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ABSTRACT Learning with noisy labels is one of the most practical but challenging tasks in deep learning.

One promising way to treat noisy labels is to use the small-loss trick based on the memorization effect, that

is, clean and noisy samples are identified by observing the network’s loss during training. Co-teaching+

is a state-of-the-art method that simultaneously trains two networks with small-loss selection using the

“update by disagreement” strategy; however, it suffers from the problem that the selected samples tend

to become noisy as the number of iterations increases. This phenomenon means that clean small-loss

samples will be biased toward agreement data, which is the set of samples for which the two networks

have the same prediction. This paper proposes an adaptive sample selection method to train deep neural

networks robustly and prevent noise contamination in the disagreement strategy. Specifically, the proposed

method calculates the threshold of the small-loss criterion by considering the loss distribution of the whole

batch at each iteration. Then, the network is backpropagated by extracting samples below this threshold

from the disagreement data. Combining the disagreement and agreement data of the two networks can

suppress the degradation of the true-label rate of training data in a mini batch. Experiments were conducted

using five commonly used benchmarks, MNIST, CIFAR-10, CIFAR-100, NEWS, and T-ImageNet to verify

the robustness of the proposed method to noisy labels. The results show the proposed method improves

generalization performance in an image classification task with simulated noise rates of up to 50%.

INDEX TERMS Deep neural network, learning with noisy labels, image classification, co-teaching.

I. INTRODUCTION

D
EEP neural networks (DNNs) have achieved a remark-

able level of performance in various applications such

as image classification [1]. This result is highly dependent on

the availability of a large amount of high-quality labeled data,

which is difficult to obtain in practice. Instead, a common

means of constructing a large labeled dataset is to use crowd-

sourcing systems [2], [3] such as Amazon’s Mechanical Turk

or search engines that query samples using a keyword, which

is then used as a label [4], [5], [6]. Both approaches can facil-

itate the acquisition of labeled data, but contaminate these

data with unreliable labels, which are called noisy labels.

Real-world datasets have been reported to contain levels of

noise ranging from 8.0% to 35.8% [7], [8], [9]. Furthermore,

it has been found that 52% of web images retrieved using a

query contain incorrect labels [10]. DNNs are highly able to

fit to noisy labels [11], [12], resulting in an inevitable loss of

accuracy.

Our goal is to effectively and robustly train DNNs using

a training dataset with noisy labels. Various existing studies

have investigated how noisy labels can be handled. A typical

method is loss correction [13], [11], [14], [15], which corrects

for the forward or backward loss values of the training sam-

ples by estimating the noise transition matrix. However, the

accuracy of the noise transition matrix estimation decreases

when there are many classes and the number of noisy data is

large. Moreover, in recent years, methods based on gradient

clipping [16], [17], which corrects the losses by constraining

the gradient, have received much attention [18]. However,

both loss correction approaches have a problem with error

accumulation, where the errors in the loss correction continue

to affect the network updates [19].
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FIGURE 1. True-label rate during training on CIFAR-100 dataset using

Co-teaching+ [24]. As the number of training epochs increases, training

samples are selected from a subset with a high number of noisy labels. As a

result, in the last stage of learning, the network is trained using noisy samples.

Recent research on DNNs has confirmed that they first

learn easy (most likely clean) samples and then learn hard

(most likely noisy) samples [12], which is called the mem-

orization effect. Intuitively, suppose we could use this effect

to train DNNs using only the samples with small loss. In that

case, we could achieve a robust generalization performance

for noisy labels without estimating the noise transition ma-

trix. One promising approach, called sample selection, se-

lects small-loss samples from the forward loss of the network

and updates the network using backpropagation [20], [21],

[22], [23], [24], [25].

Co-teaching [23] and Co-teaching+ [24] have been pro-

posed as practical methods to deal with highly noisy data.

Co-teaching trains two networks simultaneously by selecting

small-loss samples at each iteration and cross-updating each

network to avoid accumulating error. Co-teaching+ improves

this approach by training the two networks on samples that

disagree with each other’s predictions to prevent their con-

vergence and maintain their variance. This strategy is called

“update by disagreement.” Co-teaching+ is, to the best of

our knowledge, the state of the art of sample selection-

based methods. However, as the number of training epochs

grows, the proportion of noisy data used for backpropagation

increases, which degrades the generalization performance.

Figure 1 shows the true-label rate during training on the

CIFAR-100 dataset using Co-teaching+. The true-label rate

is defined as the proportion of samples with the true labels

among the small-loss samples extracted from the mini batch

at each iteration. In our validation study, 50% of CIFAR-

100 was uniformly and randomly relabeled for each class

based on symmetry flipping [26]. The results of that study

indicate that the noise rate of the training samples selected by

the disagreement strategy increases as the iterations progress,

leading to overfitting on noisy data. It is possible to reduce

the number of noisy data by lowering the rate at the end of

the iterations. In fact, Yao et al. [25] used the proportion of

clean data, i.e., samples without any noisy labels, as one of

the parameters and tuned it using AutoML [27]. However, in

practical use, it is not always possible to obtain clean data in

advance.

In this paper, we propose an adaptive sample selection

method to robustly train DNNs using the disagreement strat-

egy. The key idea of the proposed method is to prevent noisy

labels from becoming mixed into a training mini batch by de-

termining a small-loss threshold at each epoch. Co-teaching+

extracts small-loss samples from the disagreement data at

a defined rate throughout all iterations. However, because

the small-loss samples, which are likely to be clean labels,

may become biased toward disagreement or agreement as

training progresses, the amount of samples to be extracted

should be determined on an iteration-by-iteration basis. In the

proposed method, the threshold is defined by calculating the

percentile value using the data of the entire mini batch. Then,

the network is backpropagated by extracting the samples

below the threshold from the disagreement data. Using data

combined in such a way, we can stop the true-label rate

of the subset extracted from the disagreement data from

decreasing. Therefore, the main contributions of this paper

can be summarized as follows:

• We present a new small-loss selection method based on

the memorization effect.

