
Training Product Unit Networks using Cooperative Particle Swarm
Optimisers

F. van den Bergh, A.P. Engelbrecht
Department of Computer Science

University of Pretoria
fvdbergh@cs.up.ac.za, engel@driesie.cs.up.ac.za

Abstract

The Cooperative Particle Swarm Optimiser (CPSO) is a
variant of the Particle Swarm Optimiser (PSO) that splits
the problem vector, for example a neural network weight
vector, across several swarms. This paper investigates the
influence that the number of swarms used (also called the
split factor) has on the training performance of a Product
Unit Neural Network. Results are presented, comparing
the training performance of the two algorithms, PSO and
CPSO, as applied to the task of training the weight vector
of a Product Unit Neural Network.

1 Introduction

The particle swarm optimiser is a semi-global optimisation
algorithm, first introduced by Eberhart and Kennedy [1].
It has been applied successfully to applications involving
neural network training [2, 3, 4] and function minimisation
[5, 6].

The Cooperative Particle Swarm Optimiser (CPSO, or split
swarm) is a recent modification to the original PSO al-
gorithm leading to a significant reduction in training time
[3, 7]. Each vector to be optimised by the CPSO is split
across multiple swarms, with each swarm optimising a dis-
joint part of the vector with the help of the other swarms.
The cooperative approach increased the number of ad-
justable parameters in the PSO algorithm significantly, one
parameter being the number of swarms used, which can also
be interpreted as the number of parts that each particle is
split into, henceforth called thesplit factor. The effect that
the split factor has on the CPSO algorithm is studied here.

This paper applies the CPSO, as well as the original PSO,
to the problem of finding the optimal weights of a Product
Unit Neural Network (PUNN). Particle swarms have been
used to train PUNNs with promising results [2].

Section 2 briefly describes the CPSO algorithm, followed

by a brief review of the Product Unit Neural Network in
Section 3. A description of the experimental set-up is de-
scribed in Section 4, followed by some results in Section 5.
A summary of the findings of this paper is presented in Sec-
tion 6.

2 Cooperative Particle Swarms

The PSO, like a Genetic Algorithm, is a population based
optimisation technique, but the population is now called a
swarm.

Each particlej has the following attributes: A current posi-
tion in search space,x j , a current velocity,v j , and a personal
best position in search space,y j . During each iteration each
particle in the swarm is updated using (1) and (2). Assum-
ing that the functionf is to be minimised, that the swarm
consists ofn particles, andr1 ∼ U(0,1), r2 ∼ U(0,1) are
elements from two uniform random sequences in the range
(0,1), then:

v j ,i := wv j ,i +c1r1(y j ,i −x j ,i)+c2r2(ŷi −x j ,i) (1)

for all i ∈ 1..W, whereW is the dimension of the function
being optimised.

x j := x j +v j (2)

y j :=

{

y j if f (x j) ≥ f (y j)
x j if f (x j) < f (y j)

(3)

ŷ ∈ {y0,y1, . . . ,yn} | f (ŷ)
= min(f (y0), f (y1), . . . , f (yn))

(4)

Note thatŷ is therefore the global best position amongst all
the particles. The value of each of thev j ,i are clamped to the
range[−vmax,vmax] to prevent the PSO from ‘exploding’ —
thus leaving the search space. The value ofvmax is usually

chosen to bek×xmax, with 0.1≤ k≤ 1.0 [8]. Note that this
does not restrict the values ofx j to the range[−vmax,vmax]; it
only limits the maximum distance that a particle will move
during one iteration.

The variablew in (1) is called theinertia weight; this value
is typically set up to vary linearly from 1 to near zero during
the course of a training run. Larger values forw result in
smoother, more gradual changes in direction through search
space.

Acceleration coefficientsc1 andc2 also control how far a
particle will move in a single iteration. Typically these are
both set to a value of 2 [8], although assigning different val-
ues toc1 andc2 sometimes leads to improved performance
[9].

2.1 Original PSO
The pseudo code for the original PSO algorithm, with
M particles, is listed in Figure 1. Note that eachW-
dimensional vector is a complete potential solution vector.

Create and initialise ann-dimensional PSO :S
repeat:

for each particlej ∈ [1..M] :
if f (S.x j) < f (S.y j)

then S.y j = S.x j

if f (S.y j) < f (S.ŷ)
then S.ŷ = S.y j

endfor
Perform updates onSusing eqns. (1–2)

until stopping criterion is met

Figure 1: Pseudo Code for the Plain Swarm Algorithm

2.2 Cooperative PSO
Figure 2 lists the pseudo code for the Cooperative PSO
with a variable split factorK, andM particles per swarm.
This means that an input vector withW dimensions will
be split acrossK swarms, whereW modK swarms have
⌈W/K⌉-dimensional vectors, andK − (W modK) swarms
have⌊W/K⌋-dimensional vectors.

