
IEEE zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBATRANSACTIONS ON NEURAL NETWORKS, VOL. 6, NO. 5, SEPTEMBER zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1995 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1185

Training Neural Nets with the Reactive Tabu Search
Roberto Battiti and Giampietro Tecchiolli zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Abstract- In this paper the task of training subsymbolic
systems is considered as a combinatorial optimization problem
and solved with the heuristic scheme of the reactive tabu search
(RTS). An iterative optimization process based on a “modified
local search” component is complemented with a meta-strategy
to realize a discrete dynamical system that discourages limit
cycles and the confinement of the search trajectory in a limited
portion of the search space. The possible cycles are discouraged
by prohibiting (i.e., making tabu) the execution of moves that
reverse the ones applied in the most recent part of the search.
The prohibition period is adapted in an automated way. The
confinement is avoided and a proper exploration is obtained by
activating a diversification strategy when too many configurations
are repeated excessively often. The RTS method is applicable
to nondifferentiable functions, is robust with respect to the
random initialization, and effective in continuing the search after
local minima. Three tests of the technique on feedforward and
feedback systems are presented.

I. INTRODUCTION

PTIMIZATION is not sufficient for a successful learning 0 scheme (consider, for example, the problems of gen-

eralization, noise-robustness, feature and example selection),

but the minimization of a suitable “performance function” zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE
often is a crucial component of learning. Derivative-based

optimization methods like backpropagation (BP) [39] have

been used with success in many practical contexts, but they

stop at the first local minimum. When this happens, they can

be restarted from a new random point, but in this case the

previous work is wasted. In addition, the random initialization

problem is not trivial [28] and the calculation of derivatives

(provided that E is differentiable) is expensive and error-prone

[40], especially if analog VLSI (very large scale integration)

hardware is used.

In this paper a radically different approach to the learning

task is presented. First the task is transformed into a combi-

natorial optimization problem so that the points of the search

space are the vertices of a binary hypercube (or the set of

binary strings with a specified length). Of course, in a digital

computer each weight is represented by a fixed number of bits

so that the problem is intrinsically combinatorial, although

its nature is hidden from us by the floating point hardware

and software. The problem is then solved with an heuristic

method based on the construction of a search trajectory by a

discrete dynamical system, with a dynamics designed to bias

Manuscript received July 12, 1993; revised October 11, 1994. This work
was upported in part by the INFN Iniziativa Specifica “RTS’ and by the
Progetto Speciale 1995, Dip. di Matematica, Univ. di Trento.

R. Battiti is with the Dipartimento di Matematica, Universita di Trento and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
I”, Gmppo Collegato di Trento, 38050 Povo (Trento), Italy.

G. Techiolli is with the Istituto per la Ricerca Scientifica e Tecnologica and
I”, Gruppo Collegato di Trento, 38050 Povo (Trento), Italy.

IEEE Log Number 9409368.

the motion toward points with low E values and to discourage

the occurrence of limit cycles and the confinement in a limited

portion of the search space. The bias is obtained by a modified
local search component that evaluates a set of elementary

moves applied to the current point (the neighborhood) and

selects the best one. To this basic component one adds the

prohibition of the inverses of recently executed moves, to

discourage cycles, and a diversification strategy, to avoid the

confinement of the solution trajectory.

In the presented application of the reactive tabu search

(RTS) [6], the neighborhood of a point in the search space

consists of the strings differing by a single bit, and the

selected move is the one that causes the largest decrease in E
among those that have not been already executed in the most

recent part of the search. The prohibition period is regulated
by a cycle-detection and reaction mechanism based on the

previous history of the process. RTS escapes rapidly from

local minimizers, it is applicable to nondifferentiable and even

discontinuous functions, being based only on the availability

of E values, and is very robust with respect to the choice of

the initial configuration. In addition, the possibility of fine-

tuning the number of bits for each parameter is useful to

decrease the size of the search space, to increase the expected

generalization, and to realize cost-effective VLSI devices.

The design criteria of the RTS technique for a search space

given by binary strings are summarized in Section 11, and the

application of RTS to the training of subsymbolic systems is

described in Section 111. The results of two experimental tests

on feedforward systems for classification tasks are discussed

in Sections IV-A and IV-B. Finally, one test on a feedback

system for nonlinear control is analyzed in Section IV-C.

11. REACTIVE TABU SEARCH: A METHOD

Let us define our notation. An instance of a combinatorial

optimization (CO) problem [38] is a pair (F , E) , where F
is a set of feasible points with finite cardinality (we do not

consider the case of a countably infinite set) and E is the

cost function, i.e., a mapping: E : F + RI. A solution zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf is

globally optimal if

DESIGNED TO DISCOURAGE CYCLES

E (f) 5 E (y) for all 9 E F.

For many interesting CO problems, the computational com-

plexity for finding the globally optimal solution is not ac-

ceptable, so that one must resort to heuristic search methods

for finding suboptimal points [181, [141. The neighborhood

function N (f) associates to each point f a subset of F

N : F + 2F

1045-9227/95$04.00 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 1995 IEEE

A point zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf is locally optimal with respect to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAN or a local

minimizer if

E(f) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 E(9) for all zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA9 E zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA”.

The minimizer is strict if E (f) < E(g). It is useful to
define the neighborhood N (f) as the set of points that can

be obtained by applying to f a set of elementary moves M

N (f) = {g E F such that g = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp(f) for p E M } .

In the present work, F is the set of all binary strings

with a finite length L: F = (0, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAl}L and the elementary

moves p,(i = 1, L) change the ith bit of the string f =

(1)

where f i is the negation of the zth bit: fi = (1 - f,). Obviously,

two moves commute and p, is idempotent (i.e., p: = 1, the

identity move) and therefore its inverse is pL1 = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBApt .
The TS strategy [20] has been used to solve a growing

number of complex combinatorial optimization problems in

an effective and efficient manner, mainly by the operations

research community. To our best knowledge, the first applica-

tions of the standard TS for training an associative memorj are

in [2] and [42]. In [12] and [19] the tabu dynamics is adapted

to produce a viable neural search technique, that remedies

the one-shot descent offered by the Hopfield model [24]. In

this work the framework is that of combinatorial optimization

(CO) and the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBARTS discrete dynamics is not married with the

continuous Hopfield network.

The TS scheme uses an iterative local search algorithm (like

“steepest descent”) to bias the search toward points with low

E values. In addition, the TS incorporates strategies to avoid

the occurrence of limit cycles.’ The two goals are attained by

using the following design principles

ModiJed Local Search. At each step of the iterative

process, the best move is selected from a set of admissible

elementary moves that lead to points in the neighborhood

of the current state. The best move is the one that produces

the lowest value of the cost function E. Note that the best

move is executed even if E increases with respect to the

value at the current point, while the standard local search

technique stops if the best move increases E. Increases

are allowed because they are necessary to exit from local

minimizers of E.
Cycle Avoidance. The inverses of the moves executed

in the most recent part of the search are prohibited (the

names “tabu” or “taboo” derive from this prohibition).

In detail, at a given iteration t of the search, the set of

moves M is partitioned into the set of the tabu moves,

the usefulness of which will become clear in what follows,

and the set A(t) of the admissible moves, i.e., of the moves

that can be applied to the current point: M (t) = A(t)
A(t) n = 0.

At the beginning, the search starts from an initial configu-

ration f (O) , that can be generated randomly, and all moves are

t u . I I E .Y. I I > 0. R is the “repetition penod,” or “length’ of the cycle.

[fl. . . . 1 f2.. . ., fL]

P%([fl. fi l fL1) = [fl. f 2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 fL1

‘ A search trajectory converges to a lirmt cycle if f (r + r z R) = f (‘) . V t 2

admissible: A(”) = M . I(’) = 0. The trajectory f t) is then

generated where the successor of the current point is obtained

by a suitable move p (t) from the set A(t) . For example, if

contains a finite number of moves, one can select the

best admissible move

f (t+ l) = , ~ (~) (f (~)) where p (t) = arg min E (~ (f (~ 1)) .
v E d (‘)

If more moves cause the same E value, the move to apply

is selected randomly from them. If the admissible moves are

expensive to evaluate, for example if A(t) is very large, one

can sample A(t) randomly and take the best out of S(t) c A(t).
The cardinality of the “sample” set S(t) is called SAMPLE.

Let us now motivate the introduction of prohibited moves.

