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Duke University and Universidad de Puerto Rico

Central to several objective approaches to Bayesian model selection is
the use of training samples (subsets of the data), so as to allow utilization
of improper objective priors. The most common prescription for choosing
training samples is to choose them to be as small as possible, subject to
yielding proper posteriors; these are called minimal training samples.

When data can vary widely in terms of either information content or
impact on the improper priors, use of minimal training samples can be
inadequate. Important examples include certain cases of discrete data, the
presence of censored observations, and certain situations involving linear
models and explanatory variables. Such situations require more sophisticated
methods of choosing training samples. A variety of such methods are
developed in this paper, and successfully applied in challenging situations.

1. Introduction. Training samples play a central role in a variety of statis-
tical methodologies, including classification and discrimination, cross-validation,
robustness and model selection, from both Bayesian and frequentist perspectives.
Two recent developments in Bayesian model selection are theintrinsic Bayes fac-
tor of Berger and Pericchi (1996a) and theexpected posterior prior of Pérez (1998)
and Pérez and Berger (2002). Central to both is utilization of training samples to
convert improper objective priors into the proper distributions typically needed for
model selection. The most common prescription for choosing training samples is
to choose them to be as small as possible, subject to yielding proper posteriors;
these are calledminimal training samples.

While fine for many problems, minimal training samples have been found to
be suboptimal in an ever-increasing number of important statistical situations, in
particular those in which the data can vary widely in terms of information content.
Important examples include the presence of censored observations, studied in
Section 3; certain cases of discrete data, studied in Section 4; and situations
involving unbalanced linear models or covariates, studied in Section 5.
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A variety of strategies have been developed to overcome the limitation of
minimal training samples, and the main purpose of this paper is to outline
these strategies. The generalizations of training samples considered herein can
alternatively be viewed as choosing training samples in a random fashion, or as
providing a “weighting” to chosen training samples. One particularly interesting
example is asequential random minimal training sample, which is a training
sample of smallest size such that the posterior is proper, but which is obtained by
drawing observations randomly, without replacement, from the set of data. Another
natural use of random training samples is when the original data is not available,
but sufficient statistics are given; training samples can then be generated from the
conditional distribution of the data, given the sufficient statistics.

We will see considerable evidence that use of the new definitions of training
samples can successfully overcome a wide variety of problems in Bayesian
model selection. It is worth noting up front, however, that we were unable to
define any type of “optimal” training sample; the paper can thus be viewed as
providing a useful set of strategies that can be employed to obtain good training
samples, with statistical judgement being required to select from among these
strategies in particular contexts. While this prevents the proposed model selection
methods from being completely automatic, the judgements involved in choosing
good training samples will typically be much less than the judgements needed
to implement an actual subjective Bayesian analysis. See Section 6 for overall
suggestions and further context concerning this issue.

In the remainder of this section, the model selection problem is stated, and
intrinsic Bayes factors and expected posterior priors are defined. Section 1.3
discusses the key problem that arises, which can be best understood through the
device of studying theintrinsic priors corresponding to intrinsic Bayes factors;
these are the priors that, if used directly to compute Bayes factors, would yield (in
an asymptotic sense) the same answers as the intrinsic Bayes factors. As further
discussed in Berger and Pericchi (2001), we feel this to be a powerful unifying
approach to understanding the performance of default Bayes factors.

There has been a significant literature discussing training samples in these
and other Bayesian contexts. Other recent articles include Gelfand, Dey and
Chang (1992), de Vos (1993), Iwaki (1997, 1999), Lingham and Sivaganesan
(1997, 1999), Alqallaf and Gustafson (2001) and Ghosh and Samanta (2002).

1.1. Model selection notation. Suppose that we are comparingq models for
the dataX = (X1, . . . ,Xn),

Mi : x has densityfi(x|θ i ), i = 1, . . . , q,

where theθ i are unknown model parameters. Letπi(θ i ), i = 1, . . . , q, be prior
distributions for the unknown parameters, and define the marginal or predictive
densities ofx,

mi(x) =
∫

fi(x|θ i )πi(θ i) dθ i .
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TheBayes factor of Mj to Mi is given by

Bji = mj(x)

mi(x)
=

∫
fj (x|θj )πj (θj ) dθj∫
fi(x|θ i )πi(θ i) dθ i

(1)

and is often interpreted as the “odds provided by the data forMj versusMi .”
ThusBji = 10 would suggest that the data favorMj over Mi at odds of ten to
one. Alternatively,Bji is sometimes called the “weighted likelihood ratio ofMj

to Mi ,” with the priors being the “weighting functions.” These interpretations are
particularly appropriate when, as here, we focus on conventional or default choices
of the priors.

1.2. Intrinsic Bayes factors and expected posterior priors. For theq models
M1, . . . ,Mq suppose that only noninformative priorsπN

i (θ i), i = 1, . . . , q, are
available. In general, we recommend that these be chosen to be “reference priors”
[see Berger and Bernardo (1992)]. Define the corresponding marginal or predictive
densities ofx,

mN
i (x) =

∫
fi(x|θ i )π

N
i (θ i) dθ i .

Unfortunately, the direct use of improper priors for defining Bayes factors in (1)
is not generally justifiable [cf. Berger and Pericchi (1996a, 2001)], but they can be
utilized for model selection through the introduction of training samples. Here is
the standard type of training sample.

DEFINITION 0 [Berger and Pericchi (1996a)]. A training sample, to be
indexed byl, is a subset of the data,x(l). It is calledproper if 0 < mN

i (x(l)) < ∞
for all Mi . Let XP denote the set of all proper training samples and define its
cardinality asLP. A training sample isminimal if it is proper and no subset is
proper. Aminimal training sample will be denoted MTS; letXM andLM denote,
respectively, the set of all MTS and its cardinality.

Thusx(l) can be used to “convert” the improperπN
i (θ i ) to proper posteriors,

πN
i

(
θ i|x(l)

) = fi(x(l)|θ i)π
N
i (θ i )

mN
i (x(l))

.(2)

These posteriors can then be used to define Bayes factors for the remaining data.
Since there are typically many possible training samples, it is natural to average

the resulting Bayes factors over the training samples in some fashion. The resulting
Bayes factor for comparingMj to Mi [called theintrinsic Bayes factor (IBF) in
Berger and Pericchi (1996a)] is

Bji = BN
j i · AVE

[
BN

ij (x(l))
]
,(3)
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where

BN
j i = BN

j i(x) = mN
j (x)

mN
i (x)

and BN
ij (l) = BN

ij (x(l)) = mN
i (x(l))

mN
j (x(l))

,

and “AVE” denotes an average of theBN
ij (x(l)). A variety of possible averages

have been considered [see Berger and Pericchi (1996a, 2001)], the most common
being arithmetic, geometric and median averages. Some recent references to use
and development of intrinsic Bayes factors in various scenarios include Berger
and Pericchi (1996b, 1996c, 1998), Bertolino and Racugno (1996), De Santis
and Spezzaferri (1997), Lingham and Sivaganesan (1997, 1999), Sun and Kim
(1997), Berger, Pericchi and Varshavsky (1998), Key, Pericchi and Smith (1999),
Moreno, Bertolino and Racugno (1998, 1999, 2001), Bertolino, Racugno and
Moreno (2000), Berger and Mortera (1999), Sivaganesan and Lingham (1999),
Kim and Sun (2000), Rodriguez and Pericchi (2001), Beattie, Fong and Lin (2002),
Ghosh and Samanta (2002) and Paulo (2002).

