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Abstract

Training deep neural networks (DNNs) on high-dimensional data with no spatial structure poses a major computational prob-

lem. It implies a network architecture with a huge input layer, which greatly increases the number of weights, often making 

the training infeasible. One solution to this problem is to reduce the dimensionality of the input space to a manageable size, 

and then train a deep network on a representation with fewer dimensions. Here, we focus on performing the dimensionality 

reduction step by randomly projecting the input data into a lower-dimensional space. Conceptually, this is equivalent to 

adding a random projection (RP) layer in front of the network. We study two variants of RP layers: one where the weights 

are fixed, and one where they are fine-tuned during network training. We evaluate the performance of DNNs with input 

layers constructed using several recently proposed RP schemes. These include: Gaussian, Achlioptas’, Li’s, subsampled 

randomized Hadamard transform (SRHT) and Count Sketch-based constructions. Our results demonstrate that DNNs with 

RP layer achieve competitive performance on high-dimensional real-world datasets. In particular, we show that SRHT and 

Count Sketch-based projections provide the best balance between the projection time and the network performance.

Keywords Random projection · Neural networks · High-dimensional data · Sparse data

1 Introduction

Deep-learning methods excel in many classical machine 

learning tasks, such as image and speech recognition or 

sequence modelling [1]. Unlike conventional machine learn-

ing techniques, they do not require handcrafted features, 

but instead discover features during learning. However, the 

dimensionality of input data in neural network applications 

is relatively low; for example, networks trained for speech 

recognition tasks employ input vectors with size on the order 

of hundreds of dimensions [2]. Learning with larger input 

dimensionality typically requires some structure in the input 

data. This is the case in, e.g. convolutional neural networks 

(CNNs), which take advantage of the spatial structure of 

images by exploiting the local connectivity and sharing the 

weights between spatial locations. This greatly reduces the 

number of learnable parameters, enabling CNNs to work 

with up to hundreds of thousands of input pixels.

The motivation for this work stems from the problem of 

training DNNs on unstructured data with a large number of 

dimensions. Such data often arise in social media, web crawl-

ing, gene sequencing or biomedical applications. When there 

is no exploitable input structure, training DNNs on high-

dimensional data poses a significant computational problem. 

The reason for this is the implied network architecture, and in 

particular an input layer which may contain billions of weights. 

Even with recent advances in GPGPU computing, training net-

works with this number of parameters is infeasible. Therefore, 

learning in such applications is often performed with linear 

classifiers, usually support vector machines or logistic regres-

sion [3]. We show that this problem can be solved by incor-

porating random projection into the network architecture. In 

particular, we propose to prepend the network with an input 

layer whose weights are initialized with a random projection 

matrix. We study two ways of training this architecture: one 

where the parameters of the RP layer are fixed during training, 

and one where they are fine-tuned with error backpropagation. 
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Our results show that on high-dimensional real-world datasets 

neural networks with RP layer achieve performance competi-

tive with the state-of-the-art alternatives.

This work is organized as follows. First, in Sect. 2, we 

briefly review most popular RP schemes. In Sect. 3, we intro-

duce the RP layer. Then, in Sect. 4, we evaluate networks with 

fixed and fine-tuned RP layers on several synthetic and real-

world datasets.

2  Random projection matrices

Let � ∈ ℝ
n×d denote a data matrix consisting of n data points 

in ℝd . The key idea behind random projection stems from the 

Johnson–Lindenstrauss Lemma [4], which states that a set of 

n points in a high-dimensional vector space can be embedded 

into k = (�−2 log n) dimensions, with the distances between 

these points preserved up to a factor of 1 + � . This limit can 

be realized with a linear projection �̃ = �� , for a carefully 

designed random matrix � ∈ ℝ
d×k ( k ≪ d).

Several constructions have been recently proposed for the 

RP matrix � . The simplest and most straightforward construc-

tion is the Gaussian random matrix, whose entries rij are i.i.d. 

samples from a normal distribution  (0,
1

k
) [5, 6]. In [7] Ach-

lioptas proposed a sparser projection matrix, in which only one 

third of the elements are nonzero:

Li et al. [8] introduced an even sparser random matrix, by 

extending Achlioptas’ construction:

Note that setting s = 3 in the above construction yields Ach-

lioptas’ matrix. Li et al. showed, however, that one can use s 

as high as 
√

d to significantly sparsify the projection matrix 

and in turn to speed up the projection.

