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Abstract- This paper discusses the training of product neural networks using ge-

netic algorithms. Two unusual neural network techniques are combined; prod-

uct units are employed instead of the traditional summing units and genetic

algorithms train the network rather than backpropagation. As an example,

a neural network is trained to calculate the optimum width of transistors in

a CMOS switch. It is shown how local minima affect the performance of a

genetic algorithm, and one method of overcoming this is presented.

1 Introduction

Neural networks have been applied successfully to many problems in recent years. Tradi-

tionally these networks are composed of multiple layers of summation units. These simple

units sum their inputs, each input multiplied by a variable weight. This summation is

usually then squashed by a non-linear equation such as the logistic function. Several re-

searchers have shown that networks composed of these units can calculate any function to

any arbitrary degree of accuracy given enough summation units. [1] However, there are

many functions that are complicated enough that the number of summation units it takes

to duplicate them are prohibitive. One very commonly found task is that of higher order

combinations of the inputs such as either X * X or X * Y.=

One proposed solution is a new unit called the "sigma-pi unit" [3]. This unit not only

applies a weight to each input, but also applies a weight to the second and possibly higher

order products of the inputs. While much more powerful than the traditional summation

unit, the number of weights increase very rapidly with the number of inputs, and soon

become unmanageable when applied to solving large problems. Since most problems only

need one, or at most a few, of these terms, the sigma-pi unit is overkill.

1.1 Product Units

A suitable alternative was introduced by Durbin and Rumelhart [2]. The "product unit"

computes the product of its inputs, each raised to a variable power. This is shown in



5.2.2

i

(

Equat 0n I.

Figure 1: Recommended product network configurations [4]
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The p(i) term is treated in the same way as the variable weights for sumrnationu_ts.

Using the modified version of backpropagation presented by Durbin and Rumelhart, these

product units can provide much more generality than sigma-pi units. While a s[gma-pi

unit is constrained to using just polynomial terms, the product units can use fractional

and even negative terms. As Durbin _nd Rumelhart point out-,-prodtict uni_ can actually

be considered a superset of sigma-pi units; for if several of the product units axe used, and

they are constrained to only integer values, they would have the same results.

There are many ways that product units can be used in a network. However, the

overhead required to raise an arbitrary base to an arbitrary power makesit unlikely that

they will replace summation units. Durbin and Rumelhart propose that the primary use

of the product units will be to supplement the power of the summation units. Two pro-

posed architectures are shown in Figure 1. The term product neural networks (or product

networks) will be used to refer to networks containing both product and Suiiim_tlb_a°h=filts.

While pr%duct units-increase (he--capal_ility of a neural net-work,-they _so add-compli-

cations. Not only is backpropagatlon harder to accompils]i, but-th_ol-utlon space becomes

more convoluted. As Durbin and Rumelhart pointed out, there are often local minima that

trap the network. As a possible solution to this problem, this paper inve_gates the use

of genetic algorithms to train pr0duct networks.

-=_

2 Genetic Algorithms

2.1 Introduction

A genetic algorithm (GA) is an exploratory procedure that is able to locate neax-optimM

solutions to complex problems. To do this, it maintains a set (called a population) of trial

solutions (called chromosomes). Through a repeated four-step process, these chromosomes



3rd NASA Symposium on VLSI Design 1991 5.2.3

evolve until an acceptable solution is found. These steps are evaluation, reproduction,

breeding, and mutation. A representation for possible solutions must first be developed.

Then, with an initial random population, the GA is able to solve the problem almost

without regard to the interpretation of the chromosome. Each generation, the chromosomes

produced, through survival-of-the-fittest and exploitation of old knowledge in the gene

pool, should have an improved ability to solve the problem.

There were two primary reasons why GAs were applied to training product networks.

First was that the addition of product nodes made the solution space more complicated.

Because backpropagation is a gradient decent algorithm, it is very likely to get caught

in a local minimum. The second reason was that backpropagation tends to be slow with

complicated problems. It often takes many iterations to train a complicated network. It is

hoped that the use of a GA will find the best answer much faster than backpropagation.

2.2 Representation

Before applying a genetic algorithm to any task, a representation for possible solutions

must be found. The most common method for representing these possible solutions is with

a bit string. Higher order strings (such as character strings) or trees (such as binary trees)

have also been used. Since the architecture of the product networks to be trained will

be known, a binary string representation with a fixed number of bits per weight can be

constructed. Thus, each weight in the network has a certain number of bits associated with

it. This representation permits each chromosome to be decoded easily, while still allowing

each weight a large degree of freedom. The typical generation used had between 30 to 100

members in a population, with 16 bits representing a weight.