Another recent use of training samples for model selection is in the development
of empirical expected posterior priors [Pérez (1998), Pérez and Berger (2001,
2002) and Neal (2001)], defined as

πEP
i (θ i ) = 1

LM

∑
x(l)∈XM

πN
i

(
θ i |x(l)

)
.(4)

The idea is that, instead of using the minimal training samples to define proper
posteriors for computation of Bayes factors and then averaging the ensuing Bayes
factors, one can first average the proper posteriors and then compute Bayes factors
with the results. This approach can be embedded within Markov chain Monte
Carlo analysis, which can be a considerable computational advantage. Another
advantage is that one can use minimal training samples for each separate model,
which has certain computational and theoretical benefits.

1.3. Evaluation of intrinsic Bayes factors and a key condition. The most basic
approach to evaluation of intrinsic Bayes factors is simply to see if they produce
sensible answers. In Berger and Pericchi (1996c, 2001) it is argued that the best
way to study this is to determine theintrinsic prior corresponding to an IBF. The
intrinsic prior is that prior which would yield Bayes factors that are approximately
equal to the IBF, in an asymptotic sense. If this intrinsic prior is sensible, then the
IBF is judged to be sensible. The power and sensitivity of the use of intrinsic
priors in appraising default Bayesian model selection methods is illustrated in
Berger and Mortera (1999) and Berger and Pericchi (2001); see also the Examples
in Sections 3 and 4 in this paper. It is particularly important to establish the
existence (and sensibility) of intrinsic priors when new concepts are introduced
(as here, to deal with censored data and other difficulties); such initial study can
give considerable confidence that the new IBFs will work more generally.
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One can also use intrinsic priors directly as the conventional prior for model
selection [cf. Sun and Kim (1997), Moreno, Bertolino and Racugno (1998, 1999,
2001), Bertolino, Racugno and Moreno (2000) Kim and Sun (2000), Cano, Kessler
and Moreno (2002), Moreno, Girón and Torres (2004), Moreno, Torres and Casella
(2002), Paulo (2002), Girón, Martínez and Moreno (2003) and Moreno and Liseo
(2003)]; this is an attractive possibility, although it is often more computationally
intensive than using the IBF directly. Indeed, analytic determination of intrinsic
priors can itself be quite difficult, and they will frequently not have closed
form expressions. [They can have expressions amenable to MCMC computation,
however; see Pérez and Berger (2002).]

Computation of intrinsic priors corresponding to model selection requires an
extension from the finite set of proper training samples for the existing data to
a hypothetical sampling space of proper training samples, to be denoted byXI ,
based on imagining availability of an infinite sequence of data. Choice of this
sampling space is sometimes automatic, but sometimes involves judgement; an
example of each is given below. Note thatXI will typically be considered fixed
for all models under consideration, although there are situations (such as with
expected posterior priors) in whichXI can be allowed to vary with the model.

EXAMPLE 1. SupposeX1,X2, . . . are i.i.d. from the normal distribution with
unknown meanµ and varianceσ 2. For the usual reference prior,π(µ,σ 2) = 1/σ 2,
an easy computation shows that an MTS must consist of any two distinct
observations. Thus, if we use the MTS notion to define training samples, it is
clear that we should defineXI to be the set of all pairs of (distinct) observations
from the hypothetical infinite population of normal observations having meanµ

and varianceσ 2. (The word “distinct” is theoretically superfluous, since the
distribution is absolutely continuous.)

EXAMPLE 2. Consider a linear model in which observationxi has associated
k-vector of covariatesDi , i = 1, . . . , n. Suppose that an MTS would consist
of any m observations for which the corresponding vectorsDi are linearly
independent. If we wish to extend this definition to an infinite population, it is
necessary to decide if the covariates are viewed as fixed or themselves random. In
the former case, we can simply imagine that the hypothetical infinite population
arises from proportionally replicated covariates. LettingD denote then× k design
matrix of fixed covariates,XI can then be formally defined as the space of sets
of m observations that arise by first randomly drawingm linearly independent rows
from D, and then generating corresponding observations from the linear model. If
the covariates are considered random, one would first have to define the sampling
distribution of covariates and then constructXI by draws from the covariate
distribution, followed by generation of observations from the linear model. In this
paper we shall only consider the fixed covariates scenario.
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The special case of intrinsic priors that will be considered in this paper is that in
which there are two models,M0 nested inM1, and the arithmetic average is used
in (3). Then the intrinsic prior is given by

π I
1(θ1) = πN

1 (θ1)E
M1
θ1

[
BN

01(X(l))|XI],(5)

whereEM1 refers to expectation under modelM1. This expression differs from
the earlier expressions for an intrinsic prior, given in Berger and Pericchi (1996a,
1996c), because of the conditioning onXI . In the examples considered in these
earlier papers,P M1

θ1
(XI) = 1, so that the conditioning was not needed. In general,

however, the conditioning is needed to correctly define the intrinsic prior.
One important property of a “good” intrinsic prior is that it integrate to one. [If it

fails to do so, the corresponding IBF would appear to be “biased” toward one of
the models; see, e.g., Berger and Mortera (1999) and Berger and Pericchi (2001).]
Theorem 1 in Berger and Pericchi (1996a) asserts that this will be so (under
mild regularity conditions) ifπN

0 is proper (trivially satisfied ifM0 is a simple
hypothesis). Again, however, it was implicitly assumed thatXI had probability
one; in this paper we formally state our assumption:

ASSUMPTION0. P
Mi

θ i
(XI) = 1, i = 0,1.

In Sections 3 and 4, we will see that this assumption can be violated for the set of
minimal training samples, in situations involving censoring or when inappropriate
initial noninformative priors are utilized.

If Assumption 0 is satisfied andπN
0 is proper, then the intrinsic prior will be

proper. For simplicity we only show this in the case whenM0 is a simple model.

LEMMA 1. If Assumption 0 holds, M0 is a simple model (i.e., θ0 is specified)

and the intrinsic prior is given by (5), then∫
π I

1(θ1) dθ1 = 1.

PROOF. Since, by Assumption 0,XI is the support ofX(l) underM1, and
sinceXI contains only proper training samples, it follows from (5) that∫

π I
1(θ1) dθ1 =

∫ ∫
XI

πN
1 (θ1)

mN
0 (x(l))

mN
1 (x(l))

f1
(
x(l)|θ1

)
dx(l) dθ1.

Applying Fubini’s theorem to switch the order of integration yields∫
π I

1(θ1) dθ1 =
∫
XI

mN
0 (x(l)) dx(l) = P

M0
θ0

(XI) = 1,

the last step following from the assumption thatM0 is simple and Assumption 0.
�
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If Assumption 0 does not hold, the intrinsic prior can be highly unsatisfactory
(even improper, as we will see in later examples), casting considerable doubt on
the quality of the associated IBF. Thus, if Assumption 0 is violated in a particular
context, the set of training samples should be enlarged until the assumption is
satisfied. This can sometimes be done by changing the noninformative prior but,
more generally, a more sophisticated definition of training sample is required.