In isolation, the above cited “modified local search” principle

can generate limit cycles. Let us suppose that the current point

f (t) is a strict local minimizer: the cost function at the next

point must increase: ~ (f (~ + l)) = E (/ L (~) (~ (~))) > ~ (f (~)) ,

and there is the possibility that the move at the next step will

be its inverse (~ (~ + l) = ,u(~)-’) so that the state after two

steps will come back to the starting configuration

At this point, if the set of admissible moves is the same, the

system will be “trapped” forever in a limit cycle of length

2 But this cycle is avoided if the inverses of the moves

executed in the most recent part of the search are prohibited.
The prohibition must be canceled after a certain number of

iterations T because the tabu moves can be necessary to reach

the optimum in a later phase of the search. The number of

iterations T that a move remains in the set is called

“list size” in the original terminology, a term referring to a

realization of the scheme in which the forbidden moves are

inserted into a first-in first-out list (i.e., a queue of length T
where a move enters as soon as it has been executed and

exits after T steps). If the selection of a move is pictured as

the firing of a neuron, the prohibition is a sort of refractory

period for that neuron. In RTS the prohibition period T(t) is

time-dependent and the set of prohibited moves is

= { p E M such that its most recent use

has been at time 7 2 (t - T(t)) } . (2)

A worked out example of the tabu search technique is

presented in the Appendix. Let us mention that the following

competing requirements hold:

T must be large to avoid cycles. In detail, T must be larger

than (R/2) - 1 to make cycles of length R impossible

(note thdt R is even for binary strings).

T must be sufficiently small to avoid over-constraining

the trajectory, and in any case it must be smaller than or

equal to I, - 2.

A. The RTS Algorithm

The RTS algorithm [6] is here briefly summarized to un-

derstand its use in the area of subsymbolic machine learning

studied in Section 111. Because the longest possible cycle in the

search space F = (0, l}L has length R = 2L (the list of the

BATTITI AND TECCHIOLLI: TRAINING NEURAL NETS WITH THE REACTIVE TABU SEARCH zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAc bes tmove (see zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAF ig ?)

f W 1 i = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA/ L (f i f i)

A b) - t
t - (t + l)

(l 'pdate t i m e and brstLso.far)

if E(f (' 1) < Eathen

Eb - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE(J " ') [zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf b - f"' zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

I I87

Gray codes-see Section IIILcorresponding to the integers

0.1. 2L - 1 is an example of a cycle of maximum length

obtainable with the elementary moves p?), the basic Tabu

Search mechanism cannot guarantee the absence of cycles. In

addition, the choice of a fixed T without a priori knowledge

about the possible search trajectories that can be generated in a

given (F . E) problem is difficult. If the search space possesses

an inhomogeneous structure, a size T that is appropriate in

a region of F may be inappropriate in other regions. For

example, T can be too small to avoid cycles, or too large,

so that only a small fraction of the movements are admissible

and the search is inefficient.

RTS automatically changes the prohibition period T(t) dur-

ing the search so that its value is appropriate to the local

structure of the problem (basic reaction) and adopts a second-

level reaction to deal with cycles that are not avoided by using

the first reaction. The most recent iteration when each move

p L has been applied is recorded and each configuration f (t)

touched by the search trajectory is stored in memory with the

most recent time when it was encountered. Let us introduce

the functions:

A (p) : the last iteration when ji has been used (A(j1) =
--x if p has never been used).

l I (f) : the last iteration when f has been encountered

(I I (f) = --x if f has not been encountered).

@ (f) : the number of repetitions of configuration f in the

search trajectory ("repetition counter"). At the beginning

@ (f) = 0 for all configurations.

There can be situations where f has been encountered but

is not contained in the memory (in this case n (f) = --x and

@(f) = 0). In fact the allotted memory size can be insufficient

or the algorithm can cancel the memory content at specific

times (in particular see the function diversify-search of

Fig. 3).

At iteration f , the set A(') contains the moves that have not

been used in the most recent part of the trajectory

A(t) = { p E M such that A (p) < (t - T(')) } . (3)

Note that checking the tabu status of a move requires only a

couple of CPU cycles if the function A (p) is realized with an

array in memory.

Fig. 1 describes the main structure of the RTS algorithm.2

The initialization part is followed by the main loop that

continues to be executed until a satisfactory solution is found

or a limiting number of iterations is reached. In this loop,

the current configuration is compared with the previously

visited points stored in the memory by calling the function

memorybasedreaction (Fig. 2) that returns two possible

values (DONOTXSCAPE or ESCAPE). In the first case the

next move is selected by calling best-move (Fig. 3); in the

other case the algorithm enters a diversification phase based

on a short random walk, see the function diversifysearch

?The structure of the program is illustrated with simple selection (con-
ditional) and iteration keywords (i f . . . then. . . else. repeat), the assign-
ment operator (S +- I . means that the value of variable S is overwritten
with the value of I r) and functions that can retum values to the calling
routine. Compound statements are indented, function names are in boldface,
and comments are in italics.

(Init ial ize the data structures for tabu:)

1 - 0

T'0' c 1

tT - 0

c - 0

R,, P - 1

J ' " ' - random f E F

f b - fro)
Eh - E(f"')

(i terat ion counter)

(prohibit ion period)

(last time T W Q S changed)

(se t of often-repeated configurations)

(moi~ing average of repeti t ion in terva l)

(i n i t i a l configuration)

(best so far f)

(bed so fur E)

repeat

Fig. 1. RTS: main structure

(Fig. 3). For each new configuration on the trajectory, the

lowest E value found during the search is saved with the

associated configuration f , because otherwise this point could

be lost when the trajectory escapes from a local minimizer.

The couple (fb , Eb) is the suboptimal solution provided by

the algorithm when it terminates.

In machine learning applications, it is useful to terminate

the search when the generalization is maximal to avoid over-

training the system. In the applications presented in Sections

IV-A, IV-B, and IV-C, the expected generalization will be

estimated on a validation set (called test set).

B. Reactive Schemes of RTS

The reactive mechanisms of the algorithm modify the dis-

crete dynamical system that defines the trajectory so that limit

cycles and confinements (that can be compared to chaotic

attractors in dynamical systems) are discouraged. The reaction

is based on the past history of the search, and it causes possible

changes of T (t) or the activation of a diversifying phase. Short

limit cycles are avoided by modifying T(t) . In particular, see

the function memory-based-reaction defined in Fig. 2,
the current configuration f is compared with the configurations

visited previously and stored in memory. If f is found, its last

visit time zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAlI(f) and repetition counter zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa(f) are updated. Then,

if its repetition count is greater than the threshold REP, f is

included into the set C, and if the size IC1 is greater than the

threshold CHAOS, the function returns immediately with the

1188

C + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAC U f (add f t o set zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof often-repeated config) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
if zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIC1 > CHAOS then

- [c - O return ESCAPE (reactzon zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA111)

IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 6, NO. 5, SEPTEMBER 1995

if zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(1 - t T) > R,,,then

[t T - 1

T (l f ') + Max(T(') x DECREASE, 1) (react ion 11)

return DO-NOT-ESCAPE

Fig. 2. RTS: The function memory-basedreac t ion .

function bes t m o v e

comment: The func t i on returns the move to be applied t o the current configuration zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
If SAMPLE < zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIA(*)I a subset of the admissible moves is tested

S - {MOZ(SAMPLE Id(')l)moves randomly extracted out of A (')]

 SAMPLE 2 ld(*jl, all moves are taken)

p - argminUEs ~ (u (f (')))

return p

function diversifysearch

comment: T h e functzon executes a sequence of random steps, that become tabu as soon as they are

applied

Clean the memory structuren and $J zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
S t {Mzn(l + R,,,/2. IMI) moves randomly sampled out of .M}

repeat for U E S
f(*t ') +

A(u) +- t

(Update t i m e , and best-so-far:)

t - (1 + 1)

i fE(f(')) < Ebthen

Eb + E(f('))

f b - f")
Fig. 3. RTS: The functions b e s t - m o v e and d i v e r s i f y s e a r c h .

value ESCAPE. If the repetition interval R is sufficiently short

(if R < 2(L- l)), one can discourage cycles by increasing T(t)
in the following way: T(t+l) + T(t) x INCREASE. Precisely,

the largest T that leaves at least two admissible moves is T =

BATTITI AND TECCHIOLLI: TRAINING NEURAL NETS WITH THE REACTIVE TABU SEARCH zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1189 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
L zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- 2, so that only cycles of length R < 2(T + 1) = 2 (L - 1)
can be safely avoided by using the tabu set 7. At least two

moves must always be admissible (otherwise the move is not

influenced by the E values), so that an upper bound of L - 2

is set on T(t) (this explains the “Min” operator in reaction I).
If f is not found, it is stored in memory, the most recent

time when it was encountered is recorded (I I (f) + t) and its

repetition counter is set to one zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(@(. f) +- 1).