2.3 Evaluation

The first step in any generation is the evaluation of the current chromosomes. This is the

only step where the interpretation of the chromosome is used. Each chromosome in the

population is decoded, and the result is used to solve the original problem. This solution

is then graded on how well it solved the problem. The method used to grade product

networks is to calculate the sum of squared error (SSE) for the training set. The fitness of

the chromosome is equal to 1/(1 + SSE). This means that the better a network performs,

the higher its fitness, with a perfect network having a fitness of 1.

2.4 Reproduction

The next step in a generation is to create a new population based upon the evaluation

of the previous one. Every chromosome generates a specific number of copies of itself,

based on how well it solved the problem. Thus the chromosomes that performed better

will produce several copies of themselves, while the worst chromosomes won't produce

any copies. This is the step that allows GAs to take advantage of a survival-of-the-fittest

strategy.
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There are _everal methods to calculate the number of offspring that each chromosome

will have. One of the more prevalent methods is called ratioing. With ratioing, each

chromosome produces a number of offspring directly related to its fitness, with the only

restriction being that the total number of chromosomes per generation remains constant.

Thus, if one chromosome has a fitness that is twice that of another, then the superior chro-

mosome would produce twice as many offspring. However, there are two major problems

with this method. First, if all the chromosomes have similar fitness, each member in the

population will produce one offsprfng. This results in little pressure toward improving the

solution. The second problem, although from a different source, has the same effect. If any

one chromosome should happen to have a fitness much larger than any of the others, then

that chromosome would create most, if not .all of the new offspring. This discriminates

against the remaining information of the gene pool in favor of this super-chromosome, loos-

ing the information in the gene-pool. This particular type of stagnation has been labeled

premature convergence.

The method the author used to train the product networks is ranking [5]. In ranking,

the whole population is sorted by fitness. The number of offspring each chromosome will

generate is then determined by where it falls in the population. The ranking algorithm

used was that the top 30% of the population generated two offspring each, the bottom

30_ of the population generated no offspring, and the rest of the population each gener-

ated one offspring, in this way, no one chromosome can overpower the population in a

single generation, and no matter how close the actual fitness values are, there is always

constant pressure to improve. While the problem of premature convergence still exists, it

is greatly reduced by allowing other chromosomes a chance to mix information with high

fitness chromosomes. The disadvantage of using ranking is speed. In not allowing better

chromosomes to guide the population easily, good answers are slower to develop.

2.5 Breeding

The previous step, reproduction, created a population whose members currently best solve

the problem. However, many of the chromosomes are identical and none are different than

those in the previous generation. Breeding combines chromosomes from the population

and produces new chromosomes that, while they did not exist in the previous generation,

maintain the same gene pool. In natural evolution, breeding and reproduction are the

same step, but in GAs they have been separated to allow d!ff_erent methods for each to be

experimented with and independently evaluated. It is in this step where GAs can exploit

knowledge of the gene pool by allowing good chromosomes to combine with chromosomes

that aren't as good. This is based on (he assumption that each individual,no matter laow

good it is, doesn't contain the answer to the problem. The answer is contained in the

population as a whole, and only by combining chromosomes will the correct answer be

found.

There are many methods used for breeding; with the most common being crossover.

Crossover typically takes two chromosomes and swaps parts of each to create two new

chromosomes. Many variations on crossover have been used, but no results have shown
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Figure 2: Example of two-point crossover (crossover points indicated by arrows)

which is decisively better. The crossover the author used to train the product networks was

a simple two-point crossover. Two random points are chosen in the chromosome, and the

bitstring between the two points is swapped between the two chromosomes. An example

is shown in Figure 2.

2.6 Mutation

The last step in creating a new generation is based on the assumption that while each

generation is better than the previous, the individuals that die may have some information

that is essential to the solution. It is also possible that the initial population didn't have

all the necessary information. The reinjecfion of information into the population is called

mutation. Again, there are many ways to implement mutation, but essentially all choose

and change members of the population randomly.

