
1

Training Recurrent  Neural Networks: Why and How ?
An Illustration in Dynamical Process Modeling.

O. NERRAND, P. ROUSSEL-RAGOT,

D. URBANI, L. PERSONNAZ, G. DREYFUS, Senior Member, IEEE

Ecole Supérieure de Physique et de Chimie Industrielles

de la Ville de Paris,

Laboratoire d'Electronique

10, rue Vauquelin

75005 PARIS, FRANCE

ABSTRACT

The paper first summarizes a general approach to the training of recurrent neural
networks by gradient-based algorithms, which leads to the introduction of four
families of training algorithms. Because of the variety of possibilities thus
available to the "neural network designer", the choice of the appropriate
algorithm to solve a given problem becomes critical. We show that, in the case of
process modeling, this choice depends on how noise interferes with the process to
be modeled; this is evidenced by three examples of modeling of dynamical
processes, where the detrimental effect of inappropriate training algorithms on the
prediction error made by the network is clearly demonstrated.

1 INTRODUCTION

During the past few years, there has been a growing interest in the training of
recurrent neural networks, either for associative memory tasks, or for tasks related
to grammatical inference, time series prediction, process modeling and process
control. A general framework for the training of recurrent networks by gradient
descent methods, which has been proposed recently [1, 2], is summarized in
section 2; it encompasses algorithms which have been used classically in linear
filtering, identification and control, and algorithms which have been established
in the framework of neural network research; in addition, this general approach
leads to original algorithms. The variety of algorithms thus available raises the
question of the choice of an appropriate one in a given situation. In section 3, we
show, in the framework of non-linear process identification (i.e., of the estimation
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of the parameters of a model of a non-linear process), that the choice of an
appropriate algorithm depends of how noise interferes with the process. The
striking effect of using either an appropriate algorithm or an inappropriate one for
modeling a non-linear process undergoing non-measurable, random
perturbations, is shown on examples.

2 A GENERAL FRAMEWORK FOR THE TRAINING OF RECURRENT

NETWORKS BY GRADIENT-BASED DESCENT ALGORITHMS

In this section, we summarize a general approach described in more detail in [1].
We first define the terms which will be used in the paper. Some of this
terminology is borrowed directly from the fields of filtering and automatic control;
since many familiar concepts in the neural network area have been in use in other
disciplines, we deem it unnecessary, and in most cases confusing, to coin new
words for old concepts; conversely, we shall introduce a few new terms whenever
required for clarity. In the second part of this section, we recall the ingredients of
the algorithms whose use is illustrated in section 3.

2.1 Some definitions

Because the terminologies used in adaptive filtering, in automatic control, and in
the literature on neural networks, are sometimes conflicting, we first define the
terms that we use in the paper.

Adaptive vs. non-adaptive training

The training of a network makes use of two sequences, the sequence of inputs and
the sequence of corresponding desired outputs. If the network is first trained (with
a training sequence of finite length), and subsequently used (with the fixed weights
obtained from training), we shall refer to this mode of operation as "non-
adaptive". Conversely, we term "adaptive" the mode of operation whereby the
network is trained permanently while it is used (with a training sequence of
infinite length).

Performance criterion, cost function and training function

The computation of the coefficients during training aims at finding a system
whose operation is optimal with respect to some performance criterion which
may be either quantitative, e.g., maximizing the signal to noise ratio for spatial
filtering, or qualitative, e.g. the (subjective) quality of speech reconstruction. In the
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following, we assume that we can define a positive training function which is
such that a decrease of this function through modifications of the coefficients of
the network leads to an improvement of the performance of the system.
In the case of non-adaptive training, the training function is defined as a function
of all the data of the training set (in such a case, it is usually termed cost function);
the minimum of the function corresponds to the optimal performance of the
system. Training is an optimization procedure, using gradient-based methods.
In the case of adaptive training, it is impossible, in most instances, to define a
time-independent cost function whose minimization leads to a system which is
optimal with respect to the performance criterion. Therefore, the training function
is time-dependent. The modification of the coefficients is computed continually
from the gradient of the training function. The latter involves the data pertaining
to a time window of finite length, which shifts in time (sliding window), and the
coefficients are updated at each sampling time for instance.