Note that under Assumption 0 the intrinsic prior in (5) has the alternative
representation

π I
1(θ1) =

∫
XI

πN
1

(
θ1|x(l)

)
mN

0 (x(l)) dx(l),(6)

which is also called thebase-model posterior expected prior in Pérez and Berger
(2002). If one is interested in utilizing the intrinsic prior directly in computing
Bayes factors, this expression is typically most useful in that, within MCMC,
one can simply drop the integral sign and treatx(l) as a latent variable. The
improved training samples that are obtained in the following sections for IBFs
can also be immediately utilized in (6) to obtain improved intrinsic priors that are
computationally attractive.

As a final comment, whenπN
0 (θ0) is improper, thenπ I

1(θ1) will also be
improper. However, it is well calibrated withπN

0 (θ0), in the sense that a limiting
argument over compact sets shows that the Bayes factor for the two priors is a
well-defined limit of proper priors. See Berger and Pericchi (1996a) for discussion
and Moreno, Bertolino and Racugno (1998) for implementation.

2. Generalizations of training samples. To handle situations in which
Assumption 0 is violated and in which training samples can contain very different
information, it is necessary to introduce more general types of training samples.

2.1. Randomized and weighted training samples.

DEFINITION 1. A randomized training sample with sampling mechanism
p = (p1, . . . , pLP), where p is a probability vector, is obtained by drawing a
training sample fromXP according top. Alternatively, the training samples can
be considered to beweighted training samples with weightspi .

EXAMPLE 3 (Sequential random sampling). We will be particularly interested
in sequential minimal training samples (SMTS) that are each obtained by drawing
observations from the collection of datax = {x1, x2, . . . , xn} by simple random
sampling (without replacement for a given SMTS), stopping when the subset so
formed,x∗(l) = (x(l)1, . . . , x(l)N(l)), is a proper training sample. Note thatN(l)

is itself a random variable. Although intuitively and operationally one obtains an
SMTS by sequential random sampling, such training samples can also be described
via Definition 1, with pi being the probability of obtaining theith SMTS via
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sampling without replacement from the set of observations, and all other proper
training samples being assigned probability 0.

REMARK. When theXi are i.i.d. and arise from an absolutely continuous
distribution, then an SMTS will typically equal an MTS with probability one, since
each distinct observation will typically have the same effect on posterior propriety.

EXAMPLE 4 (Sampling of minimal training samples). Often the number of
minimal training samplesLM is extremely large, so that the computation of the
averages in (3) can be very expensive. In such situations it usually suffices to just
randomly choose minimal training samples [i.e., setpi = 1/LM for x(l) ∈ XM

and setpi = 0 otherwise in Definition 1]. Indeed, in Varshavsky (1995) the theory
of U -statistics is used to indicate that it often suffices to randomly chooseL = kn

minimal training samples, wheren is the sample size of the actual data andk is the
size of the minimal training sample (assuming there is a fixed size). This is clearly
much smaller than the number of minimal training samples,

(n
k

)
. (Unfortunately,

precise guidelines as to the choice ofL are not available, so a reasonable practical
implementation is to start with the choicekn and increaseL until the change in
the resulting Bayes factor is sufficiently small.)

EXAMPLE 5 (Probability proportional to information). Observations are often
associated with covariates. In linear models for instance, a training samplex(l)

will typically have a corresponding “design matrix” of covariatesD(l) and
corresponding “information” proportional to|D(l)′D(l)|. One could choose
training samples with probability proportional to this information (or perhaps the
square root of the information). This was proposed in de Vos (1993).

On the other hand, one does not want training samples to be too informative.
Suppose, for instance, that almost all of the information in the entire sample is due
to a single observation. Utilization of that observation as a training sample can be
inappropriate, as will be seen in Section 5. Indeed, it is generally a good idea to
restrict attention to training samples that contain only a modest fraction of the total
information in the data, although this may not always be possible [cf. Rodriguez
and Pericchi (2001)].

EXAMPLE 6 (Random sampling to reach a given information level). An
interesting variant of the sequential random sampling approach to construction
of a training sample is to stop, not when the training sample is proper, but when
the training sample contains a certain amount of “information.” We do not pursue
this idea here.

2.2. Imaginary training samples. A different notion that has been employed
[in, e.g., Good (1950), Smith and Spiegelhalter (1980), Iwaki (1997, 1999), Pérez
(1998), Rodriguez and Pericchi (2001), Ghosh and Samanta (2002) and Pérez
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and Berger (2002)] is that of an imaginary training sample: training samples
are generated, not from the real data, but from some specified distribution. For
instance, in model selection one might elicit a subjective predictive distribution,
m∗(x∗), wherex∗ is thought of as a “future” minimal training sample. One could
then draw training samples from this distribution for Bayesian model selection,
or use the associated expected posterior priors [see Pérez and Berger (2002) for
motivation and further discussion].

One potential difficulty with training sample methods is that often only
sufficient statistics (and not the actual data) are available. Use of imaginary training
samples can overcome this difficulty.

DEFINITION 2. A conditional imaginary training sample, for a situation in
which only sufficient statistics from a model are available, is defined to be a
training sample from the conditional distribution of the data given the sufficient
statistics.

If S is a sufficient statistic, the factorization theorem gives

f (x|θ) = g(S|θ) · h(x|S),

and we can repeatedly draw conditional imaginary training samplesx∗ from the
corresponding marginal distributionh(x∗|S). In computation of intrinsic Bayes
factors or expected posterior priors one then presumes that the imaginary training
samplex∗ arose from the densityf (x∗|θ).

EXAMPLE 7 (Example 1 continued). LetX1, . . . ,Xn be an i.i.d. sample
from the normal distribution with meanµ and varianceσ 2, but suppose that
only the sufficient statistics̄x ands2 = ∑

i(xi − x̄)2 are reported, along withn.
A very simple way to draw conditional imaginary training samples is to create the
surrogate data set

X∗
i = (Zi − Z̄)

s

sZ
+ x̄, i = 1, . . . , n,

where theZi are independent standard normal with sample mean and sum of
squared deviations̄Z ands2

Z, respectively. This surrogate data set clearly has the
same sample mean and sum of squared deviations as the original data and is a draw
from h(x|x̄, s2). One can then choose training samples (recall minimal training
samples were of size 2) from this surrogate data set. (Note that it is necessary to
haven ≥ 3 in order to have training samples that are not simply the entire data
set.) One can also draw additional surrogate data sets if more training samples are
needed (an advantage of using imaginary training samples). Imaginary training
samples are used as if they were real training samples, that is, they are assumed to
arise from the original normal distribution withµ andσ 2.
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EXAMPLE 8 (Poisson distribution). Suppose thatX is a single realization
from a Poisson distribution with meanθT , arising as the number of rare events
observed in a time periodT . We consider testing ofH0 : θ = θ0 versusH1 : θ �= θ0,
utilizing the improper Jeffreys prior,πN

1 (θ) = θ−1/2.
A natural way to define imaginary training samples is to use the fact that such

a PoissonX can be viewed as arising from a sum of the indicators of events
occurring with exponential inter-arrival times. More precisely, fori = 1, . . . ,
considerXi ∼ f (xi |θ) = θ exp(−θxi), and define

X ≡
{

first j such thatSj =
j∑

i=1

Xi > T

}
− 1.