• We propose using a combination of agreement and

disagreement data in the disagreement strategy, thus

reducing the decrease in the true-label rate during the

training process.

• We present the results of experiments using five com-

monly used benchmark datasets, MNIST, CIFAR-10,

CIFAR-100, NEWS, and T-ImageNet to demonstrate

that the proposed method achieves state-of-the-art re-

sults.

The remainder of this paper is structured as follows. Sec-

tion II reviews the related work of deep learning with noisy

data. In Section III, we propose our training method with

memorization effect-based sample selection. Experimental

results are discussed in Section IV, and the conclusions are

given in Section V.

II. RELATED WORK

When there are noisy labels, the deep learning model eventu-

ally memorizes these incorrectly provided labels, degrading

the generalization performance. This cannot be changed by

choosing optimizers and network architectures or applying

data augmentation [11]. The current approaches are catego-

rized into those based on loss correction [13], [14], [15],

those based on label noise cleaning [28], [29], [30], those

based on dataset pruning [31], [32], [33], [34], [35], [36],

[37], and those based on sample selection [21], [22], [23],

[24], [38], [39]. In this section, we review these related deep

learning methods for handling noisy labels.
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A. LOSS CORRECTION APPROACH

The basic idea behind the loss correction approach is to

correct the forward or backward loss of the DNN based

on the estimated noise transition matrix. Bootstrapping [13]

employs a reconstruction-based objective that uses the con-

cept of perceptual consistency to train the network while

correcting its predictions. F-correction [14] introduces a two-

step method that first estimates the noise transition matrix

of noisy data and corrects the output of the loss function

using the forward loss correction mechanism [14]. In [14],

the network is pre-trained using noisy data, and the samples

with the highest output per class are assumed to be perfect

samples that are likely to be clean. The noise transition matrix

is then estimated using the softmax probabilities when a

perfect sample is an input to the wrong class. However, F-

correction is inaccurate on datasets with many classes and

a small number of samples per class such as CIFAR-100.

Some methods assume that clean validation data are avail-

able. Hendrycks et al. proposed gold loss correction, which

estimates the matrix measuring label corruption calculated

using known clean samples [15].

In contrast to estimating the noise transition matrix as

described above, there is an approach for correcting the loss

that constrains the gradient norm to a specified value by

gradient clipping [16], [17]. Menon et al. showed that noise

robustness can be obtained using a partially Huberized loss,

which clips only the contribution of the gradient [18].

B. LABEL NOISE CLEANING APPROACH

Label noise cleaning is an approach that identifies suspicious

labels and changes them to the corresponding true ones.

This approach relies on a feature extractor that maps the

data into feature domains to investigate the level of noise

in the noisy labels. It is an iterative framework, where the

classifier and the label transformer are trained on each other

and their abilities improve during training, unlike data pre-

processing, where noisy labels are removed before training

begins. An algorithm using this approach can be divided

according to whether it requires clean data or not. If clean

data are available, the obvious approach is to relabel the

noise labels using the predictions of the network trained on

the clean data. For relabeling, [28] uses a label blending

operation, which calculates the weighted sum of the given

noisy labels and the predicted labels. Alternatively, [29],

[30] introduced a framework of joint optimization for both

training the classifier and transforming noisy labels into clean

ones. Expectation maximization is used to estimate both the

parameters of the classifier and the posterior distribution of

the labels to minimize the loss.

C. DATASET PRUNING APPROACH

The first approach in dataset pruning is to completely remove

the noisy samples found previously and train the network on

the remaining dataset. The simplest approach is to remove the

samples misclassified by the network [31]. For instance, [32]

used a combination of noise filters, where each noise filter

assigns a level of noise to the samples. These predictions

are then combined to remove samples with the highest noise

levels. Luengo et al. [33] extended this method using the

label correction approach. If different noise filters predict

the same label for a noisy sample, the label for that sample

is changed to the predicted label, otherwise it is removed

from the dataset. In [34], the state of the network is varied

between underfitting and overfitting by periodically adjusting

the learning rate. During underfitting, noisy samples have

higher losses, so this cyclic process removes the noisy sam-

ples.

The second approach is to remove only the labels of noisy

samples. The traditional method employs a semi-supervised

learning method [35], [36]. SELF [36] is based on a running

average model called the Mean-Teacher [40], which obtains

self-ensemble predictions from all samples and incrementally

removes samples with labels that do not match the original

labels. DivideMix [37] uses the Gaussian mixture model

to divide the samples into clean and noisy samples. Using

the split samples, a semi-supervised approach based on the

MixMatch strategy [41] is used.

D. SAMPLE SELECTION APPROACH

This approach continuously monitors the DNNs and detects

the true-labeled samples to be learned in the next training

iteration. Intuitively, DNNs can achieve better generalization

performance when the training data are less noisy. This

approach uses the characteristic of DNNs called the mem-

orization effect, i.e., they learn clean and simple patterns in

the initial epochs, even in the presence of noisy labels. Thus,

they have the ability to filter out noisy samples using their

loss values. The goal is to make DNNs robust to noise by

selecting only small-loss samples and eliminating mislabeled

data with high losses during training iterations.