Recursive vs. non-recursive algorithms, iterative vs. non-iterative algorithms

A non-recursive algorithm makes use of a cost function (i.e. a training function
defined on a fixed window). A recursive algorithm makes use of a training
function defined on a sliding window [3]. Therefore, an adaptive system must be
trained by a recursive algorithm, whereas a non-adaptive system may be trained
either by a non-recursive or by a recursive algorithm.
An iterative algorithm performs coefficient modifications several times from a set
of data pertaining to a given time window; a non-iterative algorithm does this
only once. The popular LMS (Least Mean Squares) algorithm is thus a recursive,
non-iterative algorithm operating on a sliding window of length 1.

In the following, we focus on the computation of the coefficients by gradient-based
descent; in the recursive, non-iterative case, the modification of the coefficients at
time n can be written as DC(n) = m(n) D(n) where {m(n)} is a sequence of positive
real numbers and D(n) is a linear transformation of the gradient of the training
function; in the simple gradient method, D(n) is just the opposite of the gradient
and m(n) is constant.

2.2 Training algorithms for recurrent networks

Canonical form

All the computational details on the material presented in this section can be
found in reference [1].
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It has been shown in [1] that any feedback network can be cast into a canonical
form which consists of a feedforward (static) network

- whose outputs are the outputs of the neurons which have desired values, and
the values of the state variables,

- whose inputs are the inputs of the network and the values of the state variables,
the latter being delayed by one time unit (Figure 1a).

The canonical form is thus expressed as

S(k) = j1 S(k-1), I(k-1)  ; z(k-1) = j2 S(k-1), I(k-1)   ,
where S(k) is the state vector, whose dimension Nr is the order of the network,
where z(k-1) is the output, and where I(k) is the vector of non-feedback inputs.
The transformation of a non-canonical form to a canonical form is described in [1].
Note that this concept can be used with any type of discrete-time neuron,
including for instance the high-order units used for grammatical inference [4]

Training function

The main difficulty in the recursive training of recurrent networks arises from the
fact that the output of the network and its partial derivatives with respect to the
coefficients depend on the values of the inputs since the beginning of the training
process, and on the initial state of the network. Therefore, a rigorous computation
of the gradient of the training function would imply taking into account all the
past inputs, and related desired outputs. This is not practical for two reasons: first,
it would require ever increasing computation times; second, in the case of the
modeling or control of a non-stationary process, taking the whole past into
account would not make sense, since a large part of the past might be irrelevant.
Therefore, the estimation of the gradient of the training function is performed by
truncating the computations to a fixed number of sampling periods Nt into the
past. Thus, at time n, this estimation will involve Nt identical copies of the
feedforward part of the canonical form of the network, with coefficients computed
at time n-1 (Figure 1b).
The training function at time n is defined on a sliding window of length Nc as a
sum of Nc quadratic errors:

J(C, n) = 1
2

 em(n) 2Â
m= Nt-N c+1

Nt

 with em (n) = d(n-Nt+m) - ym (n) and 1£Nc£Nt  ,

where ym(n) is the output of copy m (1£m£Nt). ym(n) is the value that the output
of the network would have taken on, at time n-Nt+m, had the vector of
coefficients at that time been equal to C(n-1).
In the case of non-recursive training, the training (or cost) function is defined on a
fixed window of length Nc ; at iteration i:
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J(C, i) = 1
2

 em(i) 2Â
m= Nt-N c+1

Nt

 with em (i) = d(m) - ym (i) and 1£Nc£Nt  ,

where ym(i) is the output of copy m (1£m£Nt), computed with the weights C(i-1)
obtained at iteration i-1.

Algorithms

The computation of the above training function requires the computation of the
outputs ym(n) (or ym(i)), which in turns require the computation of the state
Sinm(.) of the network (Figure 1b); various algorithms arise from different choices
of the values of the state inputs. In [1], four families of algorithms were
introduced: undirected, semi-directed, directed, and hybrid. In the following, we
restrict our discussion to the case where the desired values of the state variables
are available; thus, the first three families only will be considered in the present
paper.

