
Vol.:(0123456789)1 3

Pattern Analysis and Applications (2019) 22:1221–1231

https://doi.org/10.1007/s10044-018-0697-0

SHORT PAPER

Training neural networks on high‑dimensional data using random
projection

Piotr Iwo Wójcik1 · Marcin Kurdziel1

Received: 30 November 2016 / Accepted: 9 March 2018 / Published online: 19 March 2018

© The Author(s) 2018

Abstract

Training deep neural networks (DNNs) on high-dimensional data with no spatial structure poses a major computational prob-

lem. It implies a network architecture with a huge input layer, which greatly increases the number of weights, often making

the training infeasible. One solution to this problem is to reduce the dimensionality of the input space to a manageable size,

and then train a deep network on a representation with fewer dimensions. Here, we focus on performing the dimensionality

reduction step by randomly projecting the input data into a lower-dimensional space. Conceptually, this is equivalent to

adding a random projection (RP) layer in front of the network. We study two variants of RP layers: one where the weights

are fixed, and one where they are fine-tuned during network training. We evaluate the performance of DNNs with input

layers constructed using several recently proposed RP schemes. These include: Gaussian, Achlioptas’, Li’s, subsampled

randomized Hadamard transform (SRHT) and Count Sketch-based constructions. Our results demonstrate that DNNs with

RP layer achieve competitive performance on high-dimensional real-world datasets. In particular, we show that SRHT and

Count Sketch-based projections provide the best balance between the projection time and the network performance.

Keywords Random projection · Neural networks · High-dimensional data · Sparse data

1 Introduction

Deep-learning methods excel in many classical machine

learning tasks, such as image and speech recognition or

sequence modelling [1]. Unlike conventional machine learn-

ing techniques, they do not require handcrafted features,

but instead discover features during learning. However, the

dimensionality of input data in neural network applications

is relatively low; for example, networks trained for speech

recognition tasks employ input vectors with size on the order

of hundreds of dimensions [2]. Learning with larger input

dimensionality typically requires some structure in the input

data. This is the case in, e.g. convolutional neural networks

(CNNs), which take advantage of the spatial structure of

images by exploiting the local connectivity and sharing the

weights between spatial locations. This greatly reduces the

number of learnable parameters, enabling CNNs to work

with up to hundreds of thousands of input pixels.

The motivation for this work stems from the problem of

training DNNs on unstructured data with a large number of

dimensions. Such data often arise in social media, web crawl-

ing, gene sequencing or biomedical applications. When there

is no exploitable input structure, training DNNs on high-

dimensional data poses a significant computational problem.

The reason for this is the implied network architecture, and in

particular an input layer which may contain billions of weights.

Even with recent advances in GPGPU computing, training net-

works with this number of parameters is infeasible. Therefore,

learning in such applications is often performed with linear

classifiers, usually support vector machines or logistic regres-

sion [3]. We show that this problem can be solved by incor-

porating random projection into the network architecture. In

particular, we propose to prepend the network with an input

layer whose weights are initialized with a random projection

matrix. We study two ways of training this architecture: one

where the parameters of the RP layer are fixed during training,

and one where they are fine-tuned with error backpropagation.

 * Piotr Iwo Wójcik

 pwojcik@agh.edu.pl

 Marcin Kurdziel

 kurdziel@agh.edu.pl

1 Department of Computer Science, Faculty of Computer

Science, Electronics and Telecommunications, AGH

University of Science and Technology, al. A. Mickiewicza

30, 30-059 Kraków, Poland

http://crossmark.crossref.org/dialog/?doi=10.1007/s10044-018-0697-0&domain=pdf

1222 Pattern Analysis and Applications (2019) 22:1221–1231

1 3

Our results show that on high-dimensional real-world datasets

neural networks with RP layer achieve performance competi-

tive with the state-of-the-art alternatives.

This work is organized as follows. First, in Sect. 2, we

briefly review most popular RP schemes. In Sect. 3, we intro-

duce the RP layer. Then, in Sect. 4, we evaluate networks with

fixed and fine-tuned RP layers on several synthetic and real-

world datasets.

2 Random projection matrices

Let � ∈ ℝ
n×d denote a data matrix consisting of n data points

in ℝd . The key idea behind random projection stems from the

Johnson–Lindenstrauss Lemma [4], which states that a set of

n points in a high-dimensional vector space can be embedded

into k = (�−2 log n) dimensions, with the distances between

these points preserved up to a factor of 1 + � . This limit can

be realized with a linear projection �̃ = �� , for a carefully

designed random matrix � ∈ ℝ
d×k (k ≪ d).

Several constructions have been recently proposed for the

RP matrix � . The simplest and most straightforward construc-

tion is the Gaussian random matrix, whose entries rij are i.i.d.

samples from a normal distribution (0,
1

k
) [5, 6]. In [7] Ach-

lioptas proposed a sparser projection matrix, in which only one

third of the elements are nonzero:

Li et al. [8] introduced an even sparser random matrix, by

extending Achlioptas’ construction:

Note that setting s = 3 in the above construction yields Ach-

lioptas’ matrix. Li et al. showed, however, that one can use s

as high as
√

d to significantly sparsify the projection matrix

and in turn to speed up the projection.

Ailon and Chazelle [9] proposed a fast embedding based on

the Hadamard–Walsh matrix, the so-called subsampled rand-

omized Hadamard transform (SRHT). The Hadamard–Walsh

matrix �
t
∈ ℝ

t×t is defined recursively as:

rij =

�
3

k
⋅

⎧
⎪⎨⎪⎩

1 with probability 1∕6

0 with probability 2∕3

− 1 with probability 1∕6

.

rij =

�
s

k
⋅

⎧
⎪⎨⎪⎩

1 with probability
1

2s

0 with probability 1 −
1

s

− 1 with probability
1

2s

.

