1). (a) Typical case with 
correctness on training set, (b) average training correctness, and (c) average 
generalization results. 

In fact, if the initial random weights are too large, the 

partial derivatives are exponentially small and the Hessian 

matrix is seriously ill-conditioned [40]. Experimentally, 

after starting from values in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[-W,3/2.Ws/2] for the 

derivative-based training techniques we could not obtain 

better results than those described in [7]. 

Different dynamics in the search space: Techniques like 

BP base the step on a local model of the E function 

(first terms in the Taylor series expansion by using first 

and, in some cases, second partial derivatives), while 

the RTS technique base the step on a sample of the 

binary neighborhood that, because of the Gray coding, 

is translated into a cloud of points at different Euclidean 

distances in weight space; see Fig. 4. In addition, the 

RTS dynamics is different from a pure steepest-descent 

dynamics (see for example the capability of escaping from 

local minima). These facts imply that the trajectories in 

the weight-space produced by the different techniques are 

qualitatively different. 

Wider exploration of the search space: The ratio between 

the number of points that can be visited by RTS in the 

allotted CPU time and the total number of points in the 

search space decreases like . L P B z ,  : a small number of 

bits permits a more effective exploration. 

Reduced over-training: The limited search space for 

B?,, = 1 reduces the over-training effect, so that better 

generalization results can be expected if the network 

remains capable of “storing” the example associations. 

C. Parking a Truck Behind Another Truck 

In the task of steering a tractor-trailer truck backing up at 

constant speed [l], [34], the front wheels of the cab move a 

fixed distance backward at each step. The control signal is the 

angle U of the front tires with respect to the axis of the cab, and 

the goal considered in [34] is to guide the back of the trailer 
to a point on a loading dock with the trailer perpendicular to 

the dock. 

In a backup trial the cab starts in a random position and 

orientation with respect to the dock, with a random angle 

between the cab and the trailer. Each trial terminates either 

when a part of the truck touches the edges of the parking 

space (the exact space occupation of the cab and trailer is 

checked at each step for a possible constraint violation) or 

when a maximum number of steps are executed (max. 256 in 

our tests). 

The task is representative of many “sequential decision” 

problems: control decisions made early in the backing up 

process have substantial effects upon the final results. A truck 

backup task is considered in [29] for a comparison of neural 

and “fuzzy” systems. In [29] the MLP net is trained by using 

the examples (state, control variable) generated by the “fuzzy” 

system, a different task from the problem that we consider in 
which the error signal is generated only at the end of the 

entire backup sequence (there is no “expert driver” to guide 

the learning network). 

The state variables of the truck illustrated in Fig. 9 are: 

s. ?J: coordinates of center of rear of trailer, 

19,: angle of trailer measured from positive .7: with coun- 

terclockwise being positive (radians), and 

8,: angle of cab, measured from positive .7: with counter- 
clockwise being positive (radians). 

The constraint on the possible configurations is that the cab 

cannot be rotated by more than 7r/2 degrees with respect to 
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Fig. 9. 
truck backing up at constant speed. 

State variables and desired final configuration for a tractor-trailer 

the trailer 

10s - Qc1 I T/2. (18) 

The performance function is the sum of two terms zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE = 
E, + E,. The first term E, is related to the desired final 

configuration zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(zdock,  Ydock, @,dock 0) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Ef = @(Zdock -z[tf])2 +P(gdock - y[tf])2 + ( O ~ [ t f ] ) ~  (19) 

where tf is the time steps at which the trial is terminated and 

the constants zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa and ,B regulate the relative importanceof the 

positional errors with respect to the error in the trailer angle 

(e, = 0 means that the trailer is perpendicular to the loading 

dock). The second term E, is proportional to the amount of 

violation of constraint (1 8) 

Neural Net 
Controller 

Fig. 10. Truck and trailer system. The free parameters are the weights of the 
feedback loops illustrated with thin lines. 2, delays the signal by one time step. 

d,sin8,[t] - rcos0,[t]sinu[t] 

d, cos O,[t] + T sin zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0, [ t ]  sin u[t] 
d,[t + 11 = arctan 

) (27) 
d, sin Os [t] - C cos 

d, cos 
[t] 

[t] + C sin 8, [t] 
0,3[t + I] = arctan 

where arctan is from -7r to 7r .  