Ailon and Chazelle [9] proposed a fast embedding based on 

the Hadamard–Walsh matrix, the so-called subsampled rand-

omized Hadamard transform (SRHT). The Hadamard–Walsh 

matrix �
t
∈ ℝ

t×t is defined recursively as:

rij =

�
3

k
⋅

⎧
⎪⎨⎪⎩

1 with probability 1∕6

0 with probability 2∕3

− 1 with probability 1∕6

.

rij =

�
s

k
⋅

⎧
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1 with probability
1

2s
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1

s

− 1 with probability
1

2s

.

�1 = 1, �
t
=

[

�
t∕2 �

t∕2

�
t∕2 −�

t∕2

]

,

for any t that is a power of two. Ailon and Chazelle defined 

their projection matrix �
HT

 as a scaled product of three 

matrices:

where � is a d × d diagonal matrix with random entries 

drawn uniformly from {1,− 1} , � is a d × d normalized Had-

amard–Walsh matrix: � =

√

1

t
�

t
 and � is a sparse d × k 

random matrix. This construction assumes that d is a power 

of two and is greater or equal to the dimensionality of the 

data. If the dimensionality of the data is lower than d we pad 

� with zeros. Elements of � are set to 0 with probability 

1 − q and are drawn from a normal distribution  (0,
1

q
) oth-

erwise; q is a sparsity parameter. Using matrix multiplica-

tion akin to fast Fourier transform, the product ��
HT

 can be 

computed in (nd log d) operations, as opposed to (ndk) if 

the projection was done by a naive matrix multiplication. In 

[10] the running time of SRHT was further improved to 

(nd log k).

Another family of RP methods is based on the Count 

Sketch algorithm. The Count Sketch algorithm was initially 

proposed by Charikar et al. [11] as a method to estimate the 

frequency of items in a data stream. In [12, 13] it was used as 

a dimensionality reduction method. The explicit form of the 

projection matrix was then given in [14]. The Count Sketch 

projection matrix can be given as: �
CS

= �� , where � is 

defined as in SRHT and � is a d × k sparse matrix, with each 

row chosen randomly from the k standard basis vectors of 

ℝ
k . Similarly to SRHT, in Count Sketch scheme the projec-

tion can be performed without a naive multiplication of the 

data matrix by �
CS

 . Specifically, the result matrix �̃ is ini-

tialized with zeros and then each column of the data matrix 

� is multiplied by − 1 with probability 50% and added to a 

randomly selected column of �̃ . The computational com-

plexity of this projection scheme is (nd) , i.e. linear w.r.t. 

the size of the input data. Because of its low computational 

cost, Count Sketch-based projections have recently drawn 

considerable attention [15–17].

We summarize the time complexity of different RP 

schemes in Table 1.

3  Neural networks with random projection 
layer

The weights in the random projection layer can be either 

fixed or seen as model parameters that are fine-tuned dur-

ing training. The first variant, further called fixed-weight 

RP layer, can be interpreted as training a standard network 

�
HT

=

1
√

k

���,
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architecture on data whose dimensionality has been reduced 

with random projection. A theoretical motivation for learn-

ing on such randomly projected data has been given in 

[18, 19]. In particular, Arriaga and Vempala [18] provided 

a clear motivation that can be summarized in two points: 

(i) learning from randomly projected data is possible since 

random projection preserves a lot of the input structure in 

the lower-dimensional space, and (ii) learning in the lower-

dimensional space should require fewer examples and 

therefore be faster. The second RP layer variant, which we 

call fine-tuned RP layer, may improve the network per-

formance compared to fixed RP weights. However, it has a 

significantly higher computational cost. Nevertheless, we 

show that with carefully designed architecture and training 

regime it can be applied to real-world problems.

3.1  Fixed-weight random projection layer

There are two main reasons for using DNNs with fixed-

weight RP layer (Fig. 1). First, with fixed weights we can 

perform the projection and normalization of the whole data-

set only once prior to network training. Such optimization 

is especially beneficial when the lower-dimensional projec-

tion fits in the operating memory, while the original input 

data require out-of-core processing. Second, for dense RP 

constructions, such as Gaussian, Achlioptas’ or SRHT, an 

update of the weights in the RP layer may have a prohibi-

tive computational cost; for example, dense RP matrices 

for some of the tasks reported in Sect. 4 have up to tens of 

billions of weights. Fine-tuning weights in the RP layer is 

more practical for sparse RP constructions, especially if we 

restrict the updates to the weights that are initially nonzero. 

We further elaborate on this approach in Sect. 3.2.