�1 = 1, �
t
=

[

�
t∕2 �

t∕2

�
t∕2 −�

t∕2

]

,

for any t that is a power of two. Ailon and Chazelle defined

their projection matrix �
HT

 as a scaled product of three

matrices:

where � is a d × d diagonal matrix with random entries

drawn uniformly from {1,− 1} , � is a d × d normalized Had-

amard–Walsh matrix: � =

√

1

t
�

t
 and � is a sparse d × k

random matrix. This construction assumes that d is a power

of two and is greater or equal to the dimensionality of the

data. If the dimensionality of the data is lower than d we pad

� with zeros. Elements of � are set to 0 with probability

1 − q and are drawn from a normal distribution (0,
1

q
) oth-

erwise; q is a sparsity parameter. Using matrix multiplica-

tion akin to fast Fourier transform, the product ��
HT

 can be

computed in (nd log d) operations, as opposed to (ndk) if

the projection was done by a naive matrix multiplication. In

[10] the running time of SRHT was further improved to

(nd log k).

Another family of RP methods is based on the Count

Sketch algorithm. The Count Sketch algorithm was initially

proposed by Charikar et al. [11] as a method to estimate the

frequency of items in a data stream. In [12, 13] it was used as

a dimensionality reduction method. The explicit form of the

projection matrix was then given in [14]. The Count Sketch

projection matrix can be given as: �
CS

= �� , where � is

defined as in SRHT and � is a d × k sparse matrix, with each

row chosen randomly from the k standard basis vectors of

ℝ
k . Similarly to SRHT, in Count Sketch scheme the projec-

tion can be performed without a naive multiplication of the

data matrix by �
CS

 . Specifically, the result matrix �̃ is ini-

tialized with zeros and then each column of the data matrix

� is multiplied by − 1 with probability 50% and added to a

randomly selected column of �̃ . The computational com-

plexity of this projection scheme is (nd) , i.e. linear w.r.t.

the size of the input data. Because of its low computational

cost, Count Sketch-based projections have recently drawn

considerable attention [15–17].

We summarize the time complexity of different RP

schemes in Table 1.

3 Neural networks with random projection
layer

The weights in the random projection layer can be either

fixed or seen as model parameters that are fine-tuned dur-

ing training. The first variant, further called fixed-weight

RP layer, can be interpreted as training a standard network

�
HT

=

1
√

k

���,

1223Pattern Analysis and Applications (2019) 22:1221–1231

1 3

architecture on data whose dimensionality has been reduced

with random projection. A theoretical motivation for learn-

ing on such randomly projected data has been given in

[18, 19]. In particular, Arriaga and Vempala [18] provided

a clear motivation that can be summarized in two points:

(i) learning from randomly projected data is possible since

random projection preserves a lot of the input structure in

the lower-dimensional space, and (ii) learning in the lower-

dimensional space should require fewer examples and

therefore be faster. The second RP layer variant, which we

call fine-tuned RP layer, may improve the network per-

formance compared to fixed RP weights. However, it has a

significantly higher computational cost. Nevertheless, we

show that with carefully designed architecture and training

regime it can be applied to real-world problems.

3.1 Fixed-weight random projection layer

There are two main reasons for using DNNs with fixed-

weight RP layer (Fig. 1). First, with fixed weights we can

perform the projection and normalization of the whole data-

set only once prior to network training. Such optimization

is especially beneficial when the lower-dimensional projec-

tion fits in the operating memory, while the original input

data require out-of-core processing. Second, for dense RP

constructions, such as Gaussian, Achlioptas’ or SRHT, an

update of the weights in the RP layer may have a prohibi-

tive computational cost; for example, dense RP matrices

for some of the tasks reported in Sect. 4 have up to tens of

billions of weights. Fine-tuning weights in the RP layer is

more practical for sparse RP constructions, especially if we

restrict the updates to the weights that are initially nonzero.

We further elaborate on this approach in Sect. 3.2.

Layers that follow fixed-weight random projection can

be trained from scratch with error backpropagation. How-

ever, we found that the performance can be improved by pre-

training these layers with deep belief networks (DBNs) [20],

and then fine-tuning with error backpropagation. Before the

projected data are used to train the “learnable” part of the

network, we normalize each dimension to zero mean and

unit variance. Initial evaluation showed that this is neces-

sary: pretraining on unnormalized data was unstable, espe-

cially for highly sparse datasets. One particular advantage

of pretraining a DBN on normalized data is that we can use

Gaussian units [21] in the first layer of the “learnable” part

of the network.

The choice of the projection matrix in the RP layer is

not trivial and depends on the dimensionality and sparsity

of the input data. In particular, these two factors have a sig-

nificant impact on the computational cost of training. While

the projection time is usually negligible in comparison with

the training time, this may not be the case when the data

dimensionality is very high. Fortunately, especially for large

unstructured datasets, high dimensionality often goes hand

in hand with high sparsity. This is beneficial from the com-

putational point of view since sparse representation facili-

tates faster projection. In particular, the performance of RP

schemes that involve matrix multiplication can be improved

by fast algorithms for sparse matrix multiplication, e.g. [22,

23]. Some other RP schemes can also be optimized to take

advantage of the data sparsity [15].

Another aspect to consider is the sparsity of the projec-

tion matrix itself. Random projection matrices that provide

the best quality of embedding are typically dense [24].

Unfortunately, applying dense projection schemes to huge

datasets can be computationally prohibitive. In this case,

one needs to resort to more efficient projection schemes.

One possibility is to employ a projection scheme that does

not require matrix multiplication. A good example of such

random projection method is SRHT [10]. Another approach

is to use a sparse projection matrix, e.g. Li’s construction.

Moreover, these two approaches can be combined into a

projection scheme where the RP matrix is sparse and the

projection does not require an explicit matrix multiplication.

This results in very efficient projection methods, such as the

Count Sketch projection. However, projecting sparse data

with sparse RP matrices, regardless if they are explicitly

Table 1 Time complexity of random projection schemes

� is a n × d dataset matrix and k is the target dimensionality. If � is

sparse nnz(�) denotes the number of nonzero elements in �
aFor a standard implementation of sparse-dense matrix multiplication

RP scheme Matrix construction time Projection time

Dense input Sparse input

Gaussian (dk) (ndk) (nnz(�)k)

Achlioptas’ (dk) (ndk) (nnz(�)k)

Li’s (
√

dk) (n
√

dk) (nnz(�)k)a

SRHT (dk + d log d) (nd log k) (nd log k)

Count Sketch (d) (nd) (nnz(�))

Fig. 1 Neural network with fixed-weight random projection layer

1224 Pattern Analysis and Applications (2019) 22:1221–1231

1 3

or implicitly constructed, can introduce significant distor-

tions in the embedding [9]. These distortions may, in turn,

affect the network accuracy. Therefore, for large datasets, the

choice of the RP layer type is a trade-off between the net-

work accuracy and the computational complexity of the RP

embedding. Investigating this trade-off, apart from enabling

training of neural networks on high-dimensional data, is one

of the goals of this work.