Note that the neural network requires aW-dimensional
weight vector to perform a forward propagation. This
means that each swarm in the cooperative algorithm must
use a vector from each of the other swarms to build a fullW-
dimensional vector. The functionb defined in Figure 2 does
exactly this: it takes the best vector (particle) from each of
the other swarms, concatenates them, splicing in the current
vector (particle) from the current swarmj in the appropri-
ate position. This vector is then used to determine the Mean
Sum Squared Error (MSSE) of the network by performing a

define
b(j,z) ≡ (S1.ŷ, . . . ,Sj−1.ŷ,z,Sj+1.ŷ, . . . ,SK .ŷ)

K1 = W modK
K2 = K− (W modK)
Initialise K1 ⌈W/K⌉-dim. PSOs :Si , i ∈ [1..K1]
Initialise K2 ⌊W/K⌋-dim. PSOs :Si , i ∈ [(K1 +1)..K]
repeat:

for each swarmi ∈ [1..K] :
for each particlej ∈ [1..M] :

if f (b(i,Si .x j)) < f (b(i,Si .y j))
then Si .y j = Si .x j

if f (b(i,Si .y j)) < f (b(i,Si .ŷ))
then Si .ŷ = Si .y j

endfor
Perform updates onSi using eqns. (1–2)

endfor
until stopping criterion is met

Figure 2: Pseudo Code for the Split Swarm Algorithm

forward propagation through the network usingb as weight
vector.

It is important to realise that increasing the number of
swarms used involves a trade-off with the number of iter-
ations that the algorithm can execute before its allocated
number of function evaluations have been used. For ex-
ample, a plain PSO with 10 particles can use 1000 itera-
tions on a budget of 10000 function evaluations. A CPSO
with 5 swarms of 10 particles each effectively uses 5× 10
function evaluations per iteration, thus it can only train for
10000/50= 200 iterations. It is believed that there will be
an optimal number of swarms to use for a specific problem,
which will be investigated in the experiments below.

3 Product Unit Neural Networks

The product unit network was first introduced by Durbin
and Rumelhart [10], and can be used in more or less any
situation where the better known summation unit back-
propagation networks have been used.

A network withD inputs,M hidden units andC output units
is shown in Figure 3, assuming that only product units are
used in the hidden layer, followed by summation units in
the output layer, with linear activation functions throughout.
The value of an output unityk for patternp is calculated
using

yk =
M

∑
j=0

wk j

D

∏
i=1

x
w ji
i,p , (5)

wherewk j is a weight from output unityk to hidden unit
zj , wji is a weight from hidden unitzj to input unitxi and

1 1 1

D CM

0

X Z Y

X Z Y

Z

Figure 3: Neural network architecture

∏D
i=1xw0i

i,p ≡ 1.0 (the bias unit).

Note that quadratic functions of the formax2 + c can be
represented by a network with only one input unit and one
hidden unit, thus a 1-1-1 PUNN can be used, compared
to a summation unit network requiring at least 2 hidden
units [2]. This is an indication of the increased information
storage capacity of the product unit neural network [10].

Unfortunately the usual optimisation algorithms like gradi-
ent descent cannot train the PUNN with the same efficiency
that they exhibit on summation unit networks, due to the
more turbulent error surface created by the product term
in (5). Global-like optimisation algorithms like the Particle
Swarm Optimiser, the Leapfrog algorithm and Genetic Al-
gorithms are better suited to the task of training PUNNs [2].

4 Experimental Set-up

Three classification problems were selected as case stud-
ies, ranging from a small network (Iris problem) to a large
network (Glass problem). The network configurations are
listed in Table 1. The data sets for these classification prob-
lems can be obtained from the UCI repository [11].

Table 1: Network configuration

Problem Architecture #weights
iris 4-3-3 24
ionosphere 34-2-2 74
glass 9-6-6 96

The aim of the experiments was to determine whether the
CPSO converges on the (local) minimum faster than the
original PSO, at the same time trying to find the optimal

number of swarms to use in the CPSO. This is done by keep-
ing the number of function evaluations, or forward propa-
gations through the network, fixed. The final classification
error, as well as the graph of the Mean Sum Squared Error
(MSSE), can then be used to compare the two architectures.