Layers that follow fixed-weight random projection can 

be trained from scratch with error backpropagation. How-

ever, we found that the performance can be improved by pre-

training these layers with deep belief networks (DBNs) [20], 

and then fine-tuning with error backpropagation. Before the 

projected data are used to train the “learnable” part of the 

network, we normalize each dimension to zero mean and 

unit variance. Initial evaluation showed that this is neces-

sary: pretraining on unnormalized data was unstable, espe-

cially for highly sparse datasets. One particular advantage 

of pretraining a DBN on normalized data is that we can use 

Gaussian units [21] in the first layer of the “learnable” part 

of the network.

The choice of the projection matrix in the RP layer is 

not trivial and depends on the dimensionality and sparsity 

of the input data. In particular, these two factors have a sig-

nificant impact on the computational cost of training. While 

the projection time is usually negligible in comparison with 

the training time, this may not be the case when the data 

dimensionality is very high. Fortunately, especially for large 

unstructured datasets, high dimensionality often goes hand 

in hand with high sparsity. This is beneficial from the com-

putational point of view since sparse representation facili-

tates faster projection. In particular, the performance of RP 

schemes that involve matrix multiplication can be improved 

by fast algorithms for sparse matrix multiplication, e.g. [22, 

23]. Some other RP schemes can also be optimized to take 

advantage of the data sparsity [15].

Another aspect to consider is the sparsity of the projec-

tion matrix itself. Random projection matrices that provide 

the best quality of embedding are typically dense [24]. 

Unfortunately, applying dense projection schemes to huge 

datasets can be computationally prohibitive. In this case, 

one needs to resort to more efficient projection schemes. 

One possibility is to employ a projection scheme that does 

not require matrix multiplication. A good example of such 

random projection method is SRHT [10]. Another approach 

is to use a sparse projection matrix, e.g. Li’s construction. 

Moreover, these two approaches can be combined into a 

projection scheme where the RP matrix is sparse and the 

projection does not require an explicit matrix multiplication. 

This results in very efficient projection methods, such as the 

Count Sketch projection. However, projecting sparse data 

with sparse RP matrices, regardless if they are explicitly 

Table 1  Time complexity of random projection schemes

� is a n × d dataset matrix and k is the target dimensionality. If � is 

sparse nnz(�) denotes the number of nonzero elements in �
aFor a standard implementation of sparse-dense matrix multiplication

RP scheme Matrix construction time Projection time

Dense input Sparse input

Gaussian (dk) (ndk) (nnz(�)k)

Achlioptas’ (dk) (ndk) (nnz(�)k)

Li’s (
√

dk) (n
√

dk) (nnz(�)k)a

SRHT (dk + d log d) (nd log k) (nd log k)

Count Sketch (d) (nd) (nnz(�))

Fig. 1  Neural network with fixed-weight random projection layer



1224 Pattern Analysis and Applications (2019) 22:1221–1231

1 3

or implicitly constructed, can introduce significant distor-

tions in the embedding [9]. These distortions may, in turn, 

affect the network accuracy. Therefore, for large datasets, the 

choice of the RP layer type is a trade-off between the net-

work accuracy and the computational complexity of the RP 

embedding. Investigating this trade-off, apart from enabling 

training of neural networks on high-dimensional data, is one 

of the goals of this work.

3.2  Fine-tuned random projection layer

While the idea of fine-tuning weights in the RP layer may 

seem straightforward, there are several technical difficul-

ties that make its implementation challenging. They stem, 

primarily, from the high computational cost of performing 

the weight updates and normalizing the layer outputs. As 

we discussed in the previous section, for large-scale data-

sets performing even a single weights’ update in a dense RP 

layer is computationally prohibitive. For example, for the 

KDD2010-a dataset, a fully dense RP layer with 1000 out-

put units contains more than 2 × 10
10 weights—nearly twice 

as much as the number of weights in the largest currently 

used networks [25]. Fortunately, we can reduce the number 

of weights to the order of millions by choosing a sparse vari-

ant of the RP layer. In this work, we propose to construct 

fine-tuned RP layers using two sparse random projection 

schemes presented in Sect. 2, i.e. Li’s and Count Sketch-

based projections. Compared to a dense RP matrix, Li’s 

and Count Sketch constructions reduce the total number of 

weights by a factor of 
√

d and k, respectively, where d is the 

number of input units and k is the number of output units.

To ensure that the number of model parameters, and 

in turn the computational cost, does not increase during 

training, we update only these elements in the fine-tuned 

RP matrix that are initially nonzero. This construction can 

be interpreted as a network layer with sparse connectivity 

(Fig. 2). To further improve the training performance, we 

can restrict the weight updates in the RP layer to a fraction 

of training mini-batches. We found that even with sparse 

RP layers this approximation is necessary for our largest 

benchmark datasets. Importantly, to reduce the bias intro-

duced by skipping some of the weight updates, the updates 

are performed for randomly selected mini-batches.