3.2 Fine-tuned random projection layer

While the idea of fine-tuning weights in the RP layer may

seem straightforward, there are several technical difficul-

ties that make its implementation challenging. They stem,

primarily, from the high computational cost of performing

the weight updates and normalizing the layer outputs. As

we discussed in the previous section, for large-scale data-

sets performing even a single weights’ update in a dense RP

layer is computationally prohibitive. For example, for the

KDD2010-a dataset, a fully dense RP layer with 1000 out-

put units contains more than 2 × 10
10 weights—nearly twice

as much as the number of weights in the largest currently

used networks [25]. Fortunately, we can reduce the number

of weights to the order of millions by choosing a sparse vari-

ant of the RP layer. In this work, we propose to construct

fine-tuned RP layers using two sparse random projection

schemes presented in Sect. 2, i.e. Li’s and Count Sketch-

based projections. Compared to a dense RP matrix, Li’s

and Count Sketch constructions reduce the total number of

weights by a factor of
√

d and k, respectively, where d is the

number of input units and k is the number of output units.

To ensure that the number of model parameters, and

in turn the computational cost, does not increase during

training, we update only these elements in the fine-tuned

RP matrix that are initially nonzero. This construction can

be interpreted as a network layer with sparse connectivity

(Fig. 2). To further improve the training performance, we

can restrict the weight updates in the RP layer to a fraction

of training mini-batches. We found that even with sparse

RP layers this approximation is necessary for our largest

benchmark datasets. Importantly, to reduce the bias intro-

duced by skipping some of the weight updates, the updates

are performed for randomly selected mini-batches.

When training networks with the fixed-weight RP layer,

we normalize RP activations to zero mean and unit variance

(using moments calculated on the training set). Since the

weights in the RP layer do not change during training, this

operation can be performed only once, unlike in networks

with fine-tuned random projection. When training networks

with fine-tuned RP layer, we normalize activations by adding

batch normalization [26] between the random projection and

the activation function.

We found that networks with fine-tuned RP layer are

best trained end-to-end starting from random initialization.

Initially, we also considered different training regimes. For

example, we experimented with networks that were first

trained without changing the RP layer and then fine-tuned

end-to-end with backpropagation. However, this training

regime yielded inferior results.

4 Experiments

To evaluate the performance of DNNs with RP layer, we

carried out a set of comparative experiments on several clas-

sification tasks. We begin with experimental evaluation of

fixed-weight RP layer trained on synthetic and real-world

datasets.

4.1 Fixed-weight random projection layer

Experiments with fixed-weight RP layer were carried out

using all RP techniques described in Sect. 2, namely Gauss-

ian, Achlioptas’, Li’s, SRHT and Count Sketch. For Gaussian

and Achlioptas’ schemes, we implemented a memory effi-

cient projection procedure that avoids allocating the whole

projection matrix at once. For SRHT we did not explicitly

construct �
HT

 , but instead implemented the projection using

the fast Walsh–Hadamard Transform1. These optimizations

were necessary since in most of our experiments the projec-

tion matrix would not fit in the operating memory.

We trained the evaluated networks using mini-batch sto-

chastic gradient descent with momentum. Amplitudes of

Fig. 2 Neural network with fine-tuned random projection layer.

Weights in the layer are initialized to a sparse RP matrix. Only

weights that are initially nonzero are part of the model. The output of

the projection is batch normalized and optionally transformed with a

nonlinear activation function

1 Based on a Python implementation available at: http://www.quant

atris k.com/2015/04/10/fast-walsh -hadam ard-trans form-pytho n-matla

b/.

http://www.quantatrisk.com/2015/04/10/fast-walsh-hadamard-transform-python-matlab/
http://www.quantatrisk.com/2015/04/10/fast-walsh-hadamard-transform-python-matlab/
http://www.quantatrisk.com/2015/04/10/fast-walsh-hadamard-transform-python-matlab/

1225Pattern Analysis and Applications (2019) 22:1221–1231

1 3

weights were limited with the L2 cost. During fine-tuning,

the learning rate was decreased according to a slow exponen-

tial decay, while the momentum was slowly increased. We

also used dropout [27] to prevent overfitting. We employed

rectified linear (ReLU) units [28] in hidden layers and

Gaussian units in the layer after the random projection. Val-

ues of learning hyperparameters were selected with experi-

ments on validation sets constructed from the training data.

All experiments were run using a GPU-accelerated library

described in [29].

The evaluation begins with experiments on synthetic

datasets, where we investigate the impact of data sparsity

and the number of significant features on the performance

of networks with RP. As a reference in these experiments,

we use two linear classifiers, i.e. logistic regression (LR)

and support vector machines (SVM). We used implementa-

tions of these classifiers provided in the LIBLINEAR pack-

age [30]. Subsequent experiments evaluate the performance

of networks with RP layer on real-world datasets. First, we

show a toy example on the commonly used MNIST dataset

[31]. Afterwards, we present results on several large-scale

sparse datasets.

4.1.1 Experiments on synthetic datasets

We prepared several 10
6-dimensional synthetic datasets,

each consisting of 1.25 × 106 examples belonging to two

balanced classes. Each dataset was constructed by first gen-

erating a �-dense matrix S (� being the fraction of nonzero

elements in S), and selecting a fraction of features, � , that

would separate examples from the two classes. Nonzero ele-

ments in S were drawn randomly from a normal distribution

 (0, 1) . To separate the classes, we picked examples from

one class and added a Gaussian noise with nonzero mean to

all nonzero elements in significant features. Note that this

operation does not alter the sparsity of S. We generated two

groups of such sparse datasets:

• with fixed fraction of significant features � = 0.2 and

density � ranging from 10
−6 to 10

−4,

• with fixed density � = 10
−4 and a fraction of significant

features � ranging from 0.01 to 0.2.