All runs trained the network for 2× 104 function evalua-
tions. The following parameter settings were used for all
swarms:

Maximum velocity vmax: Set to a value of 5.0. This value
is relatively large with respect to the final network
weights, which were usually smaller than 1.0;

Acceleration coefficientsc1,c2: Both set to a value of
1.4961798. This value corresponds to the value used
by Eberhart and Shi [12];

Inertia weight w: A w value of 0.729844 (see [12]) was
used.

The CPSO, implementing the algorithm listed in Figure 2,
can be configured with different ‘split factors’, indicating
the number of swarms used, and thus also the number of
dimensions handled per particle in each of the swarms. This
value was varied in the experiments below.

All results reported below are the averages computed over
500 runs for each configuration.

5 Results

Table 2: Training classification error for the Iris classification
problem.

Type #swarms Error (%)
Plain 1 1.61± 0.22
Split 2 1.71± 0.27

3 1.53± 0.21
4 1.85± 0.24
5 1.47± 0.21
10 2.15± 0.25

Tables 2,3 and 4 conform to the following format: The first
column indicates the type of PSO used while the second is
the split factor (or number of swarms). The last column lists
the training classification error, expressed as a percentage,
followed by the 95% confidence interval width.

The Iris problem produced some interesting results, indi-
cating that certain split factors produce better results than
configurations with larger split factors. For example, the

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

M
ea

n
S

um
 S

qu
ar

ed
 E

rr
or

Number of function evaluations

Plain
Split-2
Split-5

Split-10

Figure 4: MSSE plot for the Iris classification problem

Table 3: Training classification error for the Ionosphere classifi-
cation problem.

Type #swarms Error (%)
Plain 1 1.21± 0.07
Split 2 0.98± 0.06

3 0.82± 0.05
4 0.74± 0.05
5 0.75± 0.05
10 0.79± 0.05
15 0.74± 0.05
20 0.74± 0.05

4-swarm configuration performed worse than the 3-swarm
one. It appears that an odd number of swarms is a better
choice for this specific problem/network configuration com-
bination, however, the significance of this, given the small
total number of weights, is questionable.

Figure 4 shows that the MSSE curve for the CPSO algo-
rithm is significantly below that of the plain PSO most of
the time for the 2 and 5-swarm configurations. The 10-
swarm configuration, as can also be seen in Table 2, per-
formed slightly worse toward the end of the training run.

The Ionosphere problem had fewer surprises, with only the
10-swarm configuration producing anomalous results in Ta-
ble 3. Overall, the CPSO seems to perform significantly
better than the plain PSO on this problem.

The curves in Figure 5 follow the expected pattern, with the
CPSO performing well in the early stages (between 1000
and 6000 function evaluations), and levelling off toward the
end. The ‘start-up delay’ of the CPSO can clearly be seen
for the 10-swarm case — note the large MSSE during the
first 1000 function evaluations. This is a known problem of

0

0.05

0.1

0.15

0.2

0.25

2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

M
ea

n
S

um
 S

qu
ar

ed
 E

rr
or

Number of function evaluations

Plain
Split-2
Split-5

Split-10

Figure 5: MSSE plot for the Ionosphere classification problem

Table 4: Training classification error for the Glass classification
problem.

Type #swarms Error (%)
Plain 1 11.72± 0.34
Split 2 11.72± 0.30

5 11.06± 0.23
10 9.72± 0.21
15 9.86± 0.20
20 9.21± 0.20

the CPSO [7]: the larger the number of swarms, the greater
the start-up delay. The Ionosphere problem seems to accen-
tuate this problem somewhat. Also note that once the CPSO
caught up to the plain PSO (clearly visible for the 10-swarm
case), the rate of improvement was significantly better than
that of the standard PSO. The CPSO appears to perform bet-
ter with increasing split factors on the Ionosphere problem.

The Glass problem exhibits the now-expected improvement
for the CPSO as the number of swarms is increased. From
Table 4 it is clear that the CPSO performed significantly bet-
ter than the original PSO when a larger number of swarms
was used. There was a slight deviation from this pattern for
the 15-swarm case.

Figure 6 shows a strong case for the CPSO, with per-
formance improving consistently with larger split factors.
Even to the end of the simulation run the rate of decrease
in the error for the 20-swarm case seems to be greater than
that of the 5-swarm case, the opposite of what was observed
on the Iris problem. The glitch in the 20-swarm curve dur-
ing the first 2000 function evaluations is caused by the fact
that only 500 runs were used per architecture, resulting in
insufficient smoothing of the curve. This implies that the
20-swarm case has a larger variance in error during the early

0.035

0.04

0.045

0.05

0.055

0.06

0.065

2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

M
ea

n
S

um
 S

qu
ar

ed
 E

rr
or

Number of function evaluations

Plain
Split-2
Split-5

Split-20

Figure 6: MSSE plot for the Glass classification problem

0

0.05

0.1

0.15

0.2

0.25

2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

M
ea

n
S

um
 S

qu
ar

ed
 E

rr
or

Number of function evaluations

Plain
Split-10
Split-35

Figure 7: MSSE plot for the Ionosphere classification problem—
large number of swarms

training stages, something that can also be observed for the
10-swarm case on the Ionosphere problem in Figure 5.