When training networks with the fixed-weight RP layer, 

we normalize RP activations to zero mean and unit variance 

(using moments calculated on the training set). Since the 

weights in the RP layer do not change during training, this 

operation can be performed only once, unlike in networks 

with fine-tuned random projection. When training networks 

with fine-tuned RP layer, we normalize activations by adding 

batch normalization [26] between the random projection and 

the activation function.

We found that networks with fine-tuned RP layer are 

best trained end-to-end starting from random initialization. 

Initially, we also considered different training regimes. For 

example, we experimented with networks that were first 

trained without changing the RP layer and then fine-tuned 

end-to-end with backpropagation. However, this training 

regime yielded inferior results.

4  Experiments

To evaluate the performance of DNNs with RP layer, we 

carried out a set of comparative experiments on several clas-

sification tasks. We begin with experimental evaluation of 

fixed-weight RP layer trained on synthetic and real-world 

datasets.

4.1  Fixed-weight random projection layer

Experiments with fixed-weight RP layer were carried out 

using all RP techniques described in Sect. 2, namely Gauss-

ian, Achlioptas’, Li’s, SRHT and Count Sketch. For Gaussian 

and Achlioptas’ schemes, we implemented a memory effi-

cient projection procedure that avoids allocating the whole 

projection matrix at once. For SRHT we did not explicitly 

construct �
HT

 , but instead implemented the projection using 

the fast Walsh–Hadamard Transform1. These optimizations 

were necessary since in most of our experiments the projec-

tion matrix would not fit in the operating memory.

We trained the evaluated networks using mini-batch sto-

chastic gradient descent with momentum. Amplitudes of 

Fig. 2  Neural network with fine-tuned random projection layer. 

Weights in the layer are initialized to a sparse RP matrix. Only 

weights that are initially nonzero are part of the model. The output of 

the projection is batch normalized and optionally transformed with a 

nonlinear activation function

1 Based on a Python implementation available at: http://www.quant 

atris k.com/2015/04/10/fast-walsh -hadam ard-trans form-pytho n-matla 

b/.

http://www.quantatrisk.com/2015/04/10/fast-walsh-hadamard-transform-python-matlab/
http://www.quantatrisk.com/2015/04/10/fast-walsh-hadamard-transform-python-matlab/
http://www.quantatrisk.com/2015/04/10/fast-walsh-hadamard-transform-python-matlab/
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weights were limited with the L2 cost. During fine-tuning, 

the learning rate was decreased according to a slow exponen-

tial decay, while the momentum was slowly increased. We 

also used dropout [27] to prevent overfitting. We employed 

rectified linear (ReLU) units [28] in hidden layers and 

Gaussian units in the layer after the random projection. Val-

ues of learning hyperparameters were selected with experi-

ments on validation sets constructed from the training data. 

All experiments were run using a GPU-accelerated library 

described in [29].

The evaluation begins with experiments on synthetic 

datasets, where we investigate the impact of data sparsity 

and the number of significant features on the performance 

of networks with RP. As a reference in these experiments, 

we use two linear classifiers, i.e. logistic regression (LR) 

and support vector machines (SVM). We used implementa-

tions of these classifiers provided in the LIBLINEAR pack-

age [30]. Subsequent experiments evaluate the performance 

of networks with RP layer on real-world datasets. First, we 

show a toy example on the commonly used MNIST dataset 

[31]. Afterwards, we present results on several large-scale 

sparse datasets.

4.1.1  Experiments on synthetic datasets

We prepared several 10
6-dimensional synthetic datasets, 

each consisting of 1.25 × 106 examples belonging to two 

balanced classes. Each dataset was constructed by first gen-

erating a �-dense matrix S ( � being the fraction of nonzero 

elements in S), and selecting a fraction of features, � , that 

would separate examples from the two classes. Nonzero ele-

ments in S were drawn randomly from a normal distribution 

 (0, 1) . To separate the classes, we picked examples from 

one class and added a Gaussian noise with nonzero mean to 

all nonzero elements in significant features. Note that this 

operation does not alter the sparsity of S. We generated two 

groups of such sparse datasets:

• with fixed fraction of significant features � = 0.2 and 

density � ranging from 10
−6 to 10

−4,

• with fixed density � = 10
−4 and a fraction of significant 

features � ranging from 0.01 to 0.2.