The above ranges for � and � were chosen so that the most

difficult dataset variants had, on average, one or two signifi-

cant nonzero features per example. We randomly selected

80% rows of S as the training set and the remaining 20% as

the test set.

The synthetic datasets were projected to 1000 dimen-

sions and used to pretrain a network with two hidden

layers, each consisting of 3, 000 neurons. After pretrain-

ing, we added a logistic regression unit on top and fine-

tuned the network to minimize binary cross-entropy cost.

The reference logistic regression and SVM models were

trained on unprojected data. For both models, we report

results obtained with the solvers that performed best on the

validation set, namely dual L2-regularized logistic regres-

sion and dual L2-regularized L2-loss SVM.

Test classification errors for different density levels and

number of significant features are presented in Fig. 3 and

Fig. 4. An important observation here is that networks

with RP layer significantly outperformed full-dimensional

logistic regression and SVM models, except for the tests

where each example had, on average, 1–3 nonzero sig-

nificant features. In practice, we do not expect real-world

classification tasks to have an input representation with

such a low number of significant features. For example,

for all classification algorithms evaluated in this work the

accuracy on the hardest variants of the synthetic dataset

10
−6

10
−5

10
−4

ρ

0

10

20

30

40

50

C
la

ss
ifi

ca
ti
o
n

er
ro

r
(%

)

Gaussian

Li’s

SRHT

Count Sketch

Achlioptas’

LR

SVM

Fig. 3 Classification error on the synthetic datasets with fixed signifi-

cant feature fraction � = 0.2 and varying density �

0.000 0.025 0.050 0.075 0.100 0.125 0.150 0.175 0.200

ψ

0

10

20

30

40

50

C
la

ss
ifi

ca
ti
o
n

er
ro

r
(%

)

Gaussian

Li’s

SRHT

Count Sketch

Achlioptas’

LR

SVM

Fig. 4 Classification error on the synthetic datasets with fixed density

� = 10
−4 and varying fraction of significant features �

1226 Pattern Analysis and Applications (2019) 22:1221–1231

1 3

is much lower than on any of our real-world benchmarks

(Sect. 4.1.2), indicating harder input representation.

In all tests, SRHT and Achlioptas’ projections yielded the

best and almost equal performance. The Count Sketch and

the Gaussian projections performed slightly worse, espe-

cially for datasets with only a few significant features. Li’s

projection was outperformed by the other four RP schemes.

Another scheme with a sparse projection matrix, i.e. Count

Sketch, performed better. However, when the input data were

very sparse, it was also outperformed by dense projection

schemes.

Li’s projection matrix in our experiments had the same

sparsity as the Count Sketch matrix but nevertheless per-

formed worse. While it has been argued that sparse projec-

tion matrices are not suited for sparse data [9], this result

demonstrates that the matrix construction itself also plays

an important role. Note that columns in the Count Sketch

projection matrix are fully orthogonal, unlike in Li’s con-

struction. Moreover, orthogonal weight initialization has

been shown to improve the performance of deep networks

[32]. We believe that this may be the reason behind the better

performance of the Count Sketch RP layer.

4.1.2 Experiments on real‑world datasets

To demonstrate the practical effectiveness of DNNs with

fixed-weight RP layer, we performed experiments on five

real-world classification tasks. The datasets for these tasks

are summarized in Table 2.

First, as a toy example, we used the popular MNIST

benchmark. While it is a small and low-dimensional image

dataset, it is frequently used to evaluate neural networks

and has well-established reference results. Original MNIST

images are represented by 256 grey-scale levels, but in our

work we use pixel intensities rescaled to the ⟨0, 1⟩ interval.

We use the permutation invariant version of the dataset, i.e.

we randomly shuffle the pixel order. We projected the origi-

nal 784-dimensional MNIST digits to 400 dimensions and

used them to pretrain and fine-tune networks with two hid-

den layers consisting of 1000 neurons each. The networks

were fine-tuned to minimize multinomial cross-entropy cost.

With three RP matrices, namely Achlioptas’, Gaussian and

Li’s, they achieved performance close to the reference per-

formance on the unprojected digits (Table 3). When judging

this result, it is important to note that MNIST is relatively

dense, unlike other datasets used in this work.

In subsequent tests, we used four large high-dimensional

datasets, namely webspam [38], url [39]2, KDD2010-a

and KDD2010-b. All four are binary classification tasks.

webspam is a dataset consisting of 350,000 descriptors of

webpages. The challenge is to detect examples of so-called

Webspam (or search spam), i.e. webpages that are designed

to manipulate search engine results. We use the normalized

high-dimensional trigram version of the dataset. webspam

is not provided with standardized train/test set split. There-

fore, following [36], we use a random 80%/20% train/test

split. The url dataset consists of descriptors of 2.4 million

URL addresses. Descriptors contain lexical features (bag-of-

words representations of tokens in the URL) and host-based

features (WHOIS information, location, connection, speed,

blacklist membership, etc.). The challenge in this dataset

Table 2 Summary of real-world

datasets used in the evaluation

Density is the fraction of nonzero elements in the training set

Dataset Training set size Test set size Dimensions Classes Density

MNIST 60,000 10,000 784 10 0.191

webspam 280,000 70,000 16,609,143 2 2.24 × 10
−4

url 1,976,130 420,000 3,231,961 2 3.58 × 10−5

KDD2010-a 8,407,752 510,302 20,216,830 2 1.80 × 10
−6

KDD2010-b 19,264,097 748,401 29,890,095 2 9.84 × 10
−7

Table 3 Classification errors

(%) on real-world datasets for

networks with fixed-weight RP

layers

For each dataset, we highlight the result of the best performing method

Dataset References Gaussian Achlioptas’ Li’s SRHT Count Sketch

MNIST 0.92 [27] 1.06 0.94 1.11 1.04 1.34

webspam 0.32 [33], 0.40 [34] 0.38 0.40 0.36 0.40 0.32

url 1.23 [35], 1.34 [36] 1.03 1.12 3.75 1.01 0.96

KDD2010-a 10.38 [35] 10.86 10.88 11.95 10.86 11.49

KDD2010-b 10.01 [37], 10.42

[34], 13.25 [33]

10.51 10.49 10.98 10.49 10.54

2 Available at http://sysne t.ucsd.edu/proje cts/url/.

http://sysnet.ucsd.edu/projects/url/

1227Pattern Analysis and Applications (2019) 22:1221–1231

1 3

is to distinguish between malicious and benign addresses.