If T is not allowed to decrease, its value value will remain

large after a phase of the search with many repetitions, even

in later phases, when a smaller value would be sufficient to

avoid short cycles. Therefore, T(t) is reduced by the factor

DECREASE < 1 if it remains constant for a number of iterations

greater than the moving average of repetition intervals R,,.,
(reaction zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI1 in Fig. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2) .

The best move can be selected either by testing all ad-

missible moves or by sampling a subset of them. The two

possibilities are selected with the parameter SAMPLE: all moves

in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA(*) are tested if SAMPLE zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 IA(’)l (in particular if SAMPLE

= x), otherwise only SAMPLE different moves are randomly

extracted from A(t) and tested.

When the first-level reactions that modifies T(‘) (reactions

I and I1 in Fig. 2) are not sufficient to guarantee that the

trajectory is not confined in a limited portion of the search

space, the search dynamics enter a phase of “random walk”

(reaction I11 in Fig. 2 and function diversifysearch of

Fig. 3). The number of random steps is proportional to the

moving average R,,,, the rationale being that more steps are

necessary to escape from a region that causes long cycles.
Note that the execution time of the random steps is registered

(,\(U) + t) , so that they become tabu; see (3). When the

‘‘random walk’ phase begins, the memory structure is cleaned

but this is not equivalent to a random restart because R,,,
and T(‘) are not changed, and, when this phase terminates,

the prohibition of the most recent random steps discourages

the trajectory from returning into the old region.

In passing, let us note that the space and time complexity of
the reaction scheme amounts to some bytes and to a small and

approximately constant number of machine cycles per itera-

tion, provided that a compressed version of the configuration

is stored and that the hashing mechanism is used for obtaining

the values n(f) and 4 (f) . In the hashing scheme f is stored in

a memory location whose address is a function address = hash
(f) . The number of possible addresses Na must be larger than

the maximum number of items to store N, (say N, > 2Nz) and

the hash() function must “scatter” the addresses of different

f ’ s so that the probability that two of them obtain the same

address is small. In the straightforward application presented,

the compressed information is simply the floating point value

of E for the given configuration. The choice is effective if the

probability that two different configurations have the same E
value is small.

Let us note that the tabu search dynamics is designed

to explore the search space in an efficient way. It can be

demonstrated that the probability of visiting points at large

Hamming distances with respect to a starting configuration is

much higher than in the case of a random walk in the search

space. The RTS algorithm is studied in detail in [6], while [5]

is dedicated to a study of the parallel properties. Benchmarks

and comparisons with respect to simulated annealing [9],
repeated local minima search, genetic algorithms, and “mean

field theory” neural nets [lo] have been executed with fully

satisfactory results.

111. THE APPLICATION FOR TRAINING NEURAL NETS

We consider two paradigmatic systems in the area of neural

networks: the multi-layer perceptron (MLP) (see the applica-

tions considered in Sections IV-A-IV-B), and the recurrent

neural network of [43] (see Section IV-C). The notation for

the MLP system and the tranformation into a combinatorial

optimization task are described in this section; the feedback

system considered will be illustrated in Section IV-C.

Input units of an MLP are denoted by I,, “hidden” units

by H , (we consider a single hidden layer) and output units

by 0,. The parameters of the system are denoted by w J k

(weights between input and hidden layer) and by W,, (weights

between hidden and output layer). The function that maps an

input pattern I, whose components are real numbers, into the

associated output vector 0 is constructed as follows. First the

“net input” h, of the hidden units is computed

Threshold values are incorporated by fixing the activation

value of one unit in the input and one unit in the hidden

layer to one. Then the activation HJ is obtained by using a

“sigmoidal” function

At the next layer, first the net input for the output units is

computed as

* I = CW,,H, . (6)
/

and, finally, the output is obtained as follows

The system is trained by using a set of P example patterns

(i.e., of associations between input I, and desired output

D(1,)) and by minimizing with respect to w the usual sum-

of-squared-errors measure

E(w) = z (0 , (W . 1,) - o t (I p)) 2 . (8)
P.1

Each weight of the network is described by a binary string

of B, bits. The B,. bits are the Gray code of an integer in

[O. 2 B w - 11. The Gray code has the property that the nearby

integers zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA71 - 1 and n + 1 are obtained by changing a single

bit of the code of 71. (i.e., the codes of n + 1 and n - 1 have a
Hamming distance of one with respect to the code of n). The

conversions between the binary encoding bB,, bgU -1 . . . bl and

1190

L zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Current zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAPoinf =

. . . .*. . zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
-2.5 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

the Gray encoding zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAg B , , g B , - 1 . . . g1 are as follows (see, for

example, [161)

(9)

(10)

where C€ is the exclusive-or operator and the second transfor-

mation must be done for decreasing values of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAk , starting from

IC = B,. When the network is evaluated, the Gray code for

each weight is transformed into the base-two binary code of

a positive integer n and, finally, into a floating point value w
in the range [-Ws/2, +W,/2], as follows

g k = bk i f k = B ,

bk = g k i f k = B ,

g k = bk+i @ b k if k < B,

{ bk = bk+l CE gk if k < B,

{

~~

IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 6, NO. 5, SEFTEMBER 1995

of the encoding and of the associated elementary moves are

critical to the success of the method.

n
W, .

2 B m - 1 2

If the memory is sufficient, the conversion can be executed

with a lookup table. The binary string for the optimization

algorithm is obtained by concatenating the Gray codes for the

weights.

Given a weight w, by changing one of the B, bits in the

encoding (and by repeating the operation for all possible bits),

one obtains B, weights in the neighborhood. For the cited

property of the Gray code, the neighborhood contains the

nearest weights on the discretized grid, plus a cloud of points

at growing distances in weight space.

In Fig. 4 we show a typical neighborhood in the X - Y
plane obtained with B, = 5, so that the binary string for

the (z,y) point has 10 bits, and with W, = 10, so that each

coordinate ranges from -5.0 to 5.0. The reachable points are

at the intersections of the grid lines; the 10 neighbors of the

point zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(x = -1.875, y = -1.875) are illustrated with boxes.

Note that the property that nearest points in w-space are always

contained in the neighborhood does not hold if the standard

base-two binary encoding is used. For example, the integer

coded with the 10-bit binary string [1000000000] follows the

integer coded with [0111111111], but more than one basic

move is necessary to accomplish the transition in the binary

string (in fact 10 moves are needed in this case). Because the

neighborhood contains the nearest points, RTS can reproduce

a discretized form of steepest descent (BP) if the additional
neighbors do not provide better E values. The proper choice

A. Neighborhood Evaluation

The evaluation of the points in the neighborhood requires

much less CPU time than the evaluation of the same number of

arbitrary points. For the MLP neural net, an efficient scheme

is based on storing all the intermediate results of the forward

pass for the current configuration. When a single weight is

modified because of a change in one of its bits, the change is

propagated forward in a very fast manner.

Let us consider networks with a single hidden layer. The

intermediate values for the network corresponding to the

current configuration are saved when the output corresponding

to a given input pattern is calculated (let us call these values

h-current, and o-currenti).
When a basic move is executed, only one bit of the string

is changed, and therefore a single weight of the network is

modified. Let us distinguish the case of a change in a first-

layer weight (Aw3k) from that of a change in a second-layer

weight (AWij). In the first case, if Awjk is the change in a

weight in the first layer, (4) is used to find the change in the

"net input" of the affected neuron in the hidden layer

and then the activation Hj is calculated using (5). Because

partial derivatives are not needed, the squashing function does

not need to be differentiable and a realization with a lookup-

table is sufficient even if the table size is limited by the

available memory space (a table with 216 entries is sufficient

for many classification tasks). If the "sigmoidal" function is

calculated with a lookup-table, the calculation of the activation

from the net input requires only a couple of machine cycles.

Finally the activations oi of the output units are obtained as

where AHj = Hj - H-currentj, and the outputs 0; are

obtained with a second table-lookup.

If the change is in the second layer (AWij), the computation

is even faster: oi is updated as

and the outputs Oi are calculated with a single table lookup.