The complete truck system illustrated in Fig. 10 is a re- 

current network whose state is described by an array of 

variables c i .  It is useful to partition the indexes of these state 

variables into four sets: the set 0 of indexes of “output” 

variables (proportional to the single control signal U in the 

given application), the set I of “extemal input” variables, the 

set H of “hidden” variables, and the set T of the state variables 

of the truck ( 2 ,  y, 8,. 0,). At time step t ,  the control subsystem 

is updated as follows 

Vs E { H  U O}sum,<(t) +- w,tct(t) (28) 
t E I U H U O U T  

Vs E { H  U 0} cs( t  + 1) + a,(sum,(t)) 

t f  

t=O 

where sum,(t) denotes the net imput to the sth unit. Although 

the “squashing function” a could be different for different 

units, in the present task we found that a single function with 

a range that is symmetric with respect to zero is sufficient to 

E, = y@(le,[t] - O,[t]l - 7r/2)( IO,[t] - O,[t]l - ~ / 2 )  

(20) 
realize the control network. The control signal U (in radians) 

is obtained by multiplying the output variable c, to scale it in 

the range corresponding to [-70,701 degrees 

where O(s) is the Heaviside function (O(s) = 1 if s > 0,O 

otherwise), and the parameter zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAy regulates the compromise 

between constraint satisfaction and correct final configuration - 
of the truck. 

The control variable is U ,  the steering angle of front wheels 

with respect to cab orientation, counterclockwise positive 

(radians). The allowed range is I u I  5 (7/18)~.  

The truck dimensions are d, = 6 m (cab length from pivot 

to front axle) d, = 14 m (trailer length), and the fixed distance 

one that the front tires move in one time step is T = 1 m. 

The kinematics of the truck is described by the following 

equations 

A = rcosu[t] 

C = Asin(O,[t] - O,[t]) 

B = Acos(~’,[~] - O,[t]) 

2[t  + I] = 2[t] - Bcose,[t] 

y [ t  + 11 = y [ t ]  - B sin B,[t]  

7 

9 
u(t + 1) +- c,(t + 1) x R x -. 

Finally, the state of the truck zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(z,y,O,, e,) is updated by 

considering the current state and the value of the control 

variable U, through the kinematics equations described in 

(21)-(27). In our case the single extemal input is “clumped” to 

1, as a convenient way to obtain a threshold for the activation 

of each state variable of the control subsystem. 
The results obtained for the parking task defined in [34] 

(the truck with trailer is moving freely in the half-plane with 
positive 2 values) have been described in [SI. In this paper we 

present the results for the harder case described in Fig. 9. We 

place additional constraints in the moving space corresponding 

to the real-world task of parking a truck behind other trucks. 

In this case the simple solution of [26] is not applicable. 
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Fig. 1 1 .  Evolution of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE during training (truck and trailer parking zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAin con- 
strained space). (a) Current E at a series of checkpoints. (b) “Best zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAso far” 
values. Log-log scale. 

The parameters are B,, = 8, W, = 10. The control 

system has six hidden units ( N H  = 6), so that the total 

number of weights is 84 and the length of the binary string 

is L = 672. Sixty-four starting configurations for the truck- 

and-trailer system are generated randomly with a uniform 

distribution in the following range: 2[0] E [40 m. 60 m]. y[0] E 
[6 m, 8 m], @,[0] E [-6”. 6”],0,[0] E [ - 6 O ,  6’1. 

For this task a constant value SAMPLE = 20 is sufficient but 

some CPU time can be spared by using a smaller sample at 

the beginning of the search and larger sample in the following 

phases. In particular, for the following results, the size of the 

sample neighborhood is SAMPLE = 0.01 x L = 6 in the first 

phase of the search, SAMPLE = 0.02 x L = 13 after zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5000 
iterations, and SAMPLE = 0.03 x L = 20 after 20 OOO iterations. 

In the illustrated test, the function E corresponds to a large 

penalty for constraint-violation, and to a more strict require- 

ment on the y coordinate with respect to the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 coordinate 

( a  = 1, /3 = 16. y = 100). In Fig. 11 we show the evolution 

of the performance function defined in (19) and (20). E is 
normalized by the number of backups used for training (64 
backup for each evaluation). 

In the top plot of Fig. 11 we show the values of the current 

E at selected checkpoints, while in the bottom plot we show 

the evolution of the “best so far” performance (Eb in Fig. 1). 

In the second graph a point is plotted as soon as a system 

configuration with lower E value is found. The large E values 

at the beginning are caused by the violation of the constraint 

10, - B c (  5 ~ / 2 .  The later evolution shows “plateau” regions, 

followed by performance jumps. As usual, the evolution of E 
is nonmonotonic because the exploration properties of RTS 
provoke a transition to different “attraction basins” of the 

search space (but clearly the “best so far” point is saved so 
that it can be used at the end of the training period). 