Following [36], we used examples from the first 100 days

of data collection as the training set and remaining examples

for testing. KDD2010-a and KDD2010-b are large student

performance prediction datasets from the KDD Cup 2010

challenge. We used pre-processed versions of these datasets

made available by the challenge winner [40] and adopted

the provided train/test set split. webspam and KDD2010

datasets are available from the LIBSVM datasets webpage3.

For all four datasets, we randomly projected the input vec-

tors to 1000 dimensions and trained a network with two

hidden layers, each one with 3000 neurons. Each network

was pretrained and then fine-tuned to minimize the binary

cross-entropy cost.

Overall, networks with fixed-weight RP layer signifi-

cantly improved over the current state-of-the-art results on

the url dataset and achieved competitive performance on

webspam and KDD2010 datasets (Table 3). Gaussian, Ach-

lioptas’ and SRHT projections performed similarly well in

these experiments, while Li’s method performed the worst.

Count Sketch was among the best performing projections for

datasets with density between 10−5
− 10−4 (webspam and

url), while for sparser datasets it yielded results similar to,

and in the case of KDD2010-a even worse than, Gaussian,

Achlioptas’ and SRHT. This agrees with the results from

experiments on the synthetic datasets (Sect. 4.1.1).

4.2 Fine-tuned random projection layer

We evaluated the performance of fine-tuned RP layer on

several large-scale datasets: a variant of the synthetic dataset

with density � = 10−5 and the fraction of significant features

� = 0.2 , webspam dataset, and url dataset. Addition-

ally, we report results on a toy benchmark—MNIST. We

employed network architectures with the same activation

functions, number of neurons and number hidden layers as

in the experiments with fixed-weight random projection. We

also employed the same training setup but performed addi-

tional validation experiments to choose the learning rate and

L2 cost hyperparameters. In addition to experiments with

linear random projection, we also investigated architectures

with the ReLU nonlinearity after batch normalization. In

experiments with MNIST and synthetic datasets we updated

the parameters in the RP layer for every training mini-batch.

In experiments with larger datasets, i.e. url and webspam,

we updated the RP weights for randomly selected 50% of

mini-batches.

Table 4 reports the early stopping errors achieved by

networks with fine-tuned RP layer. Compared to networks

with fixed-weight RP layer, networks with fine-tuned linear

random projection performed better on all datasets. Impor-

tantly, they further improved the state-of-the-art results on

webspam and url datasets. However, our results also show

that introducing a nonlinearity after the RP layer decreased

the network performance. In fact, networks where fine-tuned

random projection was followed by ReLU nonlinearity per-

formed very similarly to, or were outperformed by, networks

with fixed-weight RP layer. We hypothesize that this poor

performance of random projection with ReLU nonlinear-

ity is a consequence of a small size of the RP layer output.

(Because of the computational cost, in our main experiments

we limited the output of fine-tuned random projection layer

to 1000 dimensions.) Note that input and output units in

the fine-tuned RP layer are sparsely connected. Therefore,

when the RP layer processes a sparse training example, the

total input to the nonlinearity is also sparse. If we apply

ReLU activation, we effectively zero-out, on average, half

of the elements in the sparse input. We believe that this

loss of information causes the decrease in network perfor-

mance. If our hypothesis is correct, random projection with

ReLU nonlinearity should perform better with larger output

dimensionality.

To verify this hypothesis, we performed additional exper-

iments with larger RP layers. In particular, we experimented

Table 4 Test errors (%) for

networks with fine-tuned

random projection layer

For comparison, we also report errors for networks with fixed-weight random projection layer. For each

dataset and random projection scheme we highlight the best performing network architecture

Dataset Li’s RP layer Count Sketch RP layer

Fixed weights Fine-tuned weights Fixed weights Fine-tuned weights

Linear ReLU Linear ReLU

MNIST 1.11 1.10 1.25 1.34 1.22 1.41

synthetic

� = 10−5 ,

� = 0.2

27.49 26.55 30.59 20.42 20.16 27.16

webspam 0.36 0.35 0.38 0.32 0.25 0.33

url 3.75 3.30 3.78 0.96 0.75 0.81

3 Available at https ://www.csie.ntu.edu.tw/ cjlin /libsv mtool s/datas

ets/.

https://www.csie.ntu.edu.tw/%20cjlin/libsvmtools/datasets/
https://www.csie.ntu.edu.tw/%20cjlin/libsvmtools/datasets/

1228 Pattern Analysis and Applications (2019) 22:1221–1231

1 3

with Li’s RP layer on the MNIST and synthetic datasets.

In experiments on MNIST, we trained networks with 784-

k-300-10 architectures, for k ∈ {100, 300, 500, 700} , and in

experiments on the synthetic dataset we used 10
6-k-3000-1

architecture for k ∈ {1000, 2000, 3000, 4000} . We employed

the same training settings as in the previous experiments.

For each k and each activation function, we selected the

learning hyperparameters with experiments on the validation

sets. Figure 5 presents the early stopping errors for networks

with different activation functions after the RP layer and

varying RP layer size. Our results suggest that introducing

the ReLU activation function after the RP layer can improve

the network performance, provided that the dimensionality

of the RP layer is sufficiently high. In our experiments on

the synthetic dataset, it was necessary to use 4000 units in

the RP layer to make ReLU viable. However, such a large

RP layer greatly increases the overall computational cost

of training. Therefore, for practical applications involving

large, high-dimensional data we recommend using networks

with fine-tuned linear random projection.