ThenX has the Poisson distribution with meanθT .
It is natural to utilize these latent{x1, . . . , xX} to construct imaginary training

samples. No simple trick is available as in the previous example, so we must
determineh(x1, . . . , xX|X). Computation yields that this is the uniform density
on

∑X
i=1 xi < T . Thus, if training samples consist of a single observation (as is

the case in the testing situation we consider with the Jeffreys prior), an imaginary
training sample can be drawn from the marginal distribution of a singlexi arising
from this uniform distribution, which is

h
(
xi |X) = X

T

(
1− xi

T

)X−1

, 0 < xi < T .(7)

Single imaginary training samples can thus be drawn asX∗
i = T [1 − U1/X],

whereU is Uniform(0,1). These are then used in constructing intrinsic Bayes
factors and/or expected posterior priors, as if they had arisen from the exponential
density with mean 1/θ . Note that we have implicitly assumed thatT > 0 in
defining the imaginary training samples.

The situation is not always as nice as the above examples would suggest, in
that the information needed to constructh(x|S) in order to generate the imaginary
training samples can be lost when a sufficiency reduction is effected.

EXAMPLE 9 (Linear model). SupposeY(n × 1) arises from the linear model

Y = Xβ + ε, ε ∼ Nn(0, σ 2In),

where β = (β1, β2, . . . , βk)
′ is unknown,σ 2 is known, andX is an (n × k)

given design matrix of rankk ≤ n. The least squares estimateβ̂ = (X′X)−1X′y
is then sufficient forβ, and one might be presented only withn, β̂ and its
covariance matrix� = σ 2(X′X)−1 after a sufficiency reduction. From this one
cannot reconstruct the conditional distribution of the data givenβ̂ , because the
design matrix, and hence the covariates, have been “lost” (unlessn = k, in which
case it can be reconstructed from�). So imaginary training samples cannot
be generated in this way. For some ideas as to alternative ways of generating
imaginary training samples in situations such as this, see Iwaki (1999).
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2.3. Utilization of generalized training samples. For training samples defined
as in Definition 1 and considered as weighted training samples the arithmetic IBF
and empirical expected posterior priors are defined, respectively, as

BA
j i = BN

j i

LP∑
l=1

plB
N
ij (x(l)),(8)

πEP
i (θ i ) =

LP∑
l=1

plπ
N
i

(
θ i |x(l)

)
.(9)

It is often not feasible to compute these weighted averages (because of the large
number of possible training samples), in which case it is easier to drawL random
training samples,x(1),x(2), . . . ,x(L), according to the random schemes discussed
above for generating the training samples (repeats allowed), and then just
approximate the arithmetic IBF and empirical expected posterior priors by,
respectively,

BA
j i

∼= BN
j i

1

L

L∑
l=1

BN
ij (x(l)),(10)

πEP
i (θ i ) ∼= 1

L

L∑
l=1

πN
i

(
θ i|x(l)

)
.(11)

It usually suffices to takeL to be a modest multiple of the overall sample sizen.

3. Censoring. Censored data provides a key illustration of these ideas. We
begin with an example involving right-censoring. For another discussion of
training samples in the presence of censoring, see Lingham and Sivaganesan
(1999).

EXAMPLE 10 (Right censoring of exponential data). Suppose the data
x1, . . . , xn arises as a random sample from the right-censored Exponential(θ )
density; thus, ifxi < r it arises from the densityf (xi |θ) = θ exp(−θxi), while
P (Xi = r|θ) ≡ p(θ) = exp(−rθ). It is desired to test

M0 : θ = θ0 versus M1 : θ �= θ0.

Consider the usual default priorπN
1 (θ) = θ−1. It is easy to show that any single

uncensored observation yields a proper posterior, while no number of censored
observations will do so. Hence the set of minimal training samplesXM consists
of the collection of single uncensored observations. Since censored observations
never enter into the training samples, the MTS’s will intuitively be biased in favor
of larger values ofθ = 1/E(Xi|θ), which seems undesirable.

To evaluate the situation more carefully, consider the intrinsic prior forθ

corresponding to the arithmetic IBF; this prior is given by (5), where the sampling
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space of training samples, here denotedXMI , is simply the interval(0, r) [i.e., the
space of single uncensored observations drawn fromf (x|θ, x < r)]. Note first that
Assumption 0 is violated, since

P
Mi

θi

(
XMI ) = P

Mi

θi
(X < r) = 1− exp(−rθi) < 1, i = 0,1,

so that we expect problems with the intrinsic prior (and hence with the intrinsic
Bayes factor). Noting that the Bayes factor for a training sample isBN

01(x) =
θ0 exp(−θ0x)/

∫ 1
θ
θ exp(−θx) dθ = xθ0 exp(−θ0x), the intrinsic prior in (5) is

given by

π I(θ) = 1

θ

∫ r

0
xθ0 exp(−θ0x)

θ exp(−θx)

(1− exp(−rθ))
dx

= θ0

(1− exp(−rθ))

[
1

(θ + θ0)2
− e−(θ+θ0)r

(
r

θ + θ0
+ 1

(θ + θ0)2

)]
.

This is not a proper prior; indeed, asθ → 0 the prior behaves like a constant
times 1/θ , which is nonintegrable, a particularly egregious failing.

One possible solution to this problem would be to use a noninformative prior
that enlarges the set of MTS’s. Indeed, for this problem involving right censoring
the Jeffreys-rule prior isπJ(θ) = θ−1[1 − exp(−rθ)]1/2 [De Santis, Mortera
and Nardi (2001)]. For this prior, it can be shown that any single observation,
censored or uncensored, is an MTS, so that Assumption 0 is trivially satisfied
and the resulting intrinsic prior must integrate to one. Note, however, that extra
work is involved in finding the Jeffreys-rule prior, and this can be formidable in
more complex situations (e.g., in Example 11). Furthermore, the intrinsic prior
that results from use of the Jeffreys-rule prior here has the quite unappealing
property (see the Appendix) that its median isO(r−1) asr → 0. This unattractive
behavior arises because the highly informative training samples (the uncensored
observations) have effects averaged with the (many more) censored observations
that have negligible information content asr → 0. Hence we turn to use of
sequential minimal training samples to solve the problem.

For the priorπN(θ) = θ−1 a SMTS is of the formx(l) = (r, . . . , r, x(l)), where
x(l) is the first uncensored observation that arises in simple random sampling
(without replacement) from the data. (In contrast, none of ther would be present
in an MTS.) The natural sampling space for such training samples is the setXSI

of possible sequencesx(l) = (r, . . . , r, x(l)) of i.i.d observations arising from the
censored exponential distribution. LetN∗(l) = N(l) − 1 denote the number of
censored observations in the SMTS fromXSI, and writep(θ) = P (X > r|θ) =
exp(−θr). Note thatP (N∗(l) = j |θ) = (1−p(θ))p(θ)j , and that the joint density
of x(l) is f (x(l)|θ) = p(θ)j θ exp(−θx(l)).