Self-paced learning [42], [43] can filter out noisy la-

bels by assigning small weights to mislabeled samples and

large weights to clean samples, thus ensuring robust model

learning. Specifically, specifying a monotonically decreasing

weighting function allows the classifier to focus on the easy

samples first and then fit the difficult samples. For exam-

ple, in the MentorNet approach [19], an additional network,

called StudentNet, is trained and MentorNet is used to select

clean samples to guide the training of StudentNet. If clean

validation data cannot be prepared, the self-paced MentorNet

uses a predefined curriculum, that is, a self-paced curriculum.

The concept of the self-paced MentorNet is similar to that of

the self-learning approach [44], and it inherits the problem of

error accumulation.

Han et al. proposed Co-teaching [23], which trains two

networks in a symmetric way. Co-teaching introduces cross-

training, where a small-loss sample from one network is used

as a training sample for the other network. By exchanging

training samples between two networks, bias in the training

samples is avoided and the accumulated error is reduced. In

[38], Wang et al. proposed a method for reweighting small

loss samples. Specifically, a loss function designed based
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on the ArcFace loss [45] is used to recalculate the loss of

selected small-loss samples to increase the likelihood that

a sample with high confidence will be selected. In [39],

Chen et al. introduced the iterative noisy cross-validation

(INCV) method into Co-teaching, which selects a mini-batch

of samples that are estimated to be true labels using the

network under training at each training iteration. However,

the two networks converge to a consensus, causing a problem

similar to that of the self-paced MentorNet, which uses a

single network.

Co-teaching+ [24] is an improved method that introduces

the concept of decoupling [22] into Co-teaching. Decoupling

is similar to Co-teaching in that it simultaneously trains

a pair of networks, but it updates the networks using the

samples with different predictions. The weights of the two

networks do not converge, allowing them to maintain di-

vergence. Because Co-teaching+ is closely related to the

proposed method, the algorithm and problem are described

in the following section.

In summary, most loss correction methods have difficulty

handling multi-class data, so the development of the sample

selection approaches, using which uses the memorization

effect, is promising. The sample selection approach continu-

ously monitors the DNNs and selects samples to be trained

learned in the following training iteration. Thus, sample

selection-based methods can be incorporated into the algo-

rithms of different approaches by simply manipulating the

input stream, so a combined strategy is expected to improve

accuracy. The state-of-the-art sample selection-based method

is Co-teaching+, which substantially improves generalization

performance using a combined selection of disagreement and

small-loss data. In this paper, we point out the problems

of Co-teaching+ and propose an adaptive sample selection

method to improve it. Therefore, the proposed method does

not assume pre-training with clean data [15], [25] is not

assumed in the method proposed here, and this paper does

not deal with a strategy that combines the sample selection

approach with other approaches [37].

III. METHOD

The proposed method improves on existing sample selection-

based methods by exploiting the memorization effect. This

section first introduces the Co-teaching+ algorithm, and then

describes our learning method with the proposed sample

selection method (shown in Figure 2).

A. LEARNING FROM NOISY DATA

As in Co-teaching, two DNNs are trained simultaneously, but

Co-teaching+ consists of two steps: disagreement update and

cross update. The first step updates the mini batch data so that

each network makes its own predictions and samples with

predictions from the two networks that disagree are selected.

Next, in the cross-update step, based on these disagreement

data, each network further selects its own small-loss samples,

but backpropagates those selected by the paired networks to

update their parameters.
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FIGURE 2. Training process of the proposed method. The forward loss values

are calculated from the mini batch data D̄, and then the prediction

disagreement data D̄′ of the two networks parameterized by ω1 (resp. ω2) are

extracted. Because the loss distribution of the disagreement data is biased at

each iteration, extracting small-loss samples at a fixed rate allows noisy data

to be mixed in. The proposed method adaptively controls the number of

small-loss samples, whose subset is denoted as D̄
′(1)
ada

(resp. D̄
′(2)
ada

) from D̄′

by defining a threshold that considers the loss distribution of the whole mini

batch at each iteration. Using D̄
′(1)
ada

(resp. D̄
′(2)
ada

), both networks are

cross-updated.

Specifically, the two networks, with parameters ω1 and ω2

respectively, are trained using the mini-batch technique. We

are given the training data D, and split them into mini batches

D̄ = {(x1, y1), (x2, y2), . . . , (xB , yB)}, where (xi, yi) de-

notes the sample and its label, and B is the batch size. Then,

according to the predictions {ȳ
(1)
1 , ȳ

(1)
2 , . . . , ȳ

(1)
B

} (predicted

by ω1) and {ȳ
(2)
1 , ȳ

(2)
2 , . . . , ȳ

(2)
B

} (predicted by ω2), disagree-

ment data are extracted as follows:

D̄′ = {(xi, yi)|ȳ
(1)
i

6= ȳ
(2)
i

}. (1)

By training the two networks using disagreement data D̄′, the

two networks do not converge but maintain their divergence,

similar to the decoupling algorithm [22].

To remove noisy data from disagreement data D̄′, each

network selects small-loss data D̄′(1) and D̄′(2) based on their

own parameters ω1 and ω2, respectively. Next, each network

is backpropagated using their paired data. For example, pa-

rameter ω1 is updated based on small-loss data D̄′(2). Note

that, to control how many small-loss data will be selected at

epoch e, the proportion of small-loss samples is defined as

follows:

λ(e) = 1−min

{

e

Ek

Rnoise, Rnoise

}

, (2)

where Rnoise is an estimate of the noise rate in training data

D. Because of the memorization effect, the DNN initially fits

clean data and then gradually overfits noisy data. Therefore, a

large λ is initially used, but the value of λ is quickly reduced

up until epoch Ek to avoid fitting noisy data. From epoch

Ek onward, it is adjusted according to the noise rate in the

training data (i.e., λ(e) = 1−Rnoise).
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Algorithm 1 Proposed training method with adaptive small-loss sample selection.