5 Related work

The idea of using fixed random weights in neural networks

is not new and has been incorporated into different models

proposed throughout the years. Note, however, that not every

layer with random weights realizes a random projection. One

important family of shallow networks employing random

weights are the random weight feedforward neural networks

(RW-FNNs). These models differ from our approach in two

important aspects. First, instead of lowering the input data

dimensionality, they transform the input data into a higher-

dimensional space in which learning should, theoretically,

be easier. Importantly, this transformation is most often

nonlinear and, in general, does not preserve the distances

between training examples. Additionally, after randomly

transforming the input, RW-FNNs do not employ any feature

normalization. Second, RW-FNNs cast the weight optimiza-

tion problem as a standard regularized least-squares prob-

lem, which can be solved analytically in a single step. While

this approach offers a computational advantage compared to

stochastic gradient descent, it is suitable only for networks

with a single hidden layer. For a more comprehensive over-

view of RW-FNNs see [41]. Predecessors of these models

were proposed in a number of early works on feedforward

architectures, e.g. in [42, 43]. A more mature version of

RW-FNNs, called Random Vector Functional-Link (RVFL)

networks were introduced in [44, 45].

Arriaga and Vempala [18] suggested that the human brain

may reduce the amount of information generated by visual

stimuli in a process that resembles random projection. They

showed that RP can be realized by a shallow neural network

with weights drawn from a Gaussian distribution or just set

randomly to - 1 or 1 (note that this is a denser variant of the

Achlioptas’ construction [7]). Arriaga and Vempala used

their so-called neuron-friendly RP to show that efficient

learning is possible in the projected space. However, simi-

larly to RW-FNNs, they did not train deeper models on the

projected data and used a simple learning algorithm instead

of error backpropagation.

To the best of our knowledge, the only attempt at train-

ing DNNs on randomly projected data, and therefore the

approach that is most relevant to our fixed-weight RP layers,

was presented in [46]. Therein, Dahl et al. used randomly

projected data as input to networks trained for the malware

classification task. Specifically, they projected the original

179, 000-dimensional data (trigrams of system API calls)

to 4000 dimensions and used the projected data to train a

neural network with two hidden layers. With this approach,

they achieved 43% relative improvement in classification

performance, compared to logistic regression trained on

the unprojected data. However, their classification task was

fairly simple, with the classes being nearly linearly separa-

ble. Unfortunately, Dahl et al. only evaluated Li’s random

matrix construction [8], which is extremely sparse and, from

our experience, is unsuited for projecting sparse data. It is

also worth mentioning that in their experiments unsuper-

vised pretraining did not improve network performance,

unlike in experiments reported in our work. Finally, Dahl

et al. evaluated only networks with the sigmoid activation

function and do not report results for the currently state-of-

the-art ReLU activation.

Random weight matrices were also used in certain con-

volutional neural network architectures [47]. In particular,

Saxe et al. reported convolutional networks with random

weights that performed only slightly worse than networks

with learned parameters. Finally, RP was studied as a pre-

processing step for SVM models. In particular, several

RP schemes were evaluated in [48] as an input to SVM

100 300 500 700

k

1.4

1.6

1.8

2.0

C
la

ss
ifi

ca
ti
o
n

er
ro

r
(%

)
MNIST

Linear

ReLU

1000 2000 3000 4000

k

22

24

26

28

30

synthetic

Linear

ReLU

Fig. 5 Performance of networks with fine-tuned RP layer for different

activation functions and output dimensionality (k)

1229Pattern Analysis and Applications (2019) 22:1221–1231

1 3

classification and regression, yielding promising results on

small- and medium-size datasets. Similarly to our results,

they also found Count Sketch to be one of the best perform-

ing RP methods.

To the best of our knowledge this work is the first sys-

tematic evaluation of different RP schemes for training deep

networks on sparse high-dimensional data. Unlike several of

the related works, we focus on reducing the dimensionality

of data in order to make the training task feasible. Further-

more, we investigate the balance between the density of the

RP matrix, which has a significant impact on the computa-

tional cost, and the final network performance. Finally, we

investigate network architectures where the RP weights are

fine-tuned during training.

6 Conclusions

In this work, we studied the viability of training deep neural

networks with random projection layer. Our results dem-

onstrate that networks with RP layer can match or improve

the state-of-the-art classification performance on data with

millions of dimensions and no spatial structure. This opens

a path to applying deep networks to tasks where directly

learning from the data would be infeasible: experiments on

the KDD2010 datasets, for example, involved up to 30, 000-

fold reduction of the input dimensionality.

We studied two variants of the random projection layer:

one with RP weights that are fixed during training and one

where they are fine-tuned with error backpropagation. Our

experimental evaluation of fixed-weight RP layers shows

that Gaussian, Achlioptas’, SRHT and Count Sketch projec-

tions perform well, while the Li’s projection yields worse

results. This could be attributed to the sparsity of the pro-

jected data—on the MNIST dataset, which is dense, Li’s

method performed well. Note also that Achlioptas’, Count

Sketch, Li’s and SRHT are fast: first three do not employ

dense projection matrices and the last can be computed effi-

ciently using a transform similar to the fast Fourier trans-

form. Taking this into account, SRHT and Count Sketch

projections combine the best network performance with

efficient data projection. Apart from the results reported in

this work, we also experimented with using fixed-weight

RP for bag-of-words (BOW) data. Specifically, we experi-

mented with training deep autoencoders similar to the ones

described in [49] on randomly projected BOW vectors.

While this approach enabled us to train autoencoders on

larger dictionaries, it did not achieve performance compa-

rable to the reference networks. This result can be a conse-

quence of two facts. First, the autoencoders with projected

data require Gaussian input units. The reference networks

employ the constrained Poisson model, which is tailored

to BOW data. Second, the dictionary used by the reference

models already captured most of the word count in the text.

Our experiments with fine-tuned random projection sug-

gest that adjusting the nonzero weights in a sparse RP layer

can significantly improve the overall network performance.

In particular, by using the fine-tuned Count Sketch RP layer,

we were able to train networks that achieved more than 30%

lower classification error than the previously state-of-the-art

methods on webspam and url datasets. To make the task

of training the RP layer feasible, we employed several archi-

tectural and training modifications. First, instead of normal-

izing the input data we applied batch normalization after the

random projection layer. Second, we fine-tuned only these

RP weights that were initially nonzero. Finally, we found

that applying a nonlinear activation function after the batch

normalization is viable only when the input is projected to

high-dimensional space. In practice, the performance gain

from this nonlinearity does not justify the additional cost

introduced by fine-tuning an RP layer with a high-dimen-

sional output.