The above ranges for � and � were chosen so that the most 

difficult dataset variants had, on average, one or two signifi-

cant nonzero features per example. We randomly selected 

80% rows of S as the training set and the remaining 20% as 

the test set.

The synthetic datasets were projected to 1000 dimen-

sions and used to pretrain a network with two hidden 

layers, each consisting of 3, 000 neurons. After pretrain-

ing, we added a logistic regression unit on top and fine-

tuned the network to minimize binary cross-entropy cost. 

The reference logistic regression and SVM models were 

trained on unprojected data. For both models, we report 

results obtained with the solvers that performed best on the 

validation set, namely dual L2-regularized logistic regres-

sion and dual L2-regularized L2-loss SVM.

Test classification errors for different density levels and 

number of significant features are presented in Fig. 3 and 

Fig. 4. An important observation here is that networks 

with RP layer significantly outperformed full-dimensional 

logistic regression and SVM models, except for the tests 

where each example had, on average, 1–3 nonzero sig-

nificant features. In practice, we do not expect real-world 

classification tasks to have an input representation with 

such a low number of significant features. For example, 

for all classification algorithms evaluated in this work the 

accuracy on the hardest variants of the synthetic dataset 
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is much lower than on any of our real-world benchmarks 

(Sect. 4.1.2), indicating harder input representation.

In all tests, SRHT and Achlioptas’ projections yielded the 

best and almost equal performance. The Count Sketch and 

the Gaussian projections performed slightly worse, espe-

cially for datasets with only a few significant features. Li’s 

projection was outperformed by the other four RP schemes. 

Another scheme with a sparse projection matrix, i.e. Count 

Sketch, performed better. However, when the input data were 

very sparse, it was also outperformed by dense projection 

schemes.

Li’s projection matrix in our experiments had the same 

sparsity as the Count Sketch matrix but nevertheless per-

formed worse. While it has been argued that sparse projec-

tion matrices are not suited for sparse data [9], this result 

demonstrates that the matrix construction itself also plays 

an important role. Note that columns in the Count Sketch 

projection matrix are fully orthogonal, unlike in Li’s con-

struction. Moreover, orthogonal weight initialization has 

been shown to improve the performance of deep networks 

[32]. We believe that this may be the reason behind the better 

performance of the Count Sketch RP layer.

4.1.2  Experiments on real‑world datasets

To demonstrate the practical effectiveness of DNNs with 

fixed-weight RP layer, we performed experiments on five 

real-world classification tasks. The datasets for these tasks 

are summarized in Table 2.

First, as a toy example, we used the popular MNIST 

benchmark. While it is a small and low-dimensional image 

dataset, it is frequently used to evaluate neural networks 

and has well-established reference results. Original MNIST 

images are represented by 256 grey-scale levels, but in our 

work we use pixel intensities rescaled to the ⟨0, 1⟩ interval. 

We use the permutation invariant version of the dataset, i.e. 

we randomly shuffle the pixel order. We projected the origi-

nal 784-dimensional MNIST digits to 400 dimensions and 

used them to pretrain and fine-tune networks with two hid-

den layers consisting of 1000 neurons each. The networks 

were fine-tuned to minimize multinomial cross-entropy cost. 

With three RP matrices, namely Achlioptas’, Gaussian and 

Li’s, they achieved performance close to the reference per-

formance on the unprojected digits (Table 3). When judging 

this result, it is important to note that MNIST is relatively 

dense, unlike other datasets used in this work.

In subsequent tests, we used four large high-dimensional 

datasets, namely webspam [38], url [39]2, KDD2010-a 

and KDD2010-b. All four are binary classification tasks. 