Letting nu denote the number of uncensored observations in the actual data,
and lettingT denote the sum of all observations (censored and uncensored),
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computation yields

BN
10 = mN

1 (x)

mN
0 (x)

= �(nu)(T θ0)
−nueT θ0,

BN
01(x(l)) = mN

0 (x(l))

mN
1 (x(l))

= θ0
(
N∗(l)r + x(l)

)
exp

(−[N∗(l)r + x(l)]θ0
)
.

The approximate arithmetic IBF in (10), corresponding toL random SMTS draws,
is then

BA
10

∼= �(nu)(T θ0)
−nueT θ0

1

L

L∑
l=1

θ0
(
N∗(l)r + x(l)

)
exp

(−[N∗(l)r + x(l)]θ0
)
.

To investigate the behavior of this IBF, we again study its corresponding
intrinsic prior. From (5) and noting thatP Mi

θi
(XSI) = 1, this is given by

π I(θ) = 1

θ
E

M1
θ

[
BN

01
(
x∗(l)

)]

= 1

θ

∞∑
j=0

∫ r

0
θ0( jr + x)exp

(−[ jr + x]θ0
)
p(θ)j θ exp(−θx) dx(12)

= θ0

(θ + θ0)2
,

the last step following from standard calculations involving geometric series. This
is a very sensible intrinsic prior for the problem, being proper and having median
equal toθ0. Indeed, this is the intrinsic prior for the exponential testing problem
when no censoring is present and ordinary MTS are used [Pericchi, Fiteni and
Presa (1993)], an appealing result. The indication is that use of SMTS leads to a
very satisfactory arithmetic IBF in the presence of censoring.

It would be fascinating if the result observed in Example 10—that the intrinsic
prior in the presence of censoring and using SMTS equals the intrinsic prior when
there is no censoring and using MTS—held in general. Unfortunately, this is not
the case, as can be seen by considering the densityf (x|θ) = (0.5)exp(−|x − θ |),
together with a constant default prior onθ . Detailed calculations yield that the
intrinsic prior without censoring and using MTS is not equal to the intrinsic prior
with right censoring and RMTS. We omit the details.

That the intrinsic prior in (12) is proper would not have needed exact
calculation. Indeed, consider the general case of censoring of i.i.d. observations,
with a known censoring mechanism and the use of SMTS. Then the natural
sampling space is the setXSI of possible sequences of i.i.d observations arising
from the original distribution (with censoring), with the sampling stopping the
first time the training sample is proper. Assuming that the sampling is guaranteed
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to stop with probability one for any of the models and parameter values under
consideration (i.e., that the sampling mechanism is aproper stopping rule), then
Assumption 0 is satisfied and Lemma 1 shows that the intrinsic prior is proper.

When the censoring mechanism is at least partly unknown, intrinsic priors
cannot be defined. However, SMTS can be defined, and the corresponding IBFs or
empirical expected posterior priors utilized to compute Bayes factors. We illustrate
this with an example comparing two exponential distributions.

EXAMPLE 11 (Comparison of two exponential populations). The following
data, which appeared in Gehan (1965), were analyzed in Cox and Oakes (1984)
as arising from (possibly censored) exponential distributions. The data show times
of remission (as measured by freedom from symptoms), in weeks, of leukemia
patients, where the first group consists of control individuals and the second group
consists of individuals treated with the drug 6-mercaptopurine. The data is as
follows, where+ indicates that the data has been censored.
Control: 1, 1, 2, 2, 3, 4, 4, 5, 5, 8, 8, 8, 8, 11, 11, 12, 12, 15, 17, 22, 23.
Treated: 6+, 6, 6, 6, 7, 9+, 10+, 10, 11+, 13, 16, 17+, 19+, 20+, 22, 23,

25+, 32+, 32+, 34+, 35+.
Notice that the control group has no censored observations, but more than half

of the observations from the treated set have been censored.
Following Cox and Oakes (1984) and withj = 1,2 referring to the control and

treatment groups, respectively, assume that the uncensored failure timestj i follow
the Exponential(θj ) distribution. Write each observation asxji = (yji, vji), where
yji = min(tj i , cj i), with cji denoting the censoring time (known for the actual
data), andvji = 0 if tj i ≤ cji (uncensored) andvji = 1 otherwise. Specifying the
density here is problematical when the overall distribution of thecji is not known,
but for Bayesian analysis we only need the likelihood function of(θ1, θ2) for the
given data, and this is given by

lik (θ1, θ2) =
2∏

j=1

[ nju∏
i=1

θj e
−tj iθj

njc∏
i=1

e−tj iθj

]
,(13)

wherenju andnjc denote, respectively, the number of uncensored and censored
observations in each group, and the labels are rearranged if necessary.

We want to test the hypotheses

M0 : θ1 = θ2 = θ versus M1 : θ1 �= θ2.(14)

In the analysis, we will utilize the usual noninformative priorsπN
0 (θ) = θ−1 and

πN
1 (θ1, θ2) = θ−1

1 θ−1
2 . As in Example 10, it then follows that an SMTS must

consist of a sequence of censored observations from each group, followed by an
uncensored observation. (Since in the actual data the control group contains only
uncensored observations, an SMTS for this data will contain just a single control
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observation, but we will write down expressions for the general case.) Write this
SMTS as

x(l) =
{

c11(l), . . . , c1N∗
1
(l), t11(l),

c21(l), . . . , c2N∗
2
(l), t21(l),

whereN∗
1 andN∗

2 are the (random) stopping times in obtaining the SMTS.
Straightforward calculation then shows the arithmetic IBF to be

BA
10 = �(n1u)�(n2u)

�(n1u + n2u)

(T1 + T2)
n1u+n2u

T
n1u

1 T
n2u

2

1

L

L∑
l=1

T1(l)T2(l)

(T1(l) + T2(l))
2 ,(15)

where

T1 =
n1u∑
i=1

t1i +
n1c∑
j=1

c1j , T2 =
n2u∑
i=1

t2j +
n2c∑
j=1

c2j ,

T1(l) =
N∗

1 (l)∑
j=1

c1j (l) + t11(l), T2(l) =
N∗

2 (l)∑
j=1

c2j (l) + t21(l)

andL is the number of SMTS that are to be drawn.
For analysis of the actual data above we computed (15) usingL = n = 42,

L = 2n and L = 5n training samples obtained by simple random sampling
(without replacement) from the data. The resulting Bayes factors wereB10 = 544,
493 and 584, respectively, showing decisive evidence against the null model and
only modest variation with respect to the number of training samples drawn.
If equal prior probabilities are assumed for the hypotheses, then the posterior
probability ofM1 is aboutP (M1|x) = 0.998.