Training deep networks with random projection layer is

more computationally expensive than training linear classi-

fiers, such as logistic regression or support vector machines.

However, with an already trained model the inference time is

small: feeding a training example through the RP layer can

be realized by a single matrix multiplication. By using fast

random projection schemes, this operation can be performed

in nearly linear or linear time ((d log k) for SRHT and (d)

for Count Sketch). The operations in subsequent layers can

be implemented efficiently on modern hardware. Therefore,

despite the computational cost of training, neural networks

with random projection layer can be used to solve practical

problems.

Acknowledgements This research is supported by the Polish National

Science Centre grant no. DEC-2013/09/B/ST6/01549 “Interactive

Visual Text Analytics (IVTA): Development of novel, user-driven text

mining and visualization methods for large text corpora exploration.”

This research was carried out with the support of the “HPC Infra-

structure for Grand Challenges of Science and Engineering” Project,

co-financed by the European Regional Development Fund under the

Innovative Economy Operational Programme. This research was sup-

ported in part by PL-Grid Infrastructure. We would like to thank prof.

Witold Dzwinel for helpful comments and suggestions during the work

on this article.

Open Access This article is distributed under the terms of the Crea-

tive Commons Attribution 4.0 International License (http://creat iveco

mmons .org/licen ses/by/4.0/), which permits unrestricted use, distribu-

tion, and reproduction in any medium, provided you give appropriate

credit to the original author(s) and the source, provide a link to the

Creative Commons license, and indicate if changes were made.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

1230 Pattern Analysis and Applications (2019) 22:1221–1231

1 3

References

 1. LeCun Y, Bengio Y, Hinton G (2015) Deep learning. Nature

521(7553):436–444

 2. Graves A, Mohamed A, Hinton G (2013) Speech recognition with

deep recurrent neural networks. In: Proceedings of 2013 IEEE

international conference on acoustics, speech and signal process-

ing (ICASSP). IEEE, pp 6645–6649

 3. Yuan G-X, Ho C-H, Lin C-J (2012) Recent advances of large-scale

linear classification. Proceedings of the IEEE 100(9):2584–2603

 4. Johnson WB, Lindenstrauss J (1984) Extensions of Lipschitz map-

pings into a Hilbert space. Contemp Math 26:189–206

 5. Indyk P, Motwani R (1998) Approximate nearest neighbors:

towards removing the curse of dimensionality. In: Proceedings of

the 13th annual ACM symposium on theory of computing. ACM,

pp 604–613

 6. Dasgupta S, Gupta A (2003) An elementary proof of a theo-

rem of Johnson and Lindenstrauss. Random Struct Algorithms

22(1):60–65

 7. Achlioptas D (2001)Database-friendly random projections. In:

Proceedings of the 20th ACM SIGMOD-SIGACT-SIGART sym-

posium on principles of database systems. ACM, pp 274–281

 8. Li P, Hastie TJ, Church KW (2006) Very sparse random projec-

tions. In: Proceedings of the 12th ACM SIGKDD international

conference on knowledge discovery and data mining. ACM, pp

287–296

 9. Ailon N, Chazelle B (2006) Approximate nearest neighbors

and the fast Johnson–Lindenstrauss transform. In: Proceedings

of the 38th annual ACM symposium on theory of computing.

ACM, pp 557–563

 10. Ailon N, Liberty E (2009) Fast dimension reduction using

Rademacher series on dual BCH codes. Discrete Comput Geom

42(4):615–630

 11. Charikar M, Chen K, Farach-Colton M (2004) Finding frequent

items in data streams. Theor Comput Sci 312(1):3–15

 12. Weinberger K, Dasgupta A, Langford J, Smola A, Attenberg J

(2009) Feature hashing for large scale multitask learning. In:

Proceedings of the 26th annual international conference on

machine learning (ICML’09). ACM, pp 1113–1120

 13. Shi Q, Petterson J, Dror G, Langford J, Smola A, Vishwanathan

SVN (2009) Hash kernels for structured data. J Mach Learn Res

10:2615–2637

 14. Dasgupta A, Kumar R, Sarlós T (2010) A sparse Johnson–Lin-

denstrauss transform. In: Proceedings of the 42nd annual ACM

symposium on theory of computing. ACM, pp 341–350

 15. Clarkson KL, Woodruff DP (2013) Low rank approximation

and regression in input sparsity time. In: Proceedings of the

45th annual ACM symposium on theory of computing. ACM,

pp 81–90

 16. Meng X, Mahoney MW (2013) Low-distortion subspace embed-

dings in input-sparsity time and applications to robust linear

regression. In: Proceedings of the 45th annual ACM symposium

on theory of computing. ACM, pp 91–100

 17. Nelson J, Nguyên HL (2013) OSNAP: faster numerical linear

algebra algorithms via sparser subspace embeddings. In: Pro-

ceedings of the 54th annual IEEE symposium on foundations

of computer science. IEEE, pp 117–126

 18. Arriaga RI, Vempala S (2006) An algorithmic theory of learn-

ing: robust concepts and random projection. Mach Learn

63(2):161–182

 19. Hegde C, Davenport MA, Wakin MB, Baraniuk RG (2007) Effi-

cient machine learning using random projections. In: Proceed-

ings of the NIPS workshop on efficient machine learning

 20. Hinton GE, Salakhutdinov RR (2006) Reducing the dimension-

ality of data with neural networks. Science 313(5786):504–507

 21. Welling M, Rosen-Zvi M, Hinton GE (2004) Exponential fam-

ily harmoniums with an application to information retrieval.