webspam is a dataset consisting of 350,000 descriptors of 

webpages. The challenge is to detect examples of so-called 

Webspam (or search spam), i.e. webpages that are designed 

to manipulate search engine results. We use the normalized 

high-dimensional trigram version of the dataset. webspam 

is not provided with standardized train/test set split. There-

fore, following [36], we use a random 80%/20% train/test 

split. The url dataset consists of descriptors of 2.4 million 

URL addresses. Descriptors contain lexical features (bag-of-

words representations of tokens in the URL) and host-based 

features (WHOIS information, location, connection, speed, 

blacklist membership, etc.). The challenge in this dataset 

Table 2  Summary of real-world 

datasets used in the evaluation

Density is the fraction of nonzero elements in the training set

Dataset Training set size Test set size Dimensions Classes Density

MNIST 60,000 10,000 784 10 0.191

webspam 280,000 70,000 16,609,143 2 2.24 × 10
−4

url 1,976,130 420,000 3,231,961 2 3.58 × 10−5

KDD2010-a 8,407,752 510,302 20,216,830 2 1.80 × 10
−6

KDD2010-b 19,264,097 748,401 29,890,095 2 9.84 × 10
−7

Table 3  Classification errors 

(%) on real-world datasets for 

networks with fixed-weight RP 

layers

For each dataset, we highlight the result of the best performing method

Dataset References Gaussian Achlioptas’ Li’s SRHT Count Sketch

MNIST 0.92 [27] 1.06 0.94 1.11 1.04 1.34

webspam 0.32 [33], 0.40 [34] 0.38 0.40 0.36 0.40 0.32

url 1.23 [35], 1.34 [36] 1.03 1.12 3.75 1.01 0.96

KDD2010-a 10.38 [35] 10.86 10.88 11.95 10.86 11.49

KDD2010-b 10.01 [37], 10.42 

[34], 13.25 [33]

10.51 10.49 10.98 10.49 10.54

2 Available at http://sysne t.ucsd.edu/proje cts/url/.

http://sysnet.ucsd.edu/projects/url/
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is to distinguish between malicious and benign addresses. 

Following [36], we used examples from the first 100 days 

of data collection as the training set and remaining examples 

for testing. KDD2010-a and KDD2010-b are large student 

performance prediction datasets from the KDD Cup 2010 

challenge. We used pre-processed versions of these datasets 

made available by the challenge winner [40] and adopted 

the provided train/test set split. webspam and KDD2010 

datasets are available from the LIBSVM datasets webpage3. 

For all four datasets, we randomly projected the input vec-

tors to 1000 dimensions and trained a network with two 

hidden layers, each one with 3000 neurons. Each network 

was pretrained and then fine-tuned to minimize the binary 

cross-entropy cost.

Overall, networks with fixed-weight RP layer signifi-

cantly improved over the current state-of-the-art results on 

the url dataset and achieved competitive performance on 

webspam and KDD2010 datasets (Table 3). Gaussian, Ach-

lioptas’ and SRHT projections performed similarly well in 

these experiments, while Li’s method performed the worst. 

Count Sketch was among the best performing projections for 

datasets with density between 10−5
− 10−4 (webspam and 

url), while for sparser datasets it yielded results similar to, 

and in the case of KDD2010-a even worse than, Gaussian, 

Achlioptas’ and SRHT. This agrees with the results from 

experiments on the synthetic datasets (Sect. 4.1.1).

4.2  Fine-tuned random projection layer

We evaluated the performance of fine-tuned RP layer on 

several large-scale datasets: a variant of the synthetic dataset 

with density � = 10−5 and the fraction of significant features 

� = 0.2 , webspam dataset, and url dataset. Addition-

ally, we report results on a toy benchmark—MNIST. We 

employed network architectures with the same activation 

functions, number of neurons and number hidden layers as 

in the experiments with fixed-weight random projection. We 

also employed the same training setup but performed addi-

tional validation experiments to choose the learning rate and 

L2 cost hyperparameters. In addition to experiments with 

linear random projection, we also investigated architectures 

with the ReLU nonlinearity after batch normalization. In 

experiments with MNIST and synthetic datasets we updated 

the parameters in the RP layer for every training mini-batch. 

In experiments with larger datasets, i.e. url and webspam, 

we updated the RP weights for randomly selected 50% of 

mini-batches.

Table 4 reports the early stopping errors achieved by 

networks with fine-tuned RP layer. Compared to networks 

with fixed-weight RP layer, networks with fine-tuned linear 

random projection performed better on all datasets. Impor-

tantly, they further improved the state-of-the-art results on 

webspam and url datasets. However, our results also show 

that introducing a nonlinearity after the RP layer decreased 

the network performance. In fact, networks where fine-tuned 

random projection was followed by ReLU nonlinearity per-

formed very similarly to, or were outperformed by, networks 

with fixed-weight RP layer. We hypothesize that this poor 

performance of random projection with ReLU nonlinear-

ity is a consequence of a small size of the RP layer output. 

(Because of the computational cost, in our main experiments 

we limited the output of fine-tuned random projection layer 

to 1000 dimensions.) Note that input and output units in 

the fine-tuned RP layer are sparsely connected. Therefore, 

when the RP layer processes a sparse training example, the 

total input to the nonlinearity is also sparse. If we apply 

ReLU activation, we effectively zero-out, on average, half 

of the elements in the sparse input. We believe that this 

loss of information causes the decrease in network perfor-

mance. If our hypothesis is correct, random projection with 

ReLU nonlinearity should perform better with larger output 

dimensionality.