Let us summarize the average cost for evaluating the neigh-
borhood for a network with NI input, NH hidden, and NO
output units, assuming that all weights have the same number

of bits and therefore each weight has the same probability

of being changed. Because there are NH x NI weights

connecting the input to the hidden layer and NO x NH weights

connecting the hidden to the output layer, the operations

of (12) and (13) are needed SAMPLE x N I / (N o + N I)
times, while the operations of (14) are needed SAMPLE x
N o / (N o + N I) times, on the average. Therefore, if A and M
are the CPU times required by a single addition (or subtraction)

and multiplication and C, is the time required by the transfer

BATTITI AND TECCHIOLLI: TRAINING NEURAL NETS WITH THE REACTlVE TABU SEARCH 1191

function (possibly realized by the lookup-table), the average

total computational complexity zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAC,v for each example pattern is zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
NI

(NI + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAN o)
x (2A + M + C, + No(A +
+ SAMPLE

CA,- = SAMPLE

+ Cu))

(A + M + C,). (15)
NO

(NI + N o)

Let us consider the case of a single output unit (as in the case

of a two-class discrimination) and a large number of input

units. After keeping only the dominating terms in the sum one

obtains zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
c , y % SAMPLE(3A + 2M + ‘LC,). (16)

This result can be compared with the asymptotic approxima-

tion

Cx NH(NI(A + M) + Cu) (17)

for the feedforward pass of the MLP net that can be larger

than (16) in the case of a large number of input and hidden

units (in particular if N H x N I >> SAMPLE, a common case

in the applications illustrated in Section IV).

Because some MLP nets that are relevant for the applica-

tions have a large number of weights (say more than 1000)

it is crucial to reduce the number of bits per weight as

much as possible and to employ the partial evaluation of

the neighborhood that was explained in Section zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI1 (by setting

SAMPLE << L). In addition to reducing the time complexity

of evaluating the neighborhood, a compact encoding of the

network helps in reaching higher generalization performances.

IV. EXPERIMENTAL TESTS

Two tests of RTS are presented for the MLP feedforward

neural net and one for a feedback net used in a nonlinear

control application. The first test (Section IV-A) is the XOR

problem. The MLP neural net has a single hidden layer with

two units and the same “squashing” function as the one used
in [39]; see (5) and (7). Although the significance of the

problem for automated learning is dubious (in fact the parity

problem is such that patterns differing by a single bit produce

opposite outputs), the task is paradigmatic for the presence of

local minima (see, for example, [13]), and for the sensitive

dependence of learning on the initial conditions [28].
The second problem considered (Section IV-B) is a bench-

mark task derived from a real-world application in experi-

mental high energy physics (HEP), where a classifier with an

MLP structure is used to discriminate patterns derived from a

collision in the large electron-positron (LEP) collider into two

classes: “background noise” or “potentially relevant event”

related to the “bottom quark.” The classifier is trained with

examples of “background noise” patterns derived from the

experimental setup and examples of “bottom” patterns derived

from a simulator.

The last task (Section IV-C) is a version of the “truck and

trailer backup” problem [34]. The controller is a discrete-time

fully recurrent network that defines the backup motion of

the truck when it is initialized randomly in a given region.

Contrary to the two previous tasks, in this case the only

information used for the training is the final positions and

orientations reached by the truck-and-trailer system and the

possible violation of constraints (there is no teacher giving the

correct control variable for a given configuration).

To eliminate the possible effects of a coarse lookup table,

in all tests we use the standard double-precision “squashing

function” (~ (h ,) = 1/(1 + (shifted with the subtraction

of 0.5 for the control task). The initial binary string at iteration

zero of RTS is generated by randomly setting each bit with

equal probability for the values one and zero.

A. The XOR Function

To estimate the effects of the number of bits per weight and

the neighborhood sample, a total of 100 tests per data point

were executed, by varying the B,. parameter (two, four, and

eight bits) and the SAMPLE value. The size of the complete

neighborhood is B, x 9: 9 being the total number of weights,

including thresholds.

The network has two hidden units (2-2-l), the W, parameter

is equal to 20, and a training session is terminated when all

patterns are less than 0.2 away from the target. In Fig. 5
we show the average number of RTS iterations (with its

standard deviation) as a function of the number of points in

the neighborhood (SAMPLE). The three curves are for growing

numbers of bits per weight. It can be observed that the average

number of steps decreases rapidly in passing from SAMPLE = 2

to SAMPLE = 5 (for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAB,: = 2,4), and slowly afterwards, while

it reaches a minimum at around SAMPLE = 4 for B?,, = 8.

The CPU time is approximately proportional to the number

of configurations evaluated, (see Fig. 5 (bottom)), and it

reaches the minimum for a small SAMPLE value, approximately

SAMPLE = 7 for B, = 2.4 and SAMPLE = 4 for B,, = 8. For

this problem two bits are sufficient, but four bits produce a

faster convergence, while eight bits are excessive and slow

down the search; see the curve marked with diamonds in

Fig. 5(b).
As it is expected, RTS is very effective in escaping from

local minima and in continuing the search until the desired so-
lution is reached. In all tests the algorithm converges in 100%

of the cases, although a large number of local minima are

encountered during the search. For example, the XOR problem

was run with two bits per weight and with the complete

neighborhood evaluation, and the number of local minima

encountered was counted (i.e., the number of configurations

such that all elementary moves produced a strictly higher E
value). On the average (100 training tests), seven local minima

were encountered during each search. The average number of

TABU steps is 86.8, so that the frequency of encounter is

approximately of one local minimum every 12 steps.

A comparison with on-line BP, with learning rate = 0.1,

momentum = 0.0, was executed by varying the initial scale
Wi chosen for randomizing the weights and by counting

the number of successes (for a maximum of lo6 iterations).

The average number of iterations for convergence (for the

successful cases) and its standard deviation are listed in the

last column of Table I. Our results are qualitatively similar to

1192

mitial zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBASC& zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

EEE TRANSACTIONS ON NEURAL NETWORKS, VOL. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA6, NO. 5, SEPTEMBER 1995

SI ICCBSSFS batch iterations (std dev zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA)

8BPW -
4BPW +- i PBPW -

10000

initial scale

v) 1000 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
C - - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
f zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
2 100

-
a
0

successes on-line iterations (std dev)

10
2 4 6 8 10 12 14 16

Sample

(a)

10000 L I

100
2 4 6 8 10 12 14 16

Sample

(b)

Fig. 5. (a) Average number of RTS steps and standard deviation of the
average for the XOR problem, as a function of the number of points in the
neighborhood. (b) Average number of points evaluated and standard deviation
of the average. The three curves correspond to experiments with a growing
number of bits per weight: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAB,, = 2. B, = 4. B,, = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA8.

TABLE I
ON-LINE BACKPROPACATION FOR THE XOR PROBLEM (MAX. lo6
ITERATIONS): SUCCESSES AND AVERAGE NUMBER OF ITERATIONS

those of [28]: a careful selection of the starting configuration

is critical to the success of BP. In particular, when the initial

scale is the one corresponding to the initialization of the TABU

algorithm (Ws = 20), BP converges only in 31 cases out of
100, with a very large average number of iterations.

It should be remembered that on-line BP has been used

effectively by developers on a series of significant applications,

so that the above problems related to the initialization or to

the presence of local minima should not discourage its usage

(see also [23] for a discussion of cases where local minima are

absent). A proper initialization is also critical to the success

of “batch’ BP. Table 2 lists the performance results of batch

BP with constant learning rate = 0.1 .
Available techniques to increase the “safety requirements”

and the speed of convergence of BP, are, for example, the use

of adaptibG lcanling i&S for on-line BP [30], the use of “line

searches,” and second-order information for batch BP; see [7]

and [3] and the references contained.

B. Event Discrimination in High Energy Physics

Experimental HEP facilities need state-of-the-art discrimi-

nation systems for selecting and classifying the relevant events.

In a typical facility, colliding particles produce streams of

secondary particles-called “jets”-that leave traces in a large
number of spatially arranged detectors. The frequency of

events (that include “false alarms” and spurious signals) is

so high that the registration of the event parameters onto

secondary storage has to be restricted only to a subset of

“potentially relevant” events. To this end on-line “triggering”

mechanisms estimate the interest of the event, so that only

the events whose estimated interest is greater than a selected

threshold are registered.

MLP’s are being used as pattern classifiers for the trig-

gering, possibly with analog VLSI or dedicated hardware

implementations. In particular neural nets have been proposed

for discriminating bottom quark jets at LEP, the large electron-

positron collider at the CERN laboratories [35].
In this paper we consider the task of recognizing two-jet

events produced by the bottom quark as a benchmark for

the RTS algorithm, both because of its applicative interest

and because the large number of events available permits

a statistically significant test of the relative performance of

different algorithms. The same benchmark task has been used

in [7] for comparing different training algorithms: i) the BP

algorithm [39], ii) a version of gradient descent with adaptive

step, iii) the conjugate-gradient technique, iv) the one-step

secant method with fast line searches [3], and v) two versions

of the stochastic search technique of [41], [15] (in particular

the new proposal called affine shaker).