INPUT: noisy data D, batch size B, learning rate η, estimated noise rate Rnoise, and epochs Ek and Emax;

1: for e = 1, 2, · · · , Emax do

2: Divide D into
|D|
B

mini batches;

3: Initialize model parameters ω(1) and ω(2);

4: for n = 1, 2, · · · , |D| do

5: Draw n-th mini batch D̄ from D;

6: Select prediction disagreement D̄′;

7: Calculate the λ(e)th percentile loss P
(1)
λ(e)% of the mini batch D̄; ⊲ threshold calculated from the losses of network 1

8: Calculate the λ(e)th percentile loss P
(2)
λ(e)% of the mini batch D̄; ⊲ threshold calculated from the losses of network 2

9: Get D̄
′(1)
ada

= {(xi, yi)|L(xi, yi;ω
(1)) ≤ P

(1)
λ(e)%, (xi, yi) ∈ D̄′}; ⊲ extract small-loss data below the threshold P

(1)
λ(e)%

10: Get D̄
′(2)
ada

= {(xi, yi)|L(xi, yi;ω
(2)) ≤ P

(2)
λ(e)%, (xi, yi) ∈ D̄′}; ⊲ extract small-loss data below the threshold P

(2)
λ(e)%

11: Update ω(1) = ω(1) − η∇L
(

D̄
′(2)
ada

;ω(2)
)

; ⊲ update ω(1) by ω(2)

12: Update ω(2) = ω(2) − η∇L
(

D̄
′(1)
ada

;ω(1)
)

; ⊲ update ω(2) by ω(1)

13: end for

14: Update λ(e) = 1−min
{

e

Ek

Rnoise, Rnoise

}

;

15: end for

OUTPUT: ω(1) and ω(2).

B. ADAPTIVE SAMPLE SELECTION

Our algorithm is described in Algorithm 1. The key difference

between the proposed method and Co-teaching+ is the intro-

duction of an adaptive process to set the loss threshold for

determining small losses at each training iteration. Specifi-

cally, we considered the following two issues when designing

Algorithm 1.

1) A decrease in the true-label rate of the training mini

batch data may degrade the generalization perfor-

mance.

2) The noise rate of the disagreement data D̄′ is not

always the same as that of the training data D.

As the number of training epochs increases, the small-loss

samples extracted at the disagreement-update step become

noisy labels, which leads to overfitting to noisy data (as

described in Section I). Furthermore, Co-teaching+ controls

how many small-loss data are extracted from the disagree-

ment data by λ(e), defined in Eq. (2). However, parameter

λ(e), which is the noise rate Rnoise, is an estimate for the

entire training data D, and the expected noise rate for the

two subsets, i.e., the agreement or disagreement data, is not

always Rnoise. In other words, it is not appropriate to fetch

the same proportion of small-loss samples throughout all

iterations, because the number of small-loss samples with

true labels present in the disagreement subset will vary in

each iteration. To avoid this problem, it may be possible to

reduce the number of noisy data, for example, by making

the sampling criterion more stringent, such as lowering λ(e)
at the end of training. However, such scheduling of λ(e)
requires a certain amount of clean validation data.

We first search for the λ(e)th percentile loss in network

m (= 1, 2), which is denoted as P
(m)
λ(e)%, from the samples

included in mini batch data D̄. Next, for each network m (=

TABLE 1. Details of the datasets used in our experiments.

# of training # of testing # of class image size

MNIST 60,000 10,000 10 28 × 28

CIFAR-10 50,000 10,000 10 32 × 32

CIFAR-100 50,000 10,000 100 32 × 32

NEWS 11,314 7,532 20 1000-D

T-ImageNet 100,000 10,000 200 64 × 64

1, 2), we create subsets D̄
′(m)
ada

using the disagreement data

that satisfy the following equation:

D̄
′(m)
ada

= {(xi, yi)|L(xi, yi;ω
(m)) ≤ P

(m)
λ(e)%, (xi, yi) ∈ D̄′},

(3)

where L(·;ω(m)) is the loss parameterized by ω(m) when the

samples are given. By calculating the threshold based on mini

batch data D̄, it is possible to tighten the sampling criterion

when the disagreement samples are biased toward high loss

data. Thus, we can address the problem of decreasing the

true-label rate as training progresses. This enables adaptive

small-loss sampling according to the training situation at

each epoch without the need for clean validation data. Note

that, when one of the two sets of data is not present in

steps 9–10 (Algorithm 1), the networks are updated using

disagreement data D′ without small-loss selection, similar to

the Co-teaching+ algorithm.

Finally, given a sample to be labeled, we use one of the

two networks to predict the label of the sample, following

the method used in Co-teaching and Co-teaching+.

IV. EXPERIMENTAL RESULTS

In this section, we confirm the effectiveness of the proposed

method by simulating noise to create datasets based on the

MNIST, CIFAR-10, CIFAR-100, NEWS, and T-ImageNet

datasets.
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TABLE 2. Architectures of the MLP used on MNIST, the CNNs used on CIFAR-10 and CIFAR-100, and the MLP used on NEWS in the experiments.