It is also straightforward to calculate the approximations to the empirical
expected posterior priors, given in (11), and use them to compute the Bayes factor
of M1 to M0. The result is

BEP
10 = �(n1u + 1)�(n2u + 1)

�(n1u + n2u + 2)

×
∑L

l=1 T1(l)T2(l)(T1 + T1(l))
−(n1u+1)(T2 + T2(l))

−(n2u+1)∑L
l=1(T1(l) + T2(l))2(T1 + T2 + T1(l) + T2(l))−(n1u+n2u+2)

.

For the data above and random training samples of sizesL = n = 42,L = 2n and
L = 5n, the resulting Bayes factors wereBEP

10 = 742,713 and 728, respectively.
These are similar to the arithmetic IBF, but are systematically somewhat larger,
providing support for the suggestion in Pérez and Berger (2002) that the empirical
expected posterior priors will yield Bayes factors that are somewhat more
favorable to the more complex model than IBFs or intrinsic priors.
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Perhaps the most interesting feature of the above example is that Bayes factors
and posterior probabilities could be computed rather easily, without needing
to know the nature of the censoring mechanism. In contrast, classical answers
typically depend on the (often unknown) censoring mechanism. This is thus an
important situation in which the objective Bayesian approach requires significantly
less knowledge than a frequentist approach.

Lack of knowledge of the censoring mechanism does preclude computation
of the intrinsic prior corresponding to the arithmetic IBF in censoring situations,
however; without such knowledge, it is not clear how to define the sampling space
for the SMTS, needed for computation of the intrinsic prior. Of course, one might
reasonably “cheat” in this situation, using the suggestion from Example 10 that the
intrinsic prior for SMTS and in the presence of censoring might well be close to
the intrinsic prior for the problem when there is no censoring (and MTS are used).
One could then directly use these “approximate” intrinsic priors to compute the
Bayes factor.

EXAMPLE 12 (Example 11 continued). An MTS in the uncensored version
of this bi-exponential problem would consist of one observation from each of
the control and treatment groups. Denoting this MTS by simply(t1, t2), the
corresponding intrinsic priors are easily seen to beπ I

0(θ) = πN
0 (θ) = θ−1 and

π I
1(θ1, θ2) =

∫ ∞
0

∫ ∞
0

t1t2

(t1 + t2)
2 exp(−t1θ1)exp(−t2θ2) dt1dt2.

Combining these intrinsic priors with the likelihood (13) and interchanging order
of integration results in the Bayes factor

B I
10 = �(n1u + 1)�(n2u + 1)

�(n1u + n2u)
(T1 + T2)

n1u+n2u

×
∫ ∞

0

∫ ∞
0

t1t2

(t1 + t2)
2

1

(T1 + t1)
n1u+1(T2 + t2)

n2u+1 dt1dt2.(16)

For the data of Example 11 numerical computation yieldsB I
10 = 503, a value quite

close to those obtained with the approximate arithmetic IBF and using SMTS
training samples.

Another advantage of having (approximate) intrinsic priors, as above, is that
they can be utilized to develop conditional frequentist tests. Indeed, the intrinsic
prior above has been utilized in Paulo (2002) to develop optimal conditional
frequentist tests for the bi-exponential testing problem.

4. Discrete examples. Difficulties with training sample approaches for dis-
crete data have been highlighted in several papers [e.g., Bertolino and Racugno
(1996), O’Hagan (1997) and Berger and Pericchi (1998)]. We first revisit one of
the more vexing examples, to see if randomized training samples fix the problem.
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EXAMPLE 13 (Bernoulli testing). Based onn Bernoulli trials, withP (Xi =
1|θ) = θ = 1− P (Xi = 0|θ), it is desired to test

M0 : θ = θ0 versus M1 : θ �= θ0.

Suppose the improper Haldane priorπN
1 (θ) = θ−1(1−θ)−1 is utilized to construct

an IBF. This is a quite inferior noninformative prior, but it is interesting to see if
IBFs can be made robust to poor choices of the initial noninformative prior. Note
that for the Haldane prior

BN
10 = �(S)�(n − S)

�(n)θS
0 (1− θ0)

(n−S)
,

whereS is the number of ones in the data.
With the Haldane prior an MTS must consist of precisely one 1 and one 0. (One

and only one of each is needed for the resulting posterior to be proper.) Since
P

Mi

θ (XM) = 2θ(1 − θ) < 1, Assumption 0 is clearly violated and the resulting
IBF is again suspect. Indeed, noting thatBN

01({0,1}) = θ0(1− θ0), it is immediate
from (5) that the implied intrinsic prior is

π I(θ) = θ0(1− θ0)

θ(1− θ)
.(17)

This is itself improper—indeed it is simply a constant multiple of the original
Haldane prior—and strongly suggests that the IBF for the Haldane noninformative
prior and the usual definition of a minimal training sample do not correspond to a
sensible Bayes procedure.

An extreme case of this example arises whenθ0 = 0 and the data consists of
one 1 and the rest 0. O’Hagan (1997) noted that thenM0 : θ0 = 0 is wrong with
certainty (one cannot observe a 1 underM0), yet the intrinsic Bayes factor will then
equal 1/(n − 1), for n ≥ 2. The basic problem, in this case, is thatP

M0
θ0

(XM) = 0,
an extreme violation of Assumption 0. A single extra 1 (S = 2) would solve the
problem, makingB10 = ∞ (as it should be), but the behavior of the IBF is indeed
disturbing whenS = 1.

This extreme example is a good test of the effectiveness of SMTS. An SMTS
will either be of the formx∗(l) = (0,0, . . . ,0,1) or x∗(l) = (1,1, . . . ,1,0); these
can obviously be summarized by specifyingN0 (the number of zeroes) and
N1 (the number of ones), respectively. Noting thatPθ(N0) = (1 − θ)N0θ and
Pθ(N1) = θN1(1− θ), for N0,N1 = 1,2, . . . , it follows that

BN
01(N0) = θ0(1− θ0)

N0∫ 1
0 θ(1− θ)N0πN(θ) dθ

= N0θ0(1− θ0)
N0,

BN
01(N1) = N1(1− θ0)θ

N1
0 .
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To determine the intrinsic prior corresponding to the arithmetic IBF in (5), we
first chooseXI to be the set of training samples,N0 andN1, arising from an infinite
series of Bernoulli(θ) trials. When 0< θ0 < 1, it is clear thatP Mi

θi
(XI) = 1, so that

the intrinsic prior is

π I
1(θ) = πN

1 (θ)E
M1
θ

[
BN

01(X(l))
]

= θ−1(1− θ)−1

[
θ0θ

∞∑
i=1

i[(1 − θ)(1− θ0)]i + (1− θ0)(1− θ)

∞∑
i=1

i[θθ0]i
]

= θ0(1− θ0)

[
1

(1− (1− θ)(1− θ0))
2 + 1

(1− θθ0)
2

]
.

It can be verified that
∫ 1
0 π I

1(θ) dθ = 1, so the intrinsic prior is proper. (With
slightly less work, this also follows from Lemma 1.) Also, the intrinsic prior is
admirably balanced, in the sense that the median is very close toθ0. [Numerical
computation shows that 0.48< P(θ < θ0) < 0.52 for all θ0.] Thus all indications
are that the use of the SMTS has corrected the problem caused by the bad initial
noninformative prior.