3 APPLICATION: NON-LINEAR PROCESS IDENTIFICATION BY NEURAL

NETWORKS

3.1 The problem

Assume that a set of measurements can be carried out on a non-linear process.
From this data, a predictor model must be derived, whose dynamical behaviour
should be as close as possible to that of the process. The identification of the
process is the estimation of the parameters of the predictor, based on the available
data; if the predictor is implemented as a neural network, the identification is the
training of the network. When identifying a non-linear, dynamical process, a
recurrent network is a logical candidate. We show in the following how the choice
of the appropriate training algorithm results from assumptions made on the role
on random noise in the process. We use non-linear generalizations of three
popular models corresponding to three different assumptions on the noise; we
describe the predictor associated to each model, i.e. the predictor which is such that
the prediction error is the unpredictable part of the process output. We show, in
each case, which of the above algorithms is the most appropriate, if the predictor is
implemented as a neural network.

3.2 Three black-box models

Three approaches with black-box models will be considered, depending on the
assumptions made on the process [3]: (i) the output error model, (ii) the NARMAX

model, and (iii) the NARX (or equation error) model .
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In the output error approach, it is assumed that the output yp(k) of the process
(Figure 2a) obeys the following equations:
x(k) = F X(k-1), U(k-1)   ,
yp(k) = x(k) + w(k)  ,

with X(k-1) = {x(k-1), x(k-2), ...x(k-N)} , and U(k-1) =  {u(k-1), u(k-2), ...u(k-M} .
{w(k)} is a white noise sequence.
The output y(k) of the associated predictor (Figure 2b), such that yp(k)-y(k)=w(k), is
given by:
y(k) = F y(k-1), ... , y(k-N), U(k-1)  .

Therefore, the associated predictor of the output error process is recurrent of order
N. If there exists a neural network which can approximate function F , this
network can implement the predictor, and it must be trained by an undirected

algorithm [1], since it is essential that the predictor be recurrent.

A NARMAX (Non-linear Auto-Regressive Moving Average with eXogeneous
inputs) model [5] (Figure 3a) obeys the following equation:
xp(k) = F Xp(k-1), U(k-1), W(k-1)  + w(k) ,
yp(k) = xp(k) .

where Xp(k-1) = {xp(k-1), xp(k-2), ..., xp(k-N)} and
W(k-1) = {w(k-1), w(k-2), ..., w(k-P)}.
The output y(k) of the associated predictor (Figure 3b) is defined by:
y(k) = F Yp(k-1), U(k-1), e(k-1), ..., e(k-P)   where e(k) = yp(k)-y(k) 

and Yp(k-1) = {yp(k-1), yp(k-2), ..., yp(k-N)}.
Therefore, the predictor of the NARMAX process is recurrent of order P, and, if it
is implemented as a neural network, it must be trained by an undirected

algorithm [1].

In the equation error approach (Non-linear Auto-Regressive with eXogeneous
inputs, or NARX, model, Figure 4a), it is assumed that the process obeys the
following equations:
xp(k) = F Xp(k-1), U(k-1)  + w(k) ,
yp(k) = xp(k) .

The output y(k) of the associated predictor (Figure 4b) is given by
y(k) = F Yp(k-1), U(k-1)  with Yp(k-1) = yp(k-1), yp(k-2), ... , yp(k-N) .

Therefore, the predictor of the equation error process is actually a non-recursive

predictor, whose inputs are the external inputs of the process and the (measured)
outputs of the process. If there exists a neural network which can approximate
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function F, this network can implement the predictor, and a directed algorithm [1]
is the only suitable choice, since the predictor is not recursive.

To summarize, the algorithms derived for the training of discrete-time recurrent
neural networks can readily be applied to the identification of dynamical non-
linear processes. Directed algorithms are best suited to the training of neural
networks intended to predict the output of processes satisfying the perturbation-
free hypothesis or the equation error hypothesis, whereas undirected algorithms
are best suited to the NARMAX and output error hypotheses. It is intuitive, and it
can be shown analytically in simple cases [6], that semi-directed algorithms bridge
the gap between these approaches.