The patterns used for training and testing the neural clas-

sifiers have been produced with the COJETS event generator

[36], using the natural frequencies. A total of 100000 e+e-
events have been generated at center-of-mass-system energy of

91 Gev. Of these only two-jet events have been retained, and

among these only the jets with at least four particles have been

selected. Each jet is described by a pattern with 17 features

W l .

BA’ITITI AND TECCHIOLLI: TRAINING NEURAL NETS WITH THE REACTIVE TABU SEARCH zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

IO0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
95

90

85

80

75

70

I193

Bw.4 - -

-

~

-

-

- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

c zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
8
P) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
C
c
m

C
0
v)
v)
Q)
C
0

.- .-
$

+Ir

E s
8
0

100

95 -

90 -

85

80 -

75 -
70 -

-

100

95

90

85

80

75

70

65

60

55

50 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

I I I

Bw=4 __

v 1

0 500 1000 1500 2000
Reactive Tabu Search Iterations

(a)

L
U

65 s zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
8

I
60

55

50 F I
0 500 1000 1500 2000

Reactive Tabu Search Iterations

(b)

60

55

50 I
0 500 lo00 1500 2000

Reactive Tabu Search Iterations

Fig. 6 .
ization results.

Event discrimination in HEP zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(B!, , = 4) . (a) Typical case with correctness on training set, (b) Average training correctness, and (c) average general-

The jets originated by the bottom quark have been subdi-

vided randomly into two equal sets with 7741 events each,

to be used for training and testing, respectively. Similarly, the

jets produced by the other quarks (“background’) have been

subdivided into two sets of 25463 events each. Finally, the

training set for the benchmark task has been obtained by select-

ing randomly 5000 “bottom” patterns and 5000 “background”

patterns from two of the above sets, while a testing set with the

same number of patterns has been obtained randomly from the

other two sets. The desired output value is one for “bottom,”

zero for “background.” When the generalization is measured,

patterns with output value greater than 0.5 are classified as

“bottom,” while those with output less than or equal to 0.5 are

classified as “background.”

The MLP network architecture has 17 input, 10 hidden, and

one output unit. The total number of weights (including the

thresholds) is 191, and the length of the binary string for the

presented tests ranges from L = 191 (for B, = 1) to L = 764

(for B,, = 4). The scale parameter is W, = 10, the number of

points in the neighborhood that are sampled is SAMPLE = 8.

Three series of tests with Bt{, = 1.2, and 4 have been

executed. For each number of bits per weight, 10 different

IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 6, NO. 5, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBASEPTEMBER 1995 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
80

75

70 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

~

1194

-
I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
0

C

:
0 In zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
a

U
L

?! z
z zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
e

I
m

e
C

C

v)

0

0
L

L

s
z

L

I

f
L
In

C

In

a -
e z
z

-

-

-

IO0
B w = ~ ~

100

95

90

85

80

75

95

85 I

B w = ~ -
-

-

-

-

-

95

90

85

80

75

-

-

-

-

-

50 I
0 500 1000 1500 2000

Reactive Tabu Search Iterations

(b)

100
BW=2 ~

50 I
0 500 1000 1500 2000

Reactive Tabu Search Iterations

(C)

Fig. 7. Event discrimination in HEP (B, = 2). (a) Typical case with
correctness on training set, (b) average training correctness, and (c) average
generalization results.

training sessions are completed after starting from different

random initial points. To avoid “over-training,” RTS is stopped

when the maximum generalization levels are reached (2000
RTS iterations are sufficient).

For each series we present three plots. The first plot il-

lustrates the evolution of the training session for one typical

case (out of the 10 tests), by showing the percent of correct

recognition obtained when the current network is tested on

the training set. The correctness is checked at each step. The

second plot shows the correctness on the training set (checked

every 10 RTS iterations) averaged over the 10 tests, with the

standard deviation o of the correctness distribution at each

checkpoint. The third plot shows the average generalization

performance (i.e., the percent of correct recognition obtained

by testing the current network on the testing set).

Fig. 6 shows the results for the case with zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAB, = 4.

The performance on the training set starts at the 50% level

(corresponding to a random classification), reaches the 62%

level during the first hundreds of iterations, and then it tends

to grow in a slower manner. Note that the performance curve

on the training set does not increase monotonically, as it is

clear from the jumps in the top curve of Fig. 6 in some

cases the best admissible move is such that the performance

decreases (see also Section 11-A). The average generalization

result reaches a “plateau” at about 1000 RTS iterations.

The best generalization results are in good agreement with

those obtained in [7] with continuous weight values and

a selection of optimization techniques. This result indicates

that the approximation capabilities of nets with four bits per

weight are in this case sufficient to reach performances that

are obtainable with “floating point” weights represented with

64 bits. Let us recall that, in a practical application, the

threshold for the acceptance of a potential “bottom” event can

be higher than 0.5, so that more “bottom” events are classified

as “background’ and rejected, but the surviving events have a

larger probability of being true “bottom” events.

Finally, Fig. 8 presents the results obtained with B, = 1,

so that the weights have two possible values: -5.0 or 5.0. the

standard deviation of the correctness results is larger, and the

brisk moves in weight-space are evident by the performance

jumps in the typical case (top curve of Fig. 8). The plateaus

are produced by the exploration of a suboptimal region,

while sudden jumps indicate that a new suboptimal region

is explored (let us recall that RTS is designed to escape from

local minimizers).

The average generalization results obtained with B, = 1

are excellent if compared with the best results obtained in [7]
for the case of weights with continuous values trained with

continuous optimization techniques. The highest correctness

level obtained with all the methods used in the cited paper is

about 62% (std.dev. = 0.5%). Although nets with continuous

weights (represented by 64-bits floating point values) contain

as a special case nets with the two above possible values,

during the extensive series of experiments with continuous

values such highly-accurate nets were not produced. The
superior performance of the RTS algorithm can be explained

by the following facts:

Different initialization: The weights of nets trained with
the reactive tabu search are initialized with a uniform

distribution on the binary strings, corresponding to a uni-

form distribution on the discretized weights in the range

[-Ws/2, Ws/2], while the nets with continuous-valued

weights in [7] are initialized with small random values

(with a uniform distribution in the range [-0.5,0.5]).

~~ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

BATTITI AND TECCHIOLLI: TRAINING NEURAL NETS WITH THE REACTIVE TABU SEARCH zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

75

70

65

60

55

50 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

I195

-
-
- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

c zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
t
m

e
c

c

VI v) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
C -
e
B zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
8

c

t
ol

c
2
c

VI

a
c

e
B zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
8

c

t
:
c

c

VI

a -
e
B
8

100 1 I

_ _ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
0 500 1000 1500 2000

Reactive Tabu Search Iterations

(a)

100 ,

60

55 .
50 ’ I

0 500 1000 1500 2000
Reactive Tabu Search Iterations

100 I

95

90

85

80

i

2000

Fig. 8. Event discrimination in HEP (€ILr = 1). (a) Typical case with
correctness on training set, (b) average training correctness, and (c) average
generalization results.

In fact, if the initial random weights are too large, the

partial derivatives are exponentially small and the Hessian

matrix is seriously ill-conditioned [40]. Experimentally,

after starting from values in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[-W,3/2.Ws/2] for the

derivative-based training techniques we could not obtain

better results than those described in [7].

Different dynamics in the search space: Techniques like

BP base the step on a local model of the E function

(first terms in the Taylor series expansion by using first

and, in some cases, second partial derivatives), while

the RTS technique base the step on a sample of the

binary neighborhood that, because of the Gray coding,

is translated into a cloud of points at different Euclidean

distances in weight space; see Fig. 4. In addition, the

RTS dynamics is different from a pure steepest-descent

dynamics (see for example the capability of escaping from

local minima). These facts imply that the trajectories in

the weight-space produced by the different techniques are

qualitatively different.

Wider exploration of the search space: The ratio between

the number of points that can be visited by RTS in the

allotted CPU time and the total number of points in the

search space decreases like . L P B z , : a small number of

bits permits a more effective exploration.

Reduced over-training: The limited search space for

B?,, = 1 reduces the over-training effect, so that better

generalization results can be expected if the network

remains capable of “storing” the example associations.

C. Parking a Truck Behind Another Truck

In the task of steering a tractor-trailer truck backing up at

constant speed [l], [34], the front wheels of the cab move a

fixed distance backward at each step. The control signal is the

angle U of the front tires with respect to the axis of the cab, and

the goal considered in [34] is to guide the back of the trailer
to a point on a loading dock with the trailer perpendicular to

the dock.

In a backup trial the cab starts in a random position and

orientation with respect to the dock, with a random angle

between the cab and the trailer. Each trial terminates either

when a part of the truck touches the edges of the parking

space (the exact space occupation of the cab and trailer is

checked at each step for a possible constraint violation) or

when a maximum number of steps are executed (max. 256 in

our tests).