Of course, we needed the condition 0< θ0 < 1 for the SMTS to work. For
the extremeθ0 = 0 (or the caseθ0 = 1), Assumption 0 remains violated even for
the SMTS; indeed,P M0

θ0
(XP) = 0 in the extreme cases, so that no set of proper

training samples can work. As an indication of the danger in using training sample
approaches when Assumption 0 is violated, consider again the situation considered
by O’Hagan (1997). The arithmetic IBF, based on use of SMTS for the given
data, can be computed to beB10 = (n2 − n + 2)/[2n(n − 1)], which while an
improvement over 1/(n − 1), is still not ∞, as it should be. Hence even use of
SMTS cannot correct the situation when Assumption 0 is violated.

One might wonder if the the training sample solution fails as, say,θ0 → 0. This
is awkward to discuss in terms of the arithmetic IBF itself, since the sample size
would correspondingly need to grow to∞ before a proper training sample could
be obtained. We thus look at direct use of the intrinsic prior (18) to see if it yields
a satisfactory Bayes factor. Indeed, the resulting Bayes factor is

B I
10 =

∫ 1
0 θS(1− θ)n−S[(1− (1− θ)(1− θ0))

−2 + (1− θθ0)
−2]dθ

θS−1
0 (1− θ0)n−S−1

.

For the problematical caseS = 1, n ≥ 2 andθ0 → 0,

B I
10 →

∫ 1

0
θ(1− θ)n−1

[
1

θ2
+ 1

]
dθ,

which is infinite. Thus, for very smallθ0 and the observationS = 1, one would
properly conclude that the alternativeM1 is true.
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Next we revisit the Poisson example from Section 2.2, to see the effectiveness
of imaginary training samples when only a sufficient statistic is given.

EXAMPLE 14 (Example 8 continued). Recall we are testingH0 : θ = θ0 versus
H1 : θ �= θ0. For the Jeffreys prior 1/

√
θ underH1 computation yields that the

formal Bayes factor is

BN
10 = �(X + 1/2)

T (X+1/2)θX
0 e−T θ0

.

Recall that we generate imaginary datax∗
i and assume it to be exponential with

mean 1/θ . A single such observation is a minimal training sample. The arithmetic
IBF in (10) is thus given by

BA
01 = BN

10
1

L

L∑
l=1

θ0

�(3/2)
(x∗

l )3/2 exp(−θ0x
∗
l ).

To study the performance of this objective Bayes factor we again determine the
corresponding intrinsic prior. Since thex∗

i were actually generated from (7), the
intrinsic prior in (5) is given by

π I(θ) = 1√
θ

lim
T →∞

∫ T

0

θ0

�(3/2)
(x∗

l )3/2 exp(−θ0x
∗
l )

X

T

(
1− x∗

l

T

)X−1

dx∗
l .(18)

[The intrinsic prior, as defined in Berger and Pericchi (1996a), is based on
letting the sample size go to infinity; for the Poisson problem the analogue of
this definition isT → ∞.] Since the integrand in (18) is bounded above by
θ0(x

∗
l )3/2 exp(−θ0x

∗
l )/ �(3/2), which is integrable, we may invoke the dominated

convergence theorem to take the limit inside the integral. Furthermore,

lim
T →∞

X

T

(
1− x∗

l

T

)X−1

= θ exp(−θx∗
l )

almost surely, so that

π I(θ) = 1√
θ

∫ ∞
0

θ0

�(3/2)
(x∗

l )3/2 exp(−θ0x
∗
l )θ exp(−θx∗

l ) dx∗
l

= 3θ0
√

θ

2(θ + θ0)
5/2 .

This is a proper prior, and has median approximately equal to (1.7)θ0, a quite
satisfactory prior. Hence the arithmetic IBF based on imaginary training samples
arising from a single Poisson observation seems fine.
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5. Information-based training samples in the linear model. As mentioned
in Section 2.1, it is attractive to consider choosing training samples according to
their information content. We begin with a classic example demonstrating the need
to do this. [A related example can be found in Iwaki (1997).]

EXAMPLE 15 (Findley’s example). Findley (1991) demonstrated the inade-
quacy of BIC in the following situation. Suppose we observeXi = diθ + εi , for
i = 1, . . . , n, and that theεi are i.i.d.N (0,1). It is desired to test

M0 : θ = 0 versus M1 : θ �= 0.

The standard noninformative prior isπN(θ) = 1, and the corresponding formal
Bayes factor is

BN
10 =

√
2π

‖d‖ exp

(
(
∑n

i=1 xidi)
2

2‖d‖2

)
,

where

‖d‖2 =
n∑

i=1

d2
i .

A minimal training sample is a single observationxi , and

BN
01(xi) = |di|√

2π
exp

(
−x2

i

2

)
.

It follows that the arithmetic IBF is

BA
10 =

√
2π

‖d‖ exp

(
(
∑n

i=1 xidi)
2

2‖d‖2

)
1

n

n∑
i=1

|di |√
2π

exp
(
−x2

i

2

)
.

The interesting special case considered by Findley wasdi = i−1/2. Then as
n → ∞ it is straightforward to show that‖d‖2 = O(logn),

(
∑n

i=1 xi di)
2

‖d‖2
= θ2 logn + 2Zθ

√
logn + O(1)

and
1

n

n∑
i=1

|di |√
2π

exp
(
−x2

i

2

)
= O(n−1/2),

whereZ is a standard normal random variable. It follows that

BA
10 = O

([n logn]−1/2)exp
(1

2θ2 logn + Zθ
√

logn
)

= O
(
(logn)−1/2n(θ2−1)/2 exp

(
Zθ

√
logn

))
.

UnderM0 : θ = 0, it is clear thatBA
10 = O([n logn]−1/2) → 0 asn → ∞; this is

fine, as it indicates thatM0 is true. But ifM1 is true withθ2 < 1, thenBA
10 → 0
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also, which means the arithmetic IBF is then inconsistent, a severe inadequacy.
(If θ2 = 1, the arithmetic IBF is consistent or not, depending on the sign ofZ,
that is, it will be consistent half the time.) The source of the problem (as with the
associated inconsistency of BIC, as shown by Findley) is that the observationsxi

contain drastically decreasing information,d2
i = i−1, asi increases.

This thus provides a good test for the idea of weighting the training samples by
the amount of information they contain, that is, settingpi = d2

i /‖d‖2 in Definition
1, and using the corresponding weighted IBF in (8). The resulting Bayes factor,
using similar arguments to above, satisfies

BA
10 =

√
2π

‖d‖ exp

(
(
∑n

i=1 xi di)
2

2‖d‖2

)
n∑

i=1

|di |3
‖d‖2

√
2π

exp
(
−x2

i

2

)

= O
(
(logn)−3/2nθ2/2 exp

(
Zθ

√
logn

))
.

This still goes to 0 underM0 (as it should), but now goes to∞ underM1 (as it
should).