MLP on MNIST CNN on CIFAR-10 CNN on CIFAR-100 MLP on NEWS

28 × 28 gray image 32 × 32 rgb image 32 × 32 rgb image 1000-D text

Dense 28 × 28 256, ReLU

5 × 5 Conv, 6 ReLU
2 × 2 Max-pool

3 × 3 Conv, 64 BN, ReLU
3 × 3 Conv, 64 BN, ReLu

2 × 2 Max-pool

300 Embedding
Flatten → 1000 × 300

Adaptive average-pool → 16 × 300

5 × 5 Conv, 16 ReLU
2 × 2 Max-pool

3 × 3 Conv, 128 BN, ReLU
3 × 3 Conv, 128 BN, ReLu

2 × 2 Max-pool

Dense 16 × 300 → 4 × 300
4 × 300 BN, Softsign

Dense 16 × 5 × 5 → 120, ReLU
Dense 120 → 84, ReLU

3 × 3 Conv, 196 BN, ReLU
3 × 3 Conv, 196 BN, ReLU

2 × 2 Max-pool

Dense 4 × 300 → 300
300 BN, Softsign

Dense 256 → 10 Dense 84 → 10 Dense 256 → 100 Dense 300 → 20

A. EXPERIMENTAL SETUP

Datasets: The details of the five datasets used in our ex-

periments, MNIST, CIFAR-10, CIFAR-100, NEWS, and T-

ImageNet, are summarized in Table 1. From those datasets,

we created synthetic datasets by corrupting their labels using

two noise transition matrices, symmetry flipping [26] and

pair flipping [14], following [23], [24]. Note that on the

NEWS dataset, [24] conducted experiments on seven classes

that are groups of the original 20 classes, whereas we con-

ducted experiments on the original 20 classes. An example

of a noise transition matrix for symmetry flipping with four

classes and a noise rate of Rnoise is as follows:

T =









1−Rnoise
Rnoise

3
Rnoise

3
Rnoise

3
Rnoise

3 1−Rnoise
Rnoise

3
Rnoise

3
Rnoise

3
Rnoise

3 1−Rnoise
Rnoise

3
Rnoise

3
Rnoise

3
Rnoise

3 1−Rnoise









.

(4)

We used symmetry flipping with Rnoise = {0.2, 0.5}, de-

noted as Symmetry 20% and Symmetry 50%, respectively.

Next, we used two types of pair flipping. The first type

swaps the labels between adjacent classes. An example of

pair flipping, applied between adjacent classes with four

classes and a noise rate of Rnoise is as follows:

T =









1−Rnoise Rnoise 0 0
0 1−Rnoise Rnoise 0
0 0 1−Rnoise Rnoise

Rnoise 0 0 1−Rnoise









.

(5)

We used “adjacent” pair flipping for datasets with Rnoise =
0.45, denoted as Pair(adjacent) 45%.

Unlike Pair(adjacent), the second type of pair flipping is

to swap labels between two classes that are visually sim-

ilar. The reason for simulating noise in this way is that

we assume that real-world annotators are highly likely to

mislabel classes that are similar in visual appearance. We

followed [14] to define visually similar classes. For MNIST,

the transitions are 2 → 7, 3 → 8, 5 ↔ 6, 7 → 1. For

CIFAR-10, the transitions are TRUCK → AUTOMOBILE,

BIRD → AIRPLANE, DEER → HORSE, and CAT ↔ DOG.

For CIFAR-100, because there are 20 superclasses such as

aquatic mammals, fish, and flowers, the transitions are made

within the same superclass. For NEWS, because there are

seven news groups (comp., rec., aci., misc., talk, alt., and

sci.), the transitions are made within the same group. We used

“visually similar” pair flipping with Rnoise = 0.45, denoted

as Pair(similar) 45%. Note that for T-ImageNet, while it is

possible to form class groups in the tree hierarchical structure

defined in WordNet [46], we did not conduct experiments on

Pair(similar) because the distribution of the number of classes

per group is imbalanced.

In our experiments, we assume that the noise rate Rnoise is

known. However, Rnoise is not known in practice, although

an estimate can be obtained by counting the number of

perfect samples [14] of each class.

Baselines: We compared the proposed method, denoted as

Proposed, with the following state-of-the-art methods:

1) Standard: The networks shown in the Table 2 are

trained directly using noisy data. Standard is included

in the comparison to verify how much accuracy is

reduced when the robust deep learning method is not

used for noisy data.

2) Co-teaching: This method trains two networks simul-

taneously in a symmetric way. Reference [23] demon-

strated that Co-teaching outperforms loss correction

methods [13], [14], [47] and previous sample selection

methods [22], [19].

3) Co-teaching+: An improved version of Co-teaching,

which has the disagreement step in addition to the

cross-update step, is a state-of-the-art method based

on sample selection. Our training scheme is designed

based on Co-teaching+.

4) Huberized: This method introduces the partially Hu-

berized loss function [18] to Co-teaching+. A compar-

ison of the performance of Huberized and Proposed

confirms the effectiveness of the proposed adaptive

sample selection.

We re-implemented all methods using public source code un-

der the same conditions. As described above, in this study, the

proposed method was compared with the methods without

pre-training using a subset consisting of clean validation data.

Network structure and optimizer: The network architec-

tures and optimization methods were changed for each

dataset. For experiments using the MNIST, CIFAR-10,

CIFAR-100, NEWS, and T-ImageNet datasets, we used the

experimental conditions given in [24]. The architectures used

6 VOLUME 4, 2016
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FIGURE 3. Relationship between test accuracy and number of epochs on the MNIST dataset.