3.3 Illustration: identification of a first-order non-linear process

In this section, we propose several illustrations of the above algorithms. We first
train a neural network, both adaptively and non-adaptively, to model a
deterministic, noise-free simulated process. In section 3.3.2, we add output noise to
the same deterministic equation as above, and we train a network, non-adaptively,
to model the resulting process. We pretend that we do not know how noise
interferes with the process; we first make the assumption that the process is
appropriately described by an output error model, and we train the network
accordingly with an undirected algorithm; we subsequently make the assumption
that the process is appropriately described by an equation error model, and we
train the neural network accordingly with a directed algorithm; we compare the
results obtained in these two cases. Finally, in section 3.3.3, we add state noise to
the same deterministic equation as above, and we train a network, non-adaptively,
to model the resulting process; we make the same two assumptions as above. The
detrimental effect of using the wrong algorithm, i.e. of making the wrong
assumption on the influence of the noise on the process, is shown clearly on all
these examples.
All results presented here were obtained by the Broyden-Fletcher-Goldfarb-
Shanno (BFGS) algorithm [7], with step adaptation by the method of Wolfe and
Powell [8].

3.3.1 - Example 1: perturbation-free process

3.3.1.1 - Simulation equation
A continuous-time process is simulated by the following discrete-time equation

yp(k) ∫ Y yp(k-1), u(k-1)  = 1 - T
a+byp(k-1)

 yp(k-1) + T 
c+dyp(k-1)
a+byp(k-1)

 u(k-1)  ,
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where yp(k) is the output of the process at time k, and u(k) is the external input at
time k. In the following, the values of the parameters are:
a=-0.139, b=1.2, c=5.633, d=-0.326, sampling period T= 0.1 sec.

3.3.1.2 - Adaptive identification of the noise-free process
We first identify the process adaptively, making the assumption that it can be
adequately described in the vicinity of an operating point by a linear first-order
model; this approach is useful if the model is to be used, with small input and
ouput signals, within an adaptive control system as an alternative to gain
scheduling. It can be implemented by a "neural network" made of a single, linear
neuron; in the absence of perturbations, the appropriate training algorithm is a
directed algorithm. The behaviour of the adaptive predictor, and the prediction
error, are illustrated on Figure 5.

3.3.1.3 - Non-adaptive identification of the noise-free process
The process can also be identified non-adaptively. The predictor must then be
valid in a suitable region of state space; it can be used in the case of large input and
output signals. This can be achieved, in the present case, by a feedforward neural
network with one hidden layer of five neurons. The training set is a sequence of
100 steps of random amplitude. Training has been performed by a non-recursive,
iterative, directed algorithm with Nc(=Nt)=2000. Figure 6 illustrates the behaviour
of the non-adaptive predictor, and the prediction error.

3.3.2 - Example 2: process with additive output noise
The simulated process that we consider now is described by the same equation as
in the previous section, with additive noise on the output:
xp(k) = Y xp(k-1), u(k-1)
yp(k) = xp(k) + w(k) .

w(k) is white noise with maximum amplitude 0.5.
The goal of identification is to find a (neural network) predictor that implements a
function as close as possible to Y in a bounded domain of state space; therefore, the
prediction error should be as close as possible to the noise w(k) once training is
completed.
We first make the (correct) assumption that an output error model is appropriate.
Thus, we use a recurrent predictor of the type shown on Figure 2b; the feedforward
part of the neural network has the same architecture as in the perturbation-free
case (since we know from the previous section that such a network can
approximate function Y with satisfactory accuracy), and we train it with an
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undirected algorithm (undirected, non recursive, iterative with Nt=Nc=2000).
Figure 7a show the response of the network at the end of training, and Figure 7b
shows the prediction error. As expected, the latter is just white noise of amplitude
0.5, which shows that (i) the feedforward part of the predictor network is
appropriate for the approximation of function Y, that (ii) the undirected training
algorithm is the appropriate algorithm for training the predictor, or, in other
words, that the assumption that the process can be described by an output error
model is correct, and that (iii) the quasi-Newton gradient method (of constant use
in recursive identification [3]) allows a very efficient optimization of the cost
function; this may seem to be a side issue, but it is worth pointing out that the
results presented in this paper would not have been obtained in any reasonable
time otherwise.
We now make the (wrong) assumption that the process can be described by a
NARX model. Accordingly, we choose a neural network predictor of the type
shown on Figure 4, which we train with a directed algorithm on the same data as
before. Figure 8 shows the prediction error after training (directed, non recursive,
iterative algorithm with Nc=2000), with the same inputs as shown on Figure 7a:
the vairance of the prediction error is much larger than in the previous case,
thereby showing that the training algorithm is inappropriate for extracting the
model in the presence of the additive output noise.