The task is representative of many “sequential decision”

problems: control decisions made early in the backing up

process have substantial effects upon the final results. A truck

backup task is considered in [29] for a comparison of neural

and “fuzzy” systems. In [29] the MLP net is trained by using

the examples (state, control variable) generated by the “fuzzy”

system, a different task from the problem that we consider in
which the error signal is generated only at the end of the

entire backup sequence (there is no “expert driver” to guide

the learning network).

The state variables of the truck illustrated in Fig. 9 are:

s. ?J: coordinates of center of rear of trailer,

19,: angle of trailer measured from positive .7: with coun-

terclockwise being positive (radians), and

8,: angle of cab, measured from positive .7: with counter-
clockwise being positive (radians).

The constraint on the possible configurations is that the cab

cannot be rotated by more than 7r/2 degrees with respect to

1196 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIEEE TRANSACTIONS ON zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBANEURAL NETWORKS, VOL. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA6. NO. 5, SEPTEMBER 1995

th zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
I ‘

I
.I theta-c

Fig. 9.
truck backing up at constant speed.

State variables and desired final configuration for a tractor-trailer

the trailer

10s - Qc1 I T/2. (18)

The performance function is the sum of two terms zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE =
E, + E,. The first term E, is related to the desired final

configuration zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(zdock, Ydock, @,dock 0) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Ef = @(Zdock -z[tf])2 +P(gdock - y[tf])2 + (O ~ [t f]) ~ (19)

where tf is the time steps at which the trial is terminated and

the constants zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa and ,B regulate the relative importanceof the

positional errors with respect to the error in the trailer angle

(e, = 0 means that the trailer is perpendicular to the loading

dock). The second term E, is proportional to the amount of

violation of constraint (1 8)

Neural Net
Controller

Fig. 10. Truck and trailer system. The free parameters are the weights of the
feedback loops illustrated with thin lines. 2, delays the signal by one time step.

d,sin8,[t] - rcos0,[t]sinu[t]

d, cos O,[t] + T sin zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0, [t] sin u[t]
d,[t + 11 = arctan

) (27)
d, sin Os [t] - C cos

d, cos
[t]

[t] + C sin 8, [t]
0,3[t + I] = arctan

where arctan is from -7r to 7r .

The complete truck system illustrated in Fig. 10 is a re-

current network whose state is described by an array of

variables c i . It is useful to partition the indexes of these state

variables into four sets: the set 0 of indexes of “output”

variables (proportional to the single control signal U in the

given application), the set I of “extemal input” variables, the

set H of “hidden” variables, and the set T of the state variables

of the truck (2 , y, 8,. 0,). At time step t , the control subsystem

is updated as follows

Vs E { H U O}sum,<(t) +- w,tct(t) (28)
t E I U H U O U T

Vs E { H U 0} cs(t + 1) + a,(sum,(t))

t f

t=O

where sum,(t) denotes the net imput to the sth unit. Although

the “squashing function” a could be different for different

units, in the present task we found that a single function with

a range that is symmetric with respect to zero is sufficient to

E, = y@(le,[t] - O,[t]l - 7r/2)(IO,[t] - O,[t]l - ~ / 2)

(20)
realize the control network. The control signal U (in radians)

is obtained by multiplying the output variable c, to scale it in

the range corresponding to [-70,701 degrees

where O(s) is the Heaviside function (O(s) = 1 if s > 0,O

otherwise), and the parameter zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAy regulates the compromise

between constraint satisfaction and correct final configuration -
of the truck.

The control variable is U , the steering angle of front wheels

with respect to cab orientation, counterclockwise positive

(radians). The allowed range is I u I 5 (7/18)~.

The truck dimensions are d, = 6 m (cab length from pivot

to front axle) d, = 14 m (trailer length), and the fixed distance

one that the front tires move in one time step is T = 1 m.

The kinematics of the truck is described by the following

equations

A = rcosu[t]

C = Asin(O,[t] - O,[t])

B = Acos(~’,[~] - O,[t])

2[t + I] = 2[t] - Bcose,[t]

y [t + 11 = y [t] - B sin B,[t]

7

9
u(t + 1) +- c,(t + 1) x R x -.

Finally, the state of the truck zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(z,y,O,, e,) is updated by

considering the current state and the value of the control

variable U, through the kinematics equations described in

(21)-(27). In our case the single extemal input is “clumped” to

1, as a convenient way to obtain a threshold for the activation

of each state variable of the control subsystem.
The results obtained for the parking task defined in [34]

(the truck with trailer is moving freely in the half-plane with
positive 2 values) have been described in [SI. In this paper we

present the results for the harder case described in Fig. 9. We

place additional constraints in the moving space corresponding

to the real-world task of parking a truck behind other trucks.

In this case the simple solution of [26] is not applicable.

BATTITI AND TECCHIOLLI: TRAINING NEURAL NETS WITH THE REACTIVE TABU SEARCH zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1197

100000

10000

1000 r zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA\
\ w 100 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI

10 r

1 10 100 1000 10000
Reactive Tabu Search Iterations

100000

1 WOO

1000

w 100

10 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
1

1 ’ ” ” ” ’ ’ ” ” ” ” ’ ” ” ” ” ’ ” ” ” ” ‘ I best so tar +

1 10 100 1 WO 1oow
Reactive Tabu Search Iterations

(b)

Fig. 1 1 . Evolution of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE during training (truck and trailer parking zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAin con-
strained space). (a) Current E at a series of checkpoints. (b) “Best zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAso far”
values. Log-log scale.

The parameters are B,, = 8, W, = 10. The control

system has six hidden units (N H = 6), so that the total

number of weights is 84 and the length of the binary string

is L = 672. Sixty-four starting configurations for the truck-

and-trailer system are generated randomly with a uniform

distribution in the following range: 2[0] E [40 m. 60 m]. y[0] E
[6 m, 8 m], @,[0] E [-6”. 6”],0,[0] E [- 6 O , 6’1.

For this task a constant value SAMPLE = 20 is sufficient but

some CPU time can be spared by using a smaller sample at

the beginning of the search and larger sample in the following

phases. In particular, for the following results, the size of the

sample neighborhood is SAMPLE = 0.01 x L = 6 in the first

phase of the search, SAMPLE = 0.02 x L = 13 after zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5000
iterations, and SAMPLE = 0.03 x L = 20 after 20 OOO iterations.

In the illustrated test, the function E corresponds to a large

penalty for constraint-violation, and to a more strict require-

ment on the y coordinate with respect to the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 coordinate

(a = 1, /3 = 16. y = 100). In Fig. 11 we show the evolution

of the performance function defined in (19) and (20). E is
normalized by the number of backups used for training (64
backup for each evaluation).

In the top plot of Fig. 11 we show the values of the current

E at selected checkpoints, while in the bottom plot we show

the evolution of the “best so far” performance (Eb in Fig. 1).

In the second graph a point is plotted as soon as a system

configuration with lower E value is found. The large E values

at the beginning are caused by the violation of the constraint

10, - B c (5 ~ / 2 . The later evolution shows “plateau” regions,

followed by performance jumps. As usual, the evolution of E
is nonmonotonic because the exploration properties of RTS
provoke a transition to different “attraction basins” of the

search space (but clearly the “best so far” point is saved so
that it can be used at the end of the training period).

The truck trajectories obtained at selected checkpoints are

illustrated in Fig. 12, where we show the position of the point

(2, y) (the “license plate” point) during the backup test. At

t = 0, all 64 parking trials are unsatisfactory: either the

constraints are violated or the cab oscillates in a wild manner

and moves a short distance during the maximum number of

backup steps. At t = 10000 most backup trials end up at

the left wall, although the final position and orientation is

far from the requirements. Some backup tests are stopped

because the trailer touches the border of the moving space; see

the trajectories that terminate near the dashed line in Fig. 12,

the position of the entire truck is not shown for readability.

For a growing iteration number all truck trajectories reach

the left wall and the final position and orientation become

progressively nearer to the values desired; see the situation at

t = 15000 and t = 25000.

The trajectories obtained at RTS = 25000 correspond to

realistic “expert driver” trajectories, like the one illustrated in

Fig. 13: in the first backup steps the trailer is pushed away

from the upper wall of the constrained space and prepared for

the final phase. In the final steps the trailer is pushed inside the

desired parking space, and the cab is turned rapidly to permit

a close fit.