TABLE 3. Average test accuracy on MNIST over the last 10 epochs. The best average result for each noise transition pattern is shown in bold, and the second-best

one is underlined.

Standard Co-teaching Co-teaching+ Huberized Proposed

Pair(similar) 45% 76.61 87.82 84.87 84.35 87.67

Pair(adjacent) 45% 53.38 84.31 82.33 81.72 89.22

Symmetry 20% 78.7 94.8 97.81 97.78 97.88

Symmetry 50% 51.44 89.5 95.63 95.68 95.53

in our experiments consist of a two-layer MLP for MNIST,

a five-layer CNN for CIFAR-10, a seven-layer CNN for

CIFAR-100, a three-layer MLP for NEWS, and a 18-layer

Preact ResNet [48] for T-ImageNet. The details of the ar-

chitectures are summarized in Table 2. As an optimization

method, we used Adam [49] with an initial learning rate of

0.001, linearly decreasing to zero from 80 epochs to 200

epochs, a momentum of 0.9, and a batch size of 128.

Evaluation metric: For the evaluation metric, we used the

test accuracy, i.e., Test Accuracy = (# of correct predictions)

/ (# of test dataset). All experiments were repeated five times,

and we report the averaged results. In each figure, the 95%

confidence interval is indicated by shading.

B. COMPARISON WITH DIFFERENT METHODS

1) Results on the MNIST dataset

Figure 3 compares the accuracy for each epoch up to 200

epochs on the MNIST dataset. As shown in Figure 3,

for the Symmetry 20% and 50% conditions, the accuracy

of Proposed is almost the same as that of Co-teaching+

and Huberized, but is better than those of the others. For

Pair(similar) 45%, Proposed outperforms Co-teaching in the

middle epochs. In contrast, the accuracy of Proposed is lower

than that of Co-teaching at the last epoch. For Pair(adjacent)

45%, Proposed shows a significant improvement in accuracy.

Table 3 shows the average accuracy of different methods

in the last 10 epochs. Proposed has the highest accuracy of

89.22% and 97.88% for Pair(adjacent) 45% and Symmetry

20%, which are 4.91 and 0.07 pps1 higher than the second-

best methods, respectively. For the Pair(similar) 45% and

Symmetry 50% conditions, the differences between the best

method and Proposed are only 0.15 pp. In other words,

Proposed is almost equal to the second-best method for Sym-

metry 20%, Pair(similar) 45%, and Symmetry 50%, but it is

much more effective under the Pair(adjacent) 45% condition,

with an increase of 4.91 pp.

When Proposed is compared with Co-teaching+, the differ-

ence is 0.07 pp for Symmetry 20% and 0.15 pp for Symmetry

50%, which are almost equal. However, under pair flipping

conditions, Proposed is superior by 6.89 pp for Pair(adjacent)

45% and 2.8 pp for Pair(similar) 45%, which are substantial

differences.

2) Results on the CIFAR-10 dataset

Figure 4 compares the accuracy for each epoch up to 200

epochs on the CIFAR-10 dataset. As shown in Figure 4, for

Symmetry 20%, the accuracy of Proposed is almost equal

to that of Co-teaching+ and Huberized, but for Symmetry

50%, that of Proposed is better than that of Co-teaching+ and

Huberized. For the Pair(adjacent) 45% condition, there is an

improvement in the latter epochs when compared with Co-

teaching+. In contrast, for Pair(similar) 45%, Proposed has

the lowest accuracy.

Table 4 shows the average accuracy of different methods

in the last 10 epochs. For Pair(adjacent) 45%, Symmetry

20%, and Symmetry 50%, Proposed has the highest accuracy,

1We denote a percentage point as pp.
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FIGURE 4. Relationship between test accuracy and the number of epochs on the CIFAR-10 dataset.

TABLE 4. Average test accuracy on CIFAR-10 over the last 10 epochs. The best average result for each noise transition pattern is shown in bold, and the

second-best one is underlined.

Standard Co-teaching Co-teaching+ Huberized Proposed

Pair(similar) 45% 49.93 51.14 49.53 49.90 49.25

Pair(adjacent) 45% 32.81 37.24 37.82 37.56 39.58

Symmetry 20% 45.60 54.71 57.06 56.84 57.81

Symmetry 50% 31.22 48.45 49.45 48.69 51.67

i.e., 39.58%, 57.81%, and 51.67%, which are 1.76, 0.75,

and 2.22 pps higher than the second-best results. However,

for Pair(similar) 45%, Proposed has the worst accuracy of

49.25%. This is 1.89 pp lower than the best result of Co-

teaching.

Proposed outperforms Co-teaching+ under the Pair(adjacent)

45%, Symmetry 20% and Symmetry 50% conditions.

Among them, the differences in accuracy for Pair(adjacent)

45% and Symmetry 50% are 1.76 and 2.22 pps, respectively,

indicating a substantial improvement. In contrast, under the

Pair(similar) 45% condition, there is no substantial differ-

ence.

3) Results on the CIFAR-100 dataset

Figure 5 compares the accuracy for each epoch up to 200

epochs on the CIFAR-100 dataset. The accuracy of Proposed

is almost the same as that of the baselines for Symmetry 20%,

but for the other cases, the accuracy is substantially better

than those of the baselines. In particular, in the latter epochs,

the proposed method avoids overfitting on noisy data.

Table 5 shows the average accuracy in the last 10 epochs.