Figure 4 shows that a large split factor results in a slight de-
crease in performance (toward the end) for the Iris problem.
To investigate this effect for the other two problems, large
split factors of 35 and 48 were selected for the Ionosphere
and Glass problems, respectively. These split factors result
in about two weights per swarm, corresponding to the same
number as a split factor of 10 in the Iris problem.

Figures 7 and 8 contain plots for these large split factor
cases. Firstly, note that the MSSE variance at each itera-
tion has increased, resulting a noticeably less-smooth curve.
The most important property, however, is that the 35 and 48
split factor cases perform worse than the 10 and 20 split
factor cases (respective to the problem). This shows that
larger split factors do not necessarily lead to improved per-
formance.

0.035

0.04

0.045

0.05

0.055

0.06

0.065

0.07

2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

M
ea

n
S

um
 S

qu
ar

ed
 E

rr
or

Number of function evaluations

Plain
Split-20
Split-48

Figure 8: MSSE plot for the Glass classification problem—large
number of swarms

6 Conclusions

When looking at the Mean Sum Squared Error, the CPSO
outperforms the standard PSO consistently. The results
indicate that generally the performance of the CPSO im-
proves as the split factor is increased until a critical ratio
(#weights/#swarms) is reached.

For the problems examined here it appears that around 5
dimensions per swarm results in good training performance,
which translates to split factors of 5, 15 and 20 for the three
problems, respectively. More classification problems will
have to be investigated, but it would appear that the optimal
split factor is thus⌈W/5⌉ for product unit network training.

References

[1] R. C. Eberhart and J. Kennedy, “A New Optimizer
using Particle Swarm Theory,” inProceedings of the Sixth
International Symposium on Micro Machine and Human
Science, (Nagoya, Japan), pp. 39–43, IEEE Service Center,
1995.

[2] A. P. Engelbrecht and A. Ismail, “Training product
unit neural networks,”Stability and Control: Theory and
Applications, vol. 2, no. 1–2, pp. 59–74, 1999.

[3] F. van den Bergh and A. P. Engelbrecht, “Cooperative
Learning in Neural Networks using Particle Swarm Opti-
mizers,”South African Computer Journal, pp. 84–90, Nov.
2000.

[4] R. C. Eberhart and X. Hu, “Human Tremor Analysis
Using Particle Swarm Optimization,” inProceedings of the
Congress on Evolutionary Computation, (Washington D.C,
USA), pp. 1927–1930, July 1999.

[5] Y. Shi and R. C. Eberhart, “Empirical Study of Parti-

cle Swarm Optimization,” inProceedings of the Congress
on Evolutionary Computation, (Washington D.C, USA),
pp. 1945–1949, July 1999.

[6] Y. Shi and R. C. Eberhart, “A Modified Parti-
cle Swarm Optimizer,” inIEEE International Conference
of Evolutionary Computation, (Anchorage, Alaska), May
1998.

[7] F. van den Bergh and A. P. Engelbrecht, “A Coop-
erative Approach to Particle Swarm Optimisation,”IEEE
Transactions on Evolutionary Computing, 2001. Currently
under review.

[8] R. C. Eberhart, P. Simpson, and R. Dobbins,Com-
putational Intelligence PC Tools, chapter 6, pp. 212–226.
Academic Press Professional, 1996.

[9] P. N. Suganthan, “Particle Swarm Optimizer with
Neighbourhood Operator,” inProceedings of the Congress
on Evolutionary Computation, (Washington D.C, USA),
pp. 1958–1961, July 1999.

[10] R. Durbin and D. Rumelhart, “Product Units: A
Computationally Powerful and Biologically Plausible Ex-
tension to Backpropagation Networks,”Neural Computa-
tion, vol. 1, pp. 133–142, 1989.

[11] C. Blake, E. Keogh, and C. Merz, “UCI
repository of machine learning databases,” 1998.
www.ics.uci.edu/∼mlearn/MLRepository.html.

[12] R. C. Eberhart and Y. Shi, “Comparing Inertia
Weights and Constriction Factors in Particle Swarm Opti-
mization,” inProceedings of the Congress on Evolutionary
Computing, pp. 84–89, 2000.