The method the author used was to simply inject a constant number of mutations every

generation. The number of mutations usedwas approximately 0.25% of the total number

of bits in the entire population. These mutations where then randomly distributed among

all the bits, with each bit having the same chance of mutating. A mutation involved a

50/50 chance of setting the bit to a 1 or 0, in effect giving the mutated bit a 50/50 chance

of changing. This means that any specific chromosome may or may not mutate, with a

small chance that it could severely mutate.

2.7 An Application

A product network was trained that calculates the optimum width of the transistors in

a CMOS switch given temperature, power supply voltage, and minimum conductance as

inputs. While there are many excellent analysis tools available, such as circuit simulators,

there are almost no software packages available that transform performance specifications

into a circuit schematic. This network is designed as an aid to CMOS circuit designers,

and was first proposed by Thelen in [4].
The data used to train the network was extracted from several SPICE simulations with

differing transistor dimensions, temperatures, and power supply voltages. In the training

set created from this data, the voltages ranged from 3 to 12 volts, the temperature from

303 to 403 °K, and the transistor width from 2 to 20 micrometers. Using these inputs,

the conductance could range from approximately 1 to 500 micro-mhos. Two hundred data

points were coUected and a sample from these points is shown in Table 1.
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Voltage

3

3

3

3

3

3

3

3

Temperature (°K)

303

303

303

303

303

303

303

303

Conductance Desired Width

1.026E-6

3.806E-6

6.593E-6

1.204E-5

1.752E-5

2.851E-5

3.951E-5

6.152E-5

2

3

4

6

8
12

!6
24

Table 1- Sample from the data pointz used to train the network
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__ un-numbiild lines are Variable weights

Figure 3: The product neural network trained to select the width of a cMOs switch

The configuration of the product network was designed by Thelen using a priori infor-

mation about the equations to model a CMOS swltch: The layout of the network is shown

in Figure 3: .....................

3 Results

The first attempts at training the product network had very consistent, but wrong, results.

Through many runs of the GA, every solution represented a network that gave outputs of
approximately ten for the transistor width, with no regard for the input.

The first success came when the population was seeded with an approximation to the
solution. This approximation was derived by a curve- fitting program using the training

data. When seeded, the GA was able to quickly improve tile approximation and find a

r

=
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network that gave the desired output. While seeding did indeed allow an answer to be

found, it was desired that the GA could find an answer using an initial random population.

Better success was found using a penalty function. Penalty functions decrease the

fitness of a chromosome by adding constrictions to the solution. The penalty subtracted

from the fitness of a chromosome dependent upon how close the output of two consecutive

data points were. The closer the two outputs for the two points were, the larger the

penalty. With the addition of this penalty function, the GA was able to find a solution for

the network given an initial random solution.

4 Discussion

The initial results were very surprising. The inability of the GA to find an appropriate

solution meant that either the network could not solve the problem, or that the real

solution to the problem was extremely difficult to find. Previous work by Thelan showed

that indeed a solution to this problem did exist. This meant that the real solution must

be difficult for the GA to find. In fact, when seeding the GA with approximate solutions,

an answer was found.

There are three ways to make a problem difficult for a GA to solve. Either the solution

space is extremely convoluted, the best solution occupies a very small portion of the

solution space, or the solution space is misleading to a GA. Since proving whether a GA

is being mislead is very difficult, the other two possibilities where considered. Comparing

the solutions found by the GA showed ttlat they converged to the same answer each time.

Thus, the solution space was not too convoluted for the GA to search.

The correct solution was not found with an initial random population. However, it was

found with the insertion of the penalty function. (The effect of the penalty function was

to place a pole in the middle of the unwanted solution, thus allowing the GA to continue

searching the space, and find the correct solution.) This leads the authors to believe that

the right answer occupied a very small portion of the solution space, allowing the GA to

more easily find the undesired answer.

This example points out one common problem with GAs. In using GAs, often the solu-

tion space is not very well known, and suboptimal answers can often dominate the solution

space. Indeed, if the problem to be solved is incorrectly or incompletely represented, the

GA will take advantage of these mistakes, and produce wrong answers.

5 Conclusion

It has been shown that product networks can be successfully trained with Genetic Al-

gorithms. A product network has been trained to give the width of CMOS switch, given

power supply voltage, temperature and minimum conductance specifications for the switch.

Further research will be clone to compare the use of GAs to backpropagation in product

networks. Also, the capabilities of product networks will be compared to traditional neu-

ral networks. While product units have been shown to have superior capabilities over
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traditional summation units, almost no studies to compare different networks have been
done.
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