Proposed has the highest accuracy of 32.98%, 33.07%, and

39.95% under the Pair(similar) 45%, Pair(adjacent) 45%,

and Symmetry 50% conditions. When compared with Co-

teaching+, the difference is 0.03 pp for Symmetry 20%,

which is almost the same, but Proposed is better by 2.8, 4.37,

and 1.93 pps for Pair(similar) 45%, Pair(adjacent) 45%, and

Symmetry 50%.

4) Results on the NEWS dataset

Figure 6 compares the accuracy for each epoch up to 200

epochs on the NEWS dataset. Even for this dataset, which is

text-based and not visual data, the accuracy of the proposed

method is better than that of the baselines, especially in the

latter epochs. This result shows that the small-loss criterion

based on the memorization effect is practical not only for

visual data but also for other types of data.

Table 6 shows the average accuracy in the last 10 epochs.

Proposed has the highest accuracy values of 18.11%, 16.25%,

19.20%, and 15.11% for each of the four noise transition

patterns, outperforming Co-teaching+ with an average im-

provement of about 1.5 pp.

5) Results on the T-ImageNet dataset

To evaluate our method in a complex situation, Figure 7

shows the averaged test accuracy on T-ImageNet over the

last 10 epochs. On this dataset, although the test accuracy

temporarily decreases at the 80th epoch when the learning

rate starts to decrease, the methods using the co-training

framework with the small-loss criterion suppress the ten-

dency of the test accuracy of the Standard method to decrease

because of noisy labels. Among these methods, Proposed

performs better as the number of epochs increases.

Table 7 shows the test accuracy in the last 10 epochs.

Proposed consistently achieves higher accuracy regardless of

noise transition pattern. The differences between Proposed

and Co-teaching+ are 4.23 pp for Pair(adjacent) 45%, 2.5 pp

for Symmetry 20%, and 2.66 pp for Symmetry 50%.
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FIGURE 5. Relationship between test accuracy and number of epochs on the CIFAR-100 dataset.

TABLE 5. Average test accuracy on CIFAR-100 over the last 10 epochs. The best average result for each noise transition pattern is shown in bold, and the

second-best one is underlined.

Standard Co-teaching Co-teaching+ Huberized Proposed

Pair(similar) 45% 27.24 30.18 29.02 28.98 32.98

Pair(adjacent) 45% 23.94 26.62 28.70 29.38 33.07

Symmetry 20% 34.84 43.21 48.88 48.47 48.91

Symmetry 50% 16.94 33.53 38.02 38.04 39.95
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FIGURE 6. Relationship between test accuracy and the number of epochs on the NEWS dataset.

The results of the experiments on the five datasets

show that Huberized has almost the same accuracy as Co-

teaching+ with a difference of no more than 1 pp. In contrast,

Proposed improves the accuracy by up to 6.89 pp when

compared with Co-teaching+, i.e., on the MNIST dataset

with Pair(adjacent) 45%, and the worst case is 0.28 pp,

i.e., on the CIFAR-10 dataset with Pair(similar) 45%. Note

that improvements in accuracy are observed for all noise

transition patterns on the NEWS dataset, which is not a visual

dataset, and the CIFAR-100 and T-ImageNet datasets, which

are close to a real environment and have a large number of

classes.

C. TRUE-LABEL RATE DISCUSSION

In this section, we compare the true-label rate of Co-

teaching+ and that of Proposed. Our objective is to reduce the

decrease in the true-label rate of deep learning by combining

the cross-update and disagreement strategy. Therefore, we

verify the effectiveness of Proposed by confirming whether

the introduction of our sample selection method improves the

true-label rate. Note that to calculate the true-label rate, we

used the ground-truth labels before the label transitions, but

they were used only for reference.

First, Figure 8 (a) compares the true-label rate on the

MNIST dataset, and it can be seen that the true-label rate of
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TABLE 6. Average test accuracy on NEWS over the last 10 epochs. The best average result for each noise transition pattern is shown in bold, and the second-best

one is underlined.

Standard Co-teaching Co-teaching+ Huberized Proposed

Pair(similar) 45% 14.72 16.31 16.11 15.97 18.11

Pair(adjacent) 45% 13.83 14.88 14.68 14.79 16.25

Symmetry 20% 15.39 17.03 18.10 18.05 19.20

Symmetry 50% 10.56 13.92 13.77 13.87 15.11
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FIGURE 7. Relationship between test accuracy and the number of epochs on the T-ImageNet dataset.

TABLE 7. Average test accuracy on T-ImageNet over the last 10 epochs. The best average result for each noise transition pattern is shown in bold, and the

second-best one is underlined.

Standard Co-teaching Co-teaching+ Huberized Proposed

Pair(adjacent) 45% 25.54 29.27 27.78 26.82 31.51

Symmetry 20% 34.83 46.72 48.14 48.09 50.64

Symmetry 50% 19.67 34.89 39.71 38.70 42.37

Proposed gradually becomes lower than that of Co-teaching+

for Pair(Similar) and Pair(adjacent). However, Figure 3 and

Table 3 show that Proposed outperforms all baselines shown.

This result can be explained as follows: (i) on MNIST,

the predictions of the two networks agreed on many of

the samples, (ii) Proposed did not use the small-loss trick

after the middle epochs, and (iii) Proposed suppressed the

decrease in the number of training samples in the initial

epochs. Whereas the true-label rate of Co-teaching+ outper-

forms that of Proposed, Co-teaching+ suffers from insuffi-

cient learning due to the small number of small-loss samples

in the backpropagation. The degradation of generalization

performance due to insufficient learning can be confirmed by

the performance difference between Co-teaching+ and Co-

teaching shown in Figure 3. In the initial epochs, there is no

significant difference in the true-label rate between Proposed

and Co-teaching+. However, Proposed, which determines

the small-loss criterion by considering the loss distribution

of the whole mini batch, used a larger number of samples

for backpropagation than Co-teaching+. This effect leads to

the performance difference in the initial epochs. Moreover,

as shown for Pair(adjacent), the true-label rate of Proposed

starts to decrease from the middle epochs. Both Proposed and

Co-teaching+ use all the disagreement data including noisy

labels when the number of small-loss samples becomes zero.