3.3.3 - Example 3:  process with additive state noise
In this section, we consider again the same simulation equation as in section
3.3.1.1, but we add white noise, with amplitude 0.5, to its state:
xp(k) = Y xp(k-1), u(k-1)  + w(k) ,
yp(k) = xp(k) .

We first make the (correct) assumption that a NARX model is appropriate. Thus,
we use a predictor as shown on Figure 4, with five hidden neurons, trained by a
directed algorithm (non recursive, iterative with Nc=2000). The result after
training is exactly as shown on Figure 7b: the prediction error is just white noise,
which shows that the identification of the process by the neural network has been
perfectly successful.
If we now make the (wrong) assumption that the process can be represented by an
output error model, we take a predictor as shown on Figure 2, we use five hidden
neurons in the feedforward part of the network, and we train the model with an
undirected algorithm; the resulting prediction error is as shown on Figure 9: the
error is clearly not white noise, thereby showing that the use of an undirected

algorithm with additive state noise prevents the network from correctly extracting
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the model, although we know from the previous examples that the network has
the appropriate number of hidden units for approximating function Y.

4 CONCLUSION

We have shown the importance of choosing an appropriate training algorithm for
the modeling of a dynamical system in the presence of noise. Directed (teacher
forcing) algorithms are appropriate for the modeling of noiseless dynamical
systems, or for systems in which random perturbations can be considered as white
noise added to the state variables of the black-box model, whereas undirected
algorithms are appropriate for predicting the output of systems in which random
perturbations can be considered as white noise added to the output of the black-box
model. Although the architecture of the feedforward part of the neural predictors
is the same in all the above examples, and is known to be appropriate for
describing the non-linearity of the process, very different results can be obtained,
depending on the algorithm used. Within the appropriate family, other choices
(recursive or non-recursive algorithm, iterative or non-iterative algorithm,
values of Nc and Nt, ...) are important but less critical; they will be made on the
basis of the stationarity time of the process, of the computer time available, etc...

In the above examples, semi-directed algorithms have not been used because no
stability problem was encountered with undirected algorithms: semi-directed
algorithms are useful when an output error model describes the process
appropriately, but when the corresponding predictor is unstable. Detailed stability
analyses of undirected algorithms have been performed in simple cases [9].
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FIGURE CAPTIONS

Figure 1:
a. The canonical form of a discrete-time recurrent network.
b. Copy m at time n of the feedforward part of the canonical form.

Figure 2:
a. Structure of the model of the process under the output error hypothesis.
b. Associated neural predictor.

Figure 3:
a. Structure of the model of the process under the NARMAX hypothesis.
b. Associated neural predictor.

Figure 4:
a. Structure of the model of the process under the equation error hypothesis.
b. Associated neural predictor.

Figure 5:
Example 1: adaptive identification of the perturbation-free process. Training with a
directed recursive algorithm (Nc=20).
a. Input and output of the adaptive predictor.
b. Prediction error.

Figure 6:
Example 1: non-adaptive identification of the perturbation-free process. Training
with a directed iterative algorithm (Nc=2000).
a. Input and output of the non-adaptive predictor after training.
b. Prediction error.

Figure 7:
Example 2: non-adaptive identification of the process with additive output noise .
Training with an undirected iterative algorithm (Nt=Nc=2000), corresponding to
the correct hypothesis (output error model).
a. Input and outputs of the simulated process and of the predictor.
b. Prediction error.
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Figure 8:
Example 2: non-adaptive identification of the process with additive output noise.
Prediction error after training with a directed iterative algorithm (Nc=2000),
corresponding to a wrong hypothesis (equation error model).

Figure 9:
Example 3: non-adaptive identification of the process with additive state noise.
Prediction error after training with an undirected iterative algorithm
(Nt=Nc=2000), corresponding to a wrong hypothesis (output error model).
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