The truck trajectories obtained at selected checkpoints are 

illustrated in Fig. 12, where we show the position of the point 

(2, y) (the “license plate” point) during the backup test. At 

t = 0, all 64 parking trials are unsatisfactory: either the 

constraints are violated or the cab oscillates in a wild manner 

and moves a short distance during the maximum number of 

backup steps. At t = 10000 most backup trials end up at 

the left wall, although the final position and orientation is 

far from the requirements. Some backup tests are stopped 

because the trailer touches the border of the moving space; see 

the trajectories that terminate near the dashed line in Fig. 12, 

the position of the entire truck is not shown for readability. 

For a growing iteration number all truck trajectories reach 

the left wall and the final position and orientation become 

progressively nearer to the values desired; see the situation at 

t = 15000 and t = 25000. 

The trajectories obtained at RTS = 25000 correspond to 

realistic “expert driver” trajectories, like the one illustrated in 

Fig. 13: in the first backup steps the trailer is pushed away 

from the upper wall of the constrained space and prepared for 

the final phase. In the final steps the trailer is pushed inside the 

desired parking space, and the cab is turned rapidly to permit 

a close fit. 

V. RELATED APPROACHES 

Related approaches, although within different frameworks, 

are the use of simulated annealing (SA) [27] for training 

MLP nets, (see, for example, [17]), and the use of genetic 

algorithms (GA’s) [22] for optimizing weights and neural 

architectures, (see, for example, [44]). Space limitations do 

not permit a detailed discussion and comparison between RTS 
and the different versions of GA and S A .  As a very brief 

remark, let us recall that simulated annealing is based on 

a connection between statistical mechanics and CO: random 

moves are generated from the current point, a move is always 

accepted if E decreases, while it is accepted with a probability 

p x exp(-AE/.r) if E increases. The “escape” from local 

minimizers is obtained in a stochastic manner, but, if the 

“temperature” .r is much lower than the height of a barrier 

around a local minimum, SA will spend an enormous time 

in its neighborhood before escaping. On the contrary, RTS 

is deterministic (if the complete neighborhood is evaluated) 

and the choice of the move depends on the past history of 

the search. The desired properties of the search trajectory are 
obtained by complementing the “greedy” component with the 



IEEE TRANSACTIONS ON NEURAL NETWORKS. VOL. 6, NO. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5. SEPTEMBER 1995 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
0.1 

0.08 

0.06 

0.04 

0.02 

0 

-0.02 

RTS it=O 
0.1 

RTS it=10000 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA~ 

0.08 

0 06 

0.04 

0.02 

O I  
-0.02 1 

0 0.1 0.2 0.3 0.4 0.5 0.6 0 0.1 0.2 0.3 0.4 0.5 0.6 

(a) (b) 

0.1 
I Z : \ P T S  its15000 ~ 

0 1  
-_. RTS 1t.25000 
I- 

-0.02 1 , , , , , zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4 -0.02 t , , , , , ] 
0 0.1 0.2 0.3 0.4 0.5 0.6 0 0.1 0.2 0.3 0.4 0.5 0.6 

(C)  (d) 

Fig. 12. Evolution of 64 trajectories during training (truck and trailerparking in constrained space) at 0, IOOOO, 15000. and 25000 iterations. 

dynamical system described in Section 11. While RTS is based 

on a single trajectory, in genetic algorithms a population of 

candidate solutions is considered. The bias toward high-fitness 

points is obtained by the mutation and selection mechanisms, 

while the crossover operators build new candidate solutions 

from the selected individuals. A similar approach based on the 

combination of multiple solutions (with different combining 

operators) has been reviewed in [21], with the term scatter 

search. Recently, the usefulness of a direct “greedy search’ 

component in GA has been recognized in [32]. Detailed 

comparisons are presented in [9] and [lo]. 

VI. SUMMARY AND CONCLUSION 

The present approach goes in opposite direction to a pop- 

ular approach in the neural network literature: transform a 
combinatorial optimization problem into a continuous-valued 

neural net execution [24]. Here an advanced CO technique was 

used for training neural nets. The heuristic RTS scheme is an 

effective alternative or a complement to traditional training 

techniques for solving classification and control problems. In 

particular, RTS escapes rapidly from local minimizers (Section 

IV-A), it can approximately duplicate results obtained with BP, 

and it can obtain better generalization results (Section IV-B). 

Fig. 13. Truck and trailer motion for a parking zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAtask when the system has 
been trained with RTS, for readability only a subset of the steps is illustrated. 