V. RELATED APPROACHES

Related approaches, although within different frameworks,

are the use of simulated annealing (SA) [27] for training

MLP nets, (see, for example, [17]), and the use of genetic

algorithms (GA’s) [22] for optimizing weights and neural

architectures, (see, for example, [44]). Space limitations do

not permit a detailed discussion and comparison between RTS
and the different versions of GA and S A . As a very brief

remark, let us recall that simulated annealing is based on

a connection between statistical mechanics and CO: random

moves are generated from the current point, a move is always

accepted if E decreases, while it is accepted with a probability

p x exp(-AE/.r) if E increases. The “escape” from local

minimizers is obtained in a stochastic manner, but, if the

“temperature” .r is much lower than the height of a barrier

around a local minimum, SA will spend an enormous time

in its neighborhood before escaping. On the contrary, RTS

is deterministic (if the complete neighborhood is evaluated)

and the choice of the move depends on the past history of

the search. The desired properties of the search trajectory are
obtained by complementing the “greedy” component with the

IEEE TRANSACTIONS ON NEURAL NETWORKS. VOL. 6, NO. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5. SEPTEMBER 1995 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
0.1

0.08

0.06

0.04

0.02

0

-0.02

RTS it=O
0.1

RTS it=10000 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA~

0.08

0 06

0.04

0.02

O I
-0.02 1

0 0.1 0.2 0.3 0.4 0.5 0.6 0 0.1 0.2 0.3 0.4 0.5 0.6

(a) (b)

0.1
I Z : \ P T S its15000 ~

0 1
-_. RTS 1t.25000
I-

-0.02 1 , , , , , zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4 -0.02 t , , , , ,]
0 0.1 0.2 0.3 0.4 0.5 0.6 0 0.1 0.2 0.3 0.4 0.5 0.6

(C) (d)

Fig. 12. Evolution of 64 trajectories during training (truck and trailerparking in constrained space) at 0, IOOOO, 15000. and 25000 iterations.

dynamical system described in Section 11. While RTS is based

on a single trajectory, in genetic algorithms a population of

candidate solutions is considered. The bias toward high-fitness

points is obtained by the mutation and selection mechanisms,

while the crossover operators build new candidate solutions

from the selected individuals. A similar approach based on the

combination of multiple solutions (with different combining

operators) has been reviewed in [21], with the term scatter

search. Recently, the usefulness of a direct “greedy search’

component in GA has been recognized in [32]. Detailed

comparisons are presented in [9] and [lo].

VI. SUMMARY AND CONCLUSION

The present approach goes in opposite direction to a pop-

ular approach in the neural network literature: transform a
combinatorial optimization problem into a continuous-valued

neural net execution [24]. Here an advanced CO technique was

used for training neural nets. The heuristic RTS scheme is an

effective alternative or a complement to traditional training

techniques for solving classification and control problems. In

particular, RTS escapes rapidly from local minimizers (Section

IV-A), it can approximately duplicate results obtained with BP,

and it can obtain better generalization results (Section IV-B).

Fig. 13. Truck and trailer motion for a parking zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAtask when the system has
been trained with RTS, for readability only a subset of the steps is illustrated.

Finally, a nonlinear control task has been solved successfully

(Section IV-C).
Let us note that, because training tasks have vastly different

characteristics, it is far from our intention to claim that

the RTS scheme is the preferred method in all cases. In

particular, if the methods based on partial derivatives (like

BP) reach satisfactory generalization performances, they can

be the fastest techniques to implement on general-purpose

BATTITI AND TECCHIOLLI: TRAINING NEURAL zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBANETS WITH THE REACTIVE TABU SEARCH zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1199

computers. A fair comparison of the RTS scheme with BP

is difficult because of the different context (initialization,

limited precision in the weights and possibly in the squashing

function). While it can be the case that BP is appropriate if

local minima are not a problem and if the initialization is

suitable, the main advantages of the RTS approach are the

direct and effective way to continue the search beyond local

minima and its extreme flexibility. In particular it is applicable

to nondifferentiable (or even discontinuous) performance and

transfer functions, and it can easily accommodate weights with

a selected number of bits and constraints in the search space

(the constraints can be implicit in the encoding or explicit, by

limiting the number of available moves). If a special-purpose

VLSI circuit is developed for an application, the possibility of

realizing a net with a limited number of bits per weight can be

cost-effective [37]. Because the steepest descent and the RTS

search processes have qualitatively different dynamics, if the

generalization results are comparable one can use the networks

trained with the two methods in “team” classifiers to limit the

bias caused by a single training technique and increase the

global performance [4].

Note that the RTS technique is in principle applicable to
different network models, both with and without feedback, and

to a wide range of machine learning tasks. The competitive

advantage of RTS is related to its use of memory (the process

is not Markovian): the transitions from a state depend on the

past (recent) history of the search. The avoidance of cycles

and confinement assures that the available CPU time is spent

in an efficient exploration of the search space.

Some open problems are the possibility of evaluating the

function on a randomly chosen subset of the training patterns

[31], in particular the possibility of passing from a batch

to an on-line approach, the study of different sets of basic

movements and of schemes with varying resolutions: the

discretization can be finer near zero. Because of the lack of

derivative computations and the limited precision required, the

RTS scheme can be of interest for special-purpose hardware

realizations with simple but fast electronic components (see

[33] and [25] for some algorithms that are designed by taking

the constraints of VLSI realizations into account). In particular,

the recently developed TOTEM chip is trained with RTS zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[111.
Finally, a promising possibility is that of combining RTS

search and gradient descent. In a hybrid scheme TABU search

can operate with a coarse discretization and gradient descent

can be used to reach a high precision in the final result.

APPENDIX
WORKED OUT EXAMPLE OF TABU SEARCH

Let us assume that the search space zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAF is the set of three-bit

strings zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(f = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[b l , b 2 , b 3]) and the cost function is

The feasible points (the edges of the three-dimensional

binary cube) are illustrated in Fig. 14 with the associated cost

function. The neighborhood of a point is the set of points that
are connected with edges. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

000 E=O (l o c a l zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAminimizer)

minimizer)

Fig. 14. Feasible points, E values and Tabu trajectory.

The point f(’) = [O.O.O] with E(f (O)) = 0 is a local

minimizer because all moves produce a higher cost value.
The best of the three admissible moves is zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp 1 , so that f (’) =
[l, 0, 01. Note that the move is applied even if E(f (’)) = 1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2
E(f (O)) , so that the system abandons the local minimizer.

If T (l) = 0, the best move from f (’) will again be p l and

the system will return to its starting point: f (l) = f (O) . If T(t)
remains equal to zero the system is trapped forever in the limit

cycle [O. 0; O] + [I, O , O] --+ [O, O , O] i [I, 0 , 0]
On the contrary, if T(t) = 1, 111 is prohibited at t = 1

because it was used too recently, i.e., its most recent usage time

A (p 1) satisfies A(p1) = 0 2 (t -T(t)) = 0. The neighborhood

is therefore limited to the points that can be reached by

best admissible move is 112, so that f (2) = [l, 1 , O] with

At t = 2 p2 is prohibited, p1 is admissible again because

A(p1) = 0 < (t - T(t)) = 1, and p3 is admissible because it

was never used. The best move is p3 and the system reaches

the global minimizer: f (3) = [l, 1,1] with

applying 112 or P3 (“0.01) = {[I, 1,01, [1,0, 11)) . The

E (f (2)) = 3.

= -1.

ACKNOWLEDGMENT

The authors wish to thank Dr. B. Caprile and Dr. C.

Furlanello for useful comments on a first draft of the man-
uscript, and S. Struthers for her kind assistance. Prof. R.

Odorico made available the data for the high energy physics

discrimination task.

REFERENCES

[l] C. W. Anderson and W. T. Miller zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAID, “Challenging control problems,”
in Neural Networks for Control, W. T. Miller, JJI, R. S. Sutton, and P.
J. Werbos, Eds.

[2] E. Amaldi, Travail de DiplBme, Dkpartement de Mathkmatiques, Ecole
Polytechnique Fkdkral de Lausanne, 1988.

[3] R. Battiti, “First- and second-order methods for learning: Between
steepest descent and Newton’s method,” Neural Computa., vol. 4, no.

[4] R. Battiti and A. Colla, “Democracy in neural nets: Voting schemes for
classification,” Neural Networks, vol. 7, no. 4, pp. 691-707, 1994.

[5] R. Battiti and G. Tecchiolli, “Parallel biased search for combinatorial op-
timization: Genetic algorithms and TABU,” Microprocessors Microsyst.,
vol. 16, no. 7, pp. 351-367, 1992.

Cambridge, MA: MIT Press, 1991, pp. 575491.

2, pp. 141-166, 1992.

1200 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA6, NO. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5, SEPTEMBER 1995 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
[6] zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA-, ‘The reactive tabu search,” ORSA J. Comput., vol. 6, no. 2, pp.