To verify this hypothesis, we performed additional exper-

iments with larger RP layers. In particular, we experimented 

Table 4  Test errors (%) for 

networks with fine-tuned 

random projection layer

For comparison, we also report errors for networks with fixed-weight random projection layer. For each 

dataset and random projection scheme we highlight the best performing network architecture

Dataset Li’s RP layer Count Sketch RP layer

Fixed weights Fine-tuned weights Fixed weights Fine-tuned weights

Linear ReLU Linear ReLU

MNIST 1.11 1.10 1.25 1.34 1.22 1.41

synthetic 

� = 10−5 , 

� = 0.2

27.49 26.55 30.59 20.42 20.16 27.16

webspam 0.36 0.35 0.38 0.32 0.25 0.33

url 3.75 3.30 3.78 0.96 0.75 0.81

3 Available at https ://www.csie.ntu.edu.tw/ cjlin /libsv mtool s/datas 

ets/.

https://www.csie.ntu.edu.tw/%20cjlin/libsvmtools/datasets/
https://www.csie.ntu.edu.tw/%20cjlin/libsvmtools/datasets/
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with Li’s RP layer on the MNIST and synthetic datasets. 

In experiments on MNIST, we trained networks with 784-

k-300-10 architectures, for k ∈ {100, 300, 500, 700} , and in 

experiments on the synthetic dataset we used 10
6-k-3000-1 

architecture for k ∈ {1000, 2000, 3000, 4000} . We employed 

the same training settings as in the previous experiments. 

For each k and each activation function, we selected the 

learning hyperparameters with experiments on the validation 

sets. Figure 5 presents the early stopping errors for networks 

with different activation functions after the RP layer and 

varying RP layer size. Our results suggest that introducing 

the ReLU activation function after the RP layer can improve 

the network performance, provided that the dimensionality 

of the RP layer is sufficiently high. In our experiments on 

the synthetic dataset, it was necessary to use 4000 units in 

the RP layer to make ReLU viable. However, such a large 

RP layer greatly increases the overall computational cost 

of training. Therefore, for practical applications involving 

large, high-dimensional data we recommend using networks 

with fine-tuned linear random projection.

5  Related work

The idea of using fixed random weights in neural networks 

is not new and has been incorporated into different models 

proposed throughout the years. Note, however, that not every 

layer with random weights realizes a random projection. One 

important family of shallow networks employing random 

weights are the random weight feedforward neural networks 

(RW-FNNs). These models differ from our approach in two 

important aspects. First, instead of lowering the input data 

dimensionality, they transform the input data into a higher-

dimensional space in which learning should, theoretically, 

be easier. Importantly, this transformation is most often 

nonlinear and, in general, does not preserve the distances 

between training examples. Additionally, after randomly 

transforming the input, RW-FNNs do not employ any feature 

normalization. Second, RW-FNNs cast the weight optimiza-

tion problem as a standard regularized least-squares prob-

lem, which can be solved analytically in a single step. While 

this approach offers a computational advantage compared to 

stochastic gradient descent, it is suitable only for networks 

with a single hidden layer. For a more comprehensive over-

view of RW-FNNs see [41]. Predecessors of these models 

were proposed in a number of early works on feedforward 

architectures, e.g. in [42, 43]. A more mature version of 

RW-FNNs, called Random Vector Functional-Link (RVFL) 

networks were introduced in [44, 45].

Arriaga and Vempala [18] suggested that the human brain 

may reduce the amount of information generated by visual 

stimuli in a process that resembles random projection. They 

showed that RP can be realized by a shallow neural network 

with weights drawn from a Gaussian distribution or just set 

randomly to - 1 or 1 (note that this is a denser variant of the 

Achlioptas’ construction [7]). Arriaga and Vempala used 

their so-called neuron-friendly RP to show that efficient 

learning is possible in the projected space. However, simi-

larly to RW-FNNs, they did not train deeper models on the 

projected data and used a simple learning algorithm instead 

of error backpropagation.

To the best of our knowledge, the only attempt at train-

ing DNNs on randomly projected data, and therefore the 

approach that is most relevant to our fixed-weight RP layers, 

was presented in [46]. Therein, Dahl et al. used randomly 

projected data as input to networks trained for the malware 

classification task. Specifically, they projected the original 

179, 000-dimensional data (trigrams of system API calls) 

to 4000 dimensions and used the projected data to train a 

neural network with two hidden layers. With this approach, 

they achieved 43% relative improvement in classification 

performance, compared to logistic regression trained on 

the unprojected data. However, their classification task was 

fairly simple, with the classes being nearly linearly separa-

ble. Unfortunately, Dahl et al. only evaluated Li’s random 

matrix construction [8], which is extremely sparse and, from 

our experience, is unsuited for projecting sparse data. It is 

also worth mentioning that in their experiments unsuper-

vised pretraining did not improve network performance, 

unlike in experiments reported in our work. Finally, Dahl 

et al. evaluated only networks with the sigmoid activation 

function and do not report results for the currently state-of-

the-art ReLU activation.