In: Advances in neural information processing systems 17

(NIPS’04). MIT Press, pp 1481–1488

 22. Bank RE, Douglas CC (1993) Sparse matrix multiplication

package (SMMP). Adv Comput Math 1(1):127–137

 23. Greiner G et al (2012) Sparse matrix computations and their I/O

complexity. Ph.D. thesis, Dissertation, Technische Universität

München, München

 24. Nelson J, Nguyẽn HL (2014) Lower bounds for oblivious sub-

space embeddings. In: International colloquium on automata,

languages, and programming. Springer, pp 883–894

 25. Coates A, Huval B, Wang T, Wu D, Catanzaro B, Andrew N

(2013) Deep learning with cots HPC systems. In: Proceed-

ings of the 30th international conference on machine learning

(ICML’13). PMLR, pp 1337–1345

 26. Ioffe S, Szegedy C (2015) Batch normalization: accelerat-

ing deep network training by reducing internal covariate

shift. In: Proceedings of the 32nd international conference on

machine learning (ICML’15). PMLR, pp 448–456

 27. Srivastava N, Hinton GE, Krizhevsky A, Sutskever I, Salakhut-

dinov R (2014) Dropout: a simple way to prevent neural net-

works from overfitting. J Mach Learn Res 15(1):1929–1958

 28. Nair V, Hinton GE (2010) Rectified linear units improve

restricted Boltzmann machines. In: Fürnkranz J, Joachims

T (eds) Proceedings of the 27th international conference on

machine learning (ICML’10). Omnipress, pp 807–814

 29. Grzegorczyk K, Kurdziel M, Wójcik PI (2016) Implementing

deep learning algorithms on graphics processor units. In: Par-

allel processing and applied mathematics: 11th international

conference (PPAM2015). Springer, pp 473–482

 30. Fan R-E, Chang K-W, Hsieh C-J, Wang X-R, Lin C-J (2008)

Liblinear: a library for large linear classification. J Mach Learn

Res 9:1871–1874

 31. LeCun Y, Bottou L, Bengio Y, Haffner P (1998) Gradient-

based learning applied to document recognition. Proc IEEE

86(11):2278–2324

 32. Mishkin D, Matas J (2005) All you need is a good init. arXiv

preprint arXiv :1511.06422

 33. Yuan G-X, Ho C-H, Lin C-J (2012) An improved glm-

net for l1-regularized logistic regression. J Mach Learn Res

13(1):1999–2030

 34. Yuan G-X, Ma K-L (2012) Scalable training of sparse linear

svms. In: Proceedings of 2012 IEEE 12th international confer-

ence on data mining (ICDM). IEEE, pp 775–784

 35. Yang H, Wu J (2012) Practical large scale classification with

additive kernels. In: Proceedings of 4th Asian conference on

machine learning, pp 523–538

 36. Wang Z, Djuric N, Crammer K, Vucetic S (2011) Trading rep-

resentability for scalability: adaptive multi-hyperplane machine

for nonlinear classification. In: Proceedings of the 17th ACM

SIGKDD international conference on knowledge discovery and

data mining. ACM, pp 24–32

 37. Zhang C, Lee H, Shin KG (2012) Efficient distributed linear

classification algorithms via the alternating direction method of

multipliers. In: Proceedings of the 15th international conference

on artificial intelligence and statistics (AISTATS 2012). PMLR,

pp 1398–1406

 38. Webb S, Caverlee J, Pu C (2006) Introducing the Webb Spam

Corpus: using email spam to identify web spam automatically.

In: Proceedings of the 3rd conference on email and anti-Spam

(CEAS)

 39. Ma J, Saul LK, Savage S, Voelker GM (2009) Identifying suspi-

cious URLs: an application of large-scale online learning. In:

Bottou L, Littman M (eds) Proceedings of the 26th international

http://arxiv.org/abs/1511.06422

1231Pattern Analysis and Applications (2019) 22:1221–1231

1 3

conference on machine learning (ICML’09). Omnipress, pp

681–688

 40. Yu H-F, Lo H-Y, Hsieh H-P, Lou J-K, McKenzie TG , Chou J-W,

Chung P-H, Ho C-H, Chang C-F, Wei Y-H et al (2010) Feature

engineering and classifier ensemble for KDD Cup 2010. In:

Proceedings of the KDD Cup 2010 workshop, pp 1–16

 41. Scardapane S, Wang D (2017) Randomness in neural networks:

an overview. Wiley Interdiscip Rev Data Min Knowl Discov

7(2):1–18

 42. Gallant S, Smith D (1987) Random cells: an idea whose time

has come and gone... and come again. In: Proceeding of the

1987 IEEE international conference on neural networks. IEEE,

pp 671–678

 43. Schmidt WF, Kraaijveld MA, Duin RPW (1992) Feedforward

neural networks with random weights. In: Proceedings of the

11th IAPR international conference on pattern recognition

(IAPR). IEEE, pp 1–4

 44. Pao Y-H, Takefuji Y (1992) Functional-link net computing:

theory, system architecture, and functionalities. Computer

25(5):76–79

 45. Yoh-Han P, Park G-H (1994) Learning and generalization char-

acteristics of the random vector functional-link net. Neurocom-

puting 6(2):163–180

 46. Dahl GE, Stokes JW, Deng L, Yu D (2013) Large-scale mal-

ware classification using random projections and neural net-

works. In: Proceedings of 2013 IEEE international conference

on Acoustics, Speech and Signal Processing (ICASSP). IEEE,

pp 3422–3426

 47. Saxe A, Koh PW, Chen Z, Bhand M, Suresh B, Ng AY (2011)

On random weights and unsupervised feature learning. In: Pro-

ceedings of the 28th international conference on machine learn-

ing (ICML’11). Omnipress, pp 1089–1096

 48. Paul S, Boutsidis C, Magdon-Ismail M, Drineas P (2014) Random

projections for linear support vector machines. ACM Trans Knowl

Discov Data (TKDD) 8(4):22

 49. Salakhutdinov R, Hinton GE (2009) Semantic hashing. Int J

Approx Reason 50(7):969–978

	Training neural networks on high-dimensional data using random projection
	Abstract
	1 Introduction
	2 Random projection matrices
	3 Neural networks with random projection layer
	3.1 Fixed-weight random projection layer
	3.2 Fine-tuned random projection layer

	4 Experiments
	4.1 Fixed-weight random projection layer
	4.1.1 Experiments on synthetic datasets
	4.1.2 Experiments on real-world datasets

	4.2 Fine-tuned random projection layer

	5 Related work
	6 Conclusions
	Acknowledgements
	References