126-140, 1994.
[7] -, “Learning with first, second, and no derivatives: A case study

in high energy physics,” Neurocomput., vol. 6, pp. 181-206, 1994.
[8] R. Battiti, “The reactive tabu search for machine learning,” in Proc. GAA

’93. Giomate dei Gruppi di Lavoro AI*& Apprendimento Automatic0
Milano, Italy, June 1993, pp. 41-55.

[9] R. Battiti and G. Tecchiolli, “Simulated annealing and tabu search in
the long zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBArun: A comparison on zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAQAP zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAtasks,” Comput. Math. Applicat.,
vol. 28, no. 6, 1994, pp. 1-8.

[101 -, “Local search with memory: Benchmarking RTS,” OR Spectrum,
in press.

[l l] R. Battiti, P. Lee, A. Sartori, and G. Tecchiolli, ‘TOTEM: A digital
processor for neural networks and reactive tabu search,’’ in Proc.
MICRONEURO ‘94, Torino, Italy, Sep. 1994, pp. 17-25.

[12] D. A. Beyer and R. G. Ogier, “Tabu learning: A neural network search
method for solving nonconvex optimization problems,” in Proc. Int.
Joint Con$ Neural Networks Singapore, Nov. 1991.

[13] E. K. Blum, “Approximation of boolean functions by sigmoidal net-
works: Part I: XOR and other two-variable functions,” Neural Networks,

[14] A. L. Blum and R. L Rivest, “Training a 3-node neural network is
NP-complete,” Neural Networks, vol. 5, no. 1, pp. 117-128, 1992.

[15] R. Brunelli and G. Tecchiolli, “Stochastic minimization with adaptive
memory,” J. Computa. Appl. Math., in press, 1994.

[I61 D. F. Elliot and K. R. Rao, Fast Transforms, Algorithms, Analyses
Applications. Orlando, n: Academic, 1982.

[17] J. Engel, ‘Teaching feedforward neural networks by simulating anneal-
ing,’’ Complex Syst., vol. 2, pp. 641-648, 1988.

[18] M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide
to the Theory of NP-Completeness.

[19] A. H. Gee and R. W. Prager, “Polyhedral combinatorics and neural
networks,” Cambridge Univ, Eng. Dep., UK, tech. rep. CUEDE-
INFENGlTa 100, May 1992.

[20] F. Glover, ‘Tabu search-Part I,” ORSA J. Comput., vol. 1, no. 3, pp.
19Ck206, 1989.

[21] -, “Scatter search and star-paths: Beyond the genetic metaphor,”
Univ. Colorado-Boulder, tech. rep. CO 80309-0419, Mar. 1993.

[22] D. Goldberg, Genetic Algorithms in Search, Optimization and Machine
Learning. Reading, MA: Addison-Wesley, 1989.

[23] M. Gori and A. Tesi, “On the problem of local minima in backpropa-
gation,” IEEE Trans. Pattem Anal. Machine Intell., vol. 14, no. 1, pp.
76-86, 1992.

[24] J. J. Hopfield and D. W. Tank, “ “Neural” computation of decisions in
optimization problems,” Biol. Cybem., vol. 52, pp. 141-152, 1985.

[25] M. Jabri and B. Flower, “Weight perturbation: An optimal architecture
and learning technique for analog VLSI feedforward and recurrent
multilayer networks,” Neural Computa., vol. 3, pp. 546-565, 1991.

[26] R. E. Jenkins and B. P. Yuhas, “A simplified neural network solution
through problem decomposition: The case of the truck backer-upper,”
Neural Computa., vol. 4, pp. 647-649, 1992.

[27] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, “Optimization by
simulated annealing,” Sci., vol. 220, pp. 671-680, 1983.

[28] J. F. Kolen and J. B. Pollack, “Backpropagation is sensitive to initial
conditions,” Complex Syst., vol. 3, no. 4, pp. 269-280, 1990.

[29] S. Kong and B. Kosko, “Adaptive fuzzy systems for backing up a
truck-and-trailer,” IEEE Trans. Neural Networks, vol. 3, pp. 21 1-223,
1992.

[30] Z. Luo, “On the convergence of the LMS algorithm with adaptive
learning rate,” Neural Computa., vol. 3, pp. 227-245, 1991.

[31] M. MPler, “Supervised learning on large redundant training sets,” in S.
Y. Kung, F. Fallside, J. A. Sorenson. and C. A. Kamm, Ws., Proc. 1992
IEEE-SP Workshop, Neural Networks Signal Process. 11, Piscataway, NJ,

[32] H. Miihlenbein, ‘The parallel genetic algorithm as function optimizer,”
Parallel Comput., vol. 3, pp. 619432, 1991.

[33] A. F. Murray, “Multilayer perceptron learning optimized for on-chip
implementation: A noise-robust system,” Neural Computa., vol. 4, pp.
366-381, 1992.

[34] D. H. Nguyen and B. Widrow, “The truck backer-upper: An example
of self-learning in neural networks,” in Proc. Int. Joint Con$ Neural
Networks (IJCNN-89), Washington, DC, vol. II, June 1989, pp. 357-363.

vol. 1, pp. 532-540, 1989.

San Francisco: Freeman, 1979.

pp. 79-89.

[35] P. Mazmti and R. Odorico, “Bottom jets recognition by neural net-
works and statistical discriminants: A survey,” Univ. Bologna, Italy,
dept. Physics rep. DFUB 92/15, Zeitschrift fiir Physik C, in press, 1992.

[36] R. Odorico, “COJETS 6.23: A Monte Carlo simulation program for
antiproton-proton, Proton-proton collisions and electron-positron anni-
hilation,” Comput. Phys. Commun., vol. 72, pp. 238-248, 1992.

[37] M. Maresi, G. Orlandi, F. Piazza and A. Uncini, “Fast neural networks
without multipliers,” IEEE Trans. Neural Networks, vol. 4, no. 1, pp.
53-62, 1993.

[38] C. H. Papadimitriou and K. Steiglitz, Combinatorial Optimization,
Englewood Cliffs, NJ: Prentice-Hall, 1982.

[39] D. E. Rumelhart, G. E. Hmton, and R. J. Williams, “Learning intemal
representations by error propagation,” in Parallel Distributed Process-
ing.

[40] S. Saarinen, R. Bramley, and G. Cybenko, “The numerical solution
of neural network training problems,’’ SIAM J. Statistical Scientific
Comput., in press, 1993.

[41] F. J. Solis and R. J.-B. Wets, “Minimization by random search tech-
niques,” Math. Operations Res., vol. 6, no. 1, pp. 19-30, 1981.

[42] D. de Werra and H. Hertz, “Tabu search techniques: A tutorial and an
application to neural networks,” OR Spectrum, vol. 11, pp. 131-141,
1989.

[43] R. J. Williams and D. Zipser, “A learning algorithm for continually
running fully recurrent neural networks,” Neural Computa., vol. 1, pp.
270-280, 1989.

[44] D. Whitley, T. Starkweather, and C. Bogart, “Genetic algorithms and
neural networks: Optimizing connections and connectivity,” Parallel
Compu., vol. 14, pp. 347-361, 1990.

Cambridge, MA: MIT Press, vol. 1, 1986, pp. 318-362.

Roberto Battiti received the bachelor’s degree in
1985 from Trento University, Italy, and the Ph.D.
degree in computation and neural systems from
California Institute of Technology, Pasadena, 1990.

He is a Faculty Member at the Department of
Mathematics of the University of Trento, Italy, and
an Associate of the Istituto Nazionale di Fisica
Nucleare (I”). He has been a Consultant for
the industrial application of neural networks and
concurrent processing and he is a Participant of the
special I” initiative for realizing RTS-specific

VLSI chips to be used in high energy physics detectors and signal processing
applications. His main research interests are machine learning techniques,
combinatorial and continuous optimization algorithms, the design and analysis
of algorithms for massively parallel architectures, and special purpose VLSI
circuits.

Dr. Battiti is a member of the IEEE Computer Society.

Giampietro TecchioUi was born in Trento, Italy in
1961. He received the bachelor’s degree in physics
from the University of Trento in 1986.

Since 1987 he has been with I” working in the
area of parallel and distributed computing for com-
putational theoretical physics. He is a Participant
of the special I” initiative for realizing RTS-
specific VLSI chips and co-designer of the TOTEM
chip. He joined IRST in 1988, where he works in
the System Architectures Laboratory. Since 1993 he
has been with the Computer Science Departement at

the University of Verona where he is Adjunct Professor. His research interests
include discrete, continous and functional optimization, parallel and distributed
computation, computer architectures, and algorithm complexity.