Random weight matrices were also used in certain con-

volutional neural network architectures [47]. In particular, 

Saxe et al. reported convolutional networks with random 

weights that performed only slightly worse than networks 

with learned parameters. Finally, RP was studied as a pre-

processing step for SVM models. In particular, several 

RP schemes were evaluated in [48] as an input to SVM 
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classification and regression, yielding promising results on 

small- and medium-size datasets. Similarly to our results, 

they also found Count Sketch to be one of the best perform-

ing RP methods.

To the best of our knowledge this work is the first sys-

tematic evaluation of different RP schemes for training deep 

networks on sparse high-dimensional data. Unlike several of 

the related works, we focus on reducing the dimensionality 

of data in order to make the training task feasible. Further-

more, we investigate the balance between the density of the 

RP matrix, which has a significant impact on the computa-

tional cost, and the final network performance. Finally, we 

investigate network architectures where the RP weights are 

fine-tuned during training.

6  Conclusions

In this work, we studied the viability of training deep neural 

networks with random projection layer. Our results dem-

onstrate that networks with RP layer can match or improve 

the state-of-the-art classification performance on data with 

millions of dimensions and no spatial structure. This opens 

a path to applying deep networks to tasks where directly 

learning from the data would be infeasible: experiments on 

the KDD2010 datasets, for example, involved up to 30, 000-

fold reduction of the input dimensionality.

We studied two variants of the random projection layer: 

one with RP weights that are fixed during training and one 

where they are fine-tuned with error backpropagation. Our 

experimental evaluation of fixed-weight RP layers shows 

that Gaussian, Achlioptas’, SRHT and Count Sketch projec-

tions perform well, while the Li’s projection yields worse 

results. This could be attributed to the sparsity of the pro-

jected data—on the MNIST dataset, which is dense, Li’s 

method performed well. Note also that Achlioptas’, Count 

Sketch, Li’s and SRHT are fast: first three do not employ 

dense projection matrices and the last can be computed effi-

ciently using a transform similar to the fast Fourier trans-

form. Taking this into account, SRHT and Count Sketch 

projections combine the best network performance with 

efficient data projection. Apart from the results reported in 

this work, we also experimented with using fixed-weight 

RP for bag-of-words (BOW) data. Specifically, we experi-

mented with training deep autoencoders similar to the ones 

described in [49] on randomly projected BOW vectors. 

While this approach enabled us to train autoencoders on 

larger dictionaries, it did not achieve performance compa-

rable to the reference networks. This result can be a conse-

quence of two facts. First, the autoencoders with projected 

data require Gaussian input units. The reference networks 

employ the constrained Poisson model, which is tailored 

to BOW data. Second, the dictionary used by the reference 

models already captured most of the word count in the text.

Our experiments with fine-tuned random projection sug-

gest that adjusting the nonzero weights in a sparse RP layer 

can significantly improve the overall network performance. 

In particular, by using the fine-tuned Count Sketch RP layer, 

we were able to train networks that achieved more than 30% 

lower classification error than the previously state-of-the-art 

methods on webspam and url datasets. To make the task 

of training the RP layer feasible, we employed several archi-

tectural and training modifications. First, instead of normal-

izing the input data we applied batch normalization after the 

random projection layer. Second, we fine-tuned only these 

RP weights that were initially nonzero. Finally, we found 

that applying a nonlinear activation function after the batch 

normalization is viable only when the input is projected to 

high-dimensional space. In practice, the performance gain 

from this nonlinearity does not justify the additional cost 

introduced by fine-tuning an RP layer with a high-dimen-

sional output.

Training deep networks with random projection layer is 

more computationally expensive than training linear classi-

fiers, such as logistic regression or support vector machines. 

However, with an already trained model the inference time is 

small: feeding a training example through the RP layer can 

be realized by a single matrix multiplication. By using fast 

random projection schemes, this operation can be performed 

in nearly linear or linear time ( (d log k) for SRHT and (d) 

for Count Sketch). The operations in subsequent layers can 

be implemented efficiently on modern hardware. Therefore, 

despite the computational cost of training, neural networks 

with random projection layer can be used to solve practical 

problems.
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