Finally, a nonlinear control task has been solved successfully 

(Section IV-C). 
Let us note that, because training tasks have vastly different 

characteristics, it is far from our intention to claim that 

the RTS scheme is the preferred method in all cases. In 

particular, if the methods based on partial derivatives (like 

BP) reach satisfactory generalization performances, they can 

be the fastest techniques to implement on general-purpose 
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computers. A fair comparison of the RTS scheme with BP 

is difficult because of the different context (initialization, 

limited precision in the weights and possibly in the squashing 

function). While it can be the case that BP is appropriate if 

local minima are not a problem and if the initialization is 

suitable, the main advantages of the RTS approach are the 

direct and effective way to continue the search beyond local 

minima and its extreme flexibility. In particular it is applicable 

to nondifferentiable (or even discontinuous) performance and 

transfer functions, and it can easily accommodate weights with 

a selected number of bits and constraints in the search space 

(the constraints can be implicit in the encoding or explicit, by 

limiting the number of available moves). If a special-purpose 

VLSI circuit is developed for an application, the possibility of 

realizing a net with a limited number of bits per weight can be 

cost-effective [37]. Because the steepest descent and the RTS 

search processes have qualitatively different dynamics, if the 

generalization results are comparable one can use the networks 

trained with the two methods in “team” classifiers to limit the 

bias caused by a single training technique and increase the 

global performance [4]. 

Note that the RTS technique is in principle applicable to 
different network models, both with and without feedback, and 

to a wide range of machine learning tasks. The competitive 

advantage of RTS is related to its use of memory (the process 

is not Markovian): the transitions from a state depend on the 

past (recent) history of the search. The avoidance of cycles 

and confinement assures that the available CPU time is spent 

in an efficient exploration of the search space. 

Some open problems are the possibility of evaluating the 

function on a randomly chosen subset of the training patterns 

[31], in particular the possibility of passing from a batch 

to an on-line approach, the study of different sets of basic 

movements and of schemes with varying resolutions: the 

discretization can be finer near zero. Because of the lack of 

derivative computations and the limited precision required, the 

RTS scheme can be of interest for special-purpose hardware 

realizations with simple but fast electronic components (see 

[33] and [25] for some algorithms that are designed by taking 

the constraints of VLSI realizations into account). In particular, 

the recently developed TOTEM chip is trained with RTS zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[ 111. 
Finally, a promising possibility is that of combining RTS 

search and gradient descent. In a hybrid scheme TABU search 

can operate with a coarse discretization and gradient descent 

can be used to reach a high precision in the final result. 

APPENDIX 
WORKED OUT EXAMPLE OF TABU SEARCH 

Let us assume that the search space zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAF is the set of three-bit 

strings zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(f  = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[ b l ,  b 2 ,  b 3 ] )  and the cost function is 

The feasible points (the edges of the three-dimensional 

binary cube) are illustrated in Fig. 14 with the associated cost 

function. The neighborhood of a point is the set of points that 
are connected with edges. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

000 E=O ( l o c a l  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAminimizer) 

minimizer) 

Fig. 14. Feasible points, E values and Tabu trajectory. 

The point f( ’ )  = [O.O.O]  with E(f (O))  = 0 is a local 

minimizer because all moves produce a higher cost value. 
The best of the three admissible moves is zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp 1 ,  so that f ( ’ )  = 
[l, 0, 01. Note that the move is applied even if E( f ( ’ ) )  = 1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 
E( f (O) ) ,  so that the system abandons the local minimizer. 

If T ( l )  = 0, the best move from f ( ’ )  will again be p l  and 

the system will return to its starting point: f ( l )  = f ( O ) .  If T( t )  
remains equal to zero the system is trapped forever in the limit 

cycle [O. 0; O] + [I, O , O ]  --+ [O, O , O ]  i [I, 0 , 0 ]  . . . . 
On the contrary, if T( t )  = 1, 111 is prohibited at t = 1 

because it was used too recently, i.e., its most recent usage time 

A ( p 1 )  satisfies A(p1)  = 0 2 ( t -T( t ) )  = 0. The neighborhood 

is therefore limited to the points that can be reached by 

best admissible move is 112, so that f ( 2 )  = [l, 1 , O ]  with 

At t = 2 p2 is prohibited, p1 is admissible again because 

A(p1)  = 0 < (t  - T( t ) )  = 1, and p3 is admissible because it 

was never used. The best move is p3 and the system reaches 

the global minimizer: f ( 3 )  = [l, 1,1] with 

applying 112 or P3 (“0.01) = {[I, 1,01, [1,0, 11) ) .  The 

E ( f ( 2 ) )  = 3. 

= -1. 
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