The reason for the decrease in the true-label rate of Proposed

is that this process switching occurs. Hence, whereas the true-

label rate of Co-teaching+ is higher than that of Proposed, its

generalization performance is not improved due to the small

number of samples. Therefore, the proposed sample selection

method is able to suppress the decrease in the number of

training samples in the initial epochs, which occurs when the

predictions of the two networks agree frequently.

Second, Figure 8 (b) compares the true-label rate on the

CIFAR-10 dataset, where a substantial improvement is ob-

served for Symmetry 20% and 50%. In contrast, the two true-

label rates for Pair(similar) are almost the same, whereas for

Pair(adjacent), there is a slight improvement in the true-label

rate but an increase in the accuracy. Under the Pair(adjacent)

condition, even a small increase in the true-label rate con-

tributes to an improvement in accuracy.

Finally, Figure 8 (c) shows the true-label rate on the

CIFAR-100 dataset, where improvements in the true-label

rate is confirmed in all cases. As shown in Table 5, Proposed

outperforms the baselines in all noise transitions, indicating

that the improvement in the true-label rate contributes to the
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FIGURE 8. Comparisons of the average true-label rate when using the proposed method and Co-teaching+ on (a) MNIST, (b) CIFAR-10, and (c) CIFAR-100.

improvement in the accuracy. This result can be explained

as follows. (i) Proposed suppressed the decrease in the true-

label rate and trained the network with fewer noisy samples.

(ii) Proposed accelerated the fit to the hard samples. The

comparison of the true-label rate between Proposed and Co-

teaching+ in Figure 8 (c) shows that the true-label rate of

Proposed exceeds that of Co-teaching+ throughout almost

all epochs. In this paper, the true-label rate is defined as the

proportion of samples with the true label among the small-

loss samples extracted from the mini-batch at each iteration.

Thus, by maintaining a high true-label rate, Proposed can

train the network with more true-labeled samples than Co-

teaching+. Second, DNNs tend to learn simple patterns first

and then gradually memorize all the samples [12]. Therefore,

Proposed can be considered to be fit to hard samples, which

improves the generalization performance of the classifier,

especially by suppressing the decrease in the true-label rate

in the latter half of training.

In summary, we can confirm the improvement of the true-

label rate on the CIFAR-10 and CIFAR-100 datasets, and

this effect improves accuracy. The results of four different

noise simulations, especially on CIFAR-100, show that the
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TABLE 8. Average computation time per iteration on CIFAR-100 with

Symmetry 50% over the 200 epochs.

Methods time(s)

Standard 9.66

Co-teaching 16.14

Co-teaching+ 16.41

Huberized 16.32

Proposed 16.25

proposed method reduces the decrease in the true label rate

from the middle to the latter half of training and improves

the testing accuracy. For the MNIST dataset, the proposed

method successfully avoids the problem of decreasing the

number of training samples, which occurs when the number

of agreement samples is large. However, in such a case, the

proposed sample selection method has a weak impact on

the latter half of training. Therefore, the effectiveness of the

proposed method, which sets an adaptive loss threshold for

small-loss samples for each epoch, is confirmed.

D. COMPUTATIONAL COST

In this section, we compare the computation time of the

proposed method with that of other methods. This experiment

was conducted by using the CIFAR-100 dataset with Symme-

try 50%. We used the PyTorch framework [50] to implement

each model, and training was performed on two RTX A6000

GPUs with NVLINK and AMD EPYC 7402P @ 2.8 GHz.

Table 8 shows the results of the average computation time

per iteration for all 200 epochs. Standard, which learns a

single network, has the shortest computation time of the five

methods. The Proposed method and the comparison meth-

ods, which train two networks simultaneously, have longer

computation times. From Table 8, we can confirm that the

computation times of the Co-teaching and Proposed methods

are very similar.

V. CONCLUSIONS

In this paper, we presented a method to robustly train DNNs

under real-world conditions where noisy labels are expected

to be heavily present in the training data. DNN training

methods that use the sample-selection approach, which uses

the small-loss trick based on the memorization effect, has

recently become a promising method for scaling to a large

number of classes. Among them, Co-teaching+ is a state-

of-the-art method that improves robustness by training two

networks simultaneously using disagreement data. However,

in Co-teaching+, the data selected by the small-loss criterion

become noisy as the number of epochs increases. In this

paper, we proposed a practical solution to this problem. The

key idea of the proposed method is to prevent noisy labels

from becoming mixed in the mini batch data by determining

the small-loss threshold at each epoch. Extensive experi-

ments on five benchmarks demonstrate that the proposed

method achieves a state-of-the-art performance. Further, the

improvement in the true-label rate was confirmed on a dataset

that closely simulates a practical environment.

One of the limitations of the proposed method is that

it relies on the disagreement strategy. Therefore, when the

predictive agreement between the two networks is high, the

proposed sample selection method is unlikely to be effective.

The other limitation is that very difficult but clean samples

are indistinguishable from noisy samples. Such samples are

helpful for improving the robustness of classifiers. Our future

work is to develop a method to incorporate them into the

training samples.
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