The use of weighted training samples solved the inconsistency problem, but that
is a very crude criterion and the goal in use of training samples is to achieve actual
Bayesian behavior. Unfortunately, even the use of weighted training samples fails
this goal in this challenging situation. For instance, the weighted expected posterior
prior in (9) for this situation is

πEP
1 (θ) =

n∑
i=1

d2
i

‖d‖2

di√
2π

exp
(
−1

2
(xi − diθ)2

)
.(19)

Although this is, of course, proper, its variance can be shown to be O(n/ logn), so
that it becomes increasingly diffuse asn → ∞. Thus the limit is not a stable prior
distribution, as one would want.

The problem here is that the training samples corresponding to largeri simply
have too little information for them to be useful as training samples. This situation
was also encountered in Rodriguez and Pericchi (2001) in dynamic linear models.
Their reasonable solution was to only use the most informative training samples to
develop intrinsic Bayes factors or expected posterior priors. For instance, a simple
modification of (19) would be to truncate the summation at some moderate
valuen0 (replacing‖d‖2 by the truncated sum), effectively assigning a “weight”
of zero to the low-information training samples. This is an effective option in such
situations.

For the general linear model the above phenomenon can also be observed. For
clarity we switch to a more standard notation for model selection in the linear
model. Suppose forj = 1, . . . , q that modelMj for the dataY (n× 1) is the linear
model

Mj : Y = Xjβj + εj , εj ∼ Nn(0, σ 2
j In),
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whereσ 2
j and βj = (βj1, βj2, . . . , βjkj

)′ are unknown andXj is an (n × kj )

given design matrix of rankkj < n. Let Rj = |(I − Xj (X′
j Xj )

−1X′
j )y|2 denote

the residual sum of squares forMj .
As usual, we utilize the reference priorπN

j (βj , σj ) = σ−1
j as the initial

noninformative prior. A minimal training sampley(l), with corresponding design
matrix Xj (l) underMj , is a sample of size max{kj } + 1 such that all(X′

j (l)Xj (l))

are nonsingular; letL denote the number of such training samples. Ifkj > ki ,

C = �
(
(n − kj )/2

)
�

(
(kj − ki + 1)/2

)/[
�

(
(n − ki)/2

)
�(1/2)

]
and

Rj(l) = ∣∣(I − Xj (l)
(
X′

j (l)Xj (l)
)−1X′

j (l)
)
y(l)

∣∣2,
it is shown in Berger and Pericchi (1996b) that

BA
j i = |X′

iXi|1/2

|X′
j Xj |1/2

R
(n−ki)/2
i

R
(n−kj )/2
j

C

L

L∑
l=1

|X′
j (l)Xj (l)|1/2

|X′
i (l)Xi (l)|1/2

(Rj (l))
1/2

(Ri(l))
(kj −ki+1)/2

.(20)

Problems can again arise here if too many of the|Xj (l)
′Xj (l)| (which are

proportional to the “information” in the training samples) are small.

EXAMPLE 16. Consider the special case of testing whether the slope of a
linear regression is zero. Thus, letM1 be the model with only the constant termβ1
andX′

1 = (1, . . . ,1), andM2 be the model with(β1, β2) and

X′
2 =

(
1 . . . 1 1 . . . 1 1
0 . . . 0 δ . . . δ 1

)
,

with m = (n − 1)/2 being the number of zeroes and also the number ofδ’s.
Let δ be very close to zero. Minimal training samples are then of two types.
The high-information minimal training samples are triples{yi, yj , yn}, where
i �= j range from 1 ton − 1. There arem(2m − 1) such training samples,
and they have|X′

2(l)X2(l)| ∼= 2. The low-information minimal training samples
include either one observation from the firstm and two observations from the
secondm, or the reverse. There arem2(m − 1) such training samples and they
have |X′

2(l)X2(l)| = 2δ2. Since δ is very small, the low-information training
samples contribute essentially zero to the expression in (20), so that (with the high-
information training samples labelled asl = 1, . . . ,m(2m − 1)),

BA
21

∼= |X′
1X1|1/2

|X′
2X2|1/2

R
(n−1)/2
1

R
(n−2)/2
2

C

m(m2 + m − 1)

m(2m−1)∑
l=1

√
2√
3

(R2(l))
1/2

R1(l)
.

As m grows the term involving the training samples clearly goes to zero (since the
residual sums of squares for the training samples can be shown to go to nonzero
constants asδ → 0), an undesirable result. Giving equal weight to the (many more)
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low-information training samples has effectively washed out the effect of the high-
information training samples.

The natural solution to this difficulty in the linear model is to weight the
training samples according to their information content, that is, choosep(l) ∝
|Xj (l)

′Xj (l)|. The problem discussed above will then disappear. Indeed, since
there are plenty of high-information training samples available (ifm is large), the
weighted IBF will have a (nice) intrinsic prior. (This is in contrast to Example 15,
where there were not enough high-information training samples to achieve this.)
So here weighting works ideally.

The Binet–Cauchy theorem yields the interesting result that

p(l) = |Xj (l)
′Xj (l)|

(n − kj )|X′
j Xj |

(i.e., we know the normalization constant for the information-based weighting
probabilities), and the weighted IBF then becomes

BA
j i = |X′

iXi|1/2

|X′
j Xj |3/2

R
(n−ki)/2
i

R
(n−kj )/2
j

L∑
l=1

C|X′
j (l)Xj (l)|3/2

(n − kj )|X′
i(l)Xi (l)|1/2

(Rj (l))
1/2

(Ri(l))
(kj −ki+1)/2 .(21)

We do not yet have much experience with use of this IBF, but our current
understanding suggests that this will often be better than the usual arithmetic IBF
with MTS in linear models. The use of an approximation to a similarly weighted
geometric version of the IBF was suggested in de Vos (1993).

Finally, the same issue can be shown to arise with the expected posterior prior
in the linear model, so that utilization of the weighted version

πEP
i (βi , σ

2
i ) =

LM∑
l=1

|Xi (l)
′Xi (l)|

(n − ki)|X′
iXi |π

N
i

(
β i , σ

2
i |y(l)

)
(22)

should be considered.

While the purpose of this paper is not comparison of objective model selection
procedures, it is worthwhile to pause and note that the examples we have been
considering are challenging for essentially any procedure. As an illustration,
consider the most common objective prior used for Bayesian model selection with
linear models, theg-prior, given byπi(σ

2
i ) = 1/σ 2

i and

πi(β i |σ 2
i ) is Nki

(
0, gσ 2

i (X′
iXi )

−1).
These were proposed in Zellner (1986) for estimation problems. The typical choice
of g is g = n. Zellner and Siow (1980) suggested a more appropriate (for testing)
multivariate Cauchy form for the prior, but it shares with theg-prior the underlying
scale matrix� = nσ 2

i (X′
iXi )

−1 which turns out to be quite problematical if it is
highly unbalanced.
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EXAMPLE 17 (Example 16 continued). Noting that the sample size here isn,
computation shows that

�2 = nσ 2
2 (X′

2X2)
−1 ∼= σ 2

2

(
1 −1

−1 n

)
,

so that the information available aboutβ1 is vastly different from the information
available aboutβ2. Indeed, using theg-priors with g = n for both M1 andM2
results in the Bayes factor

B10 = 1√
n + 1

(y′y − n/(n + 1)y′X2(X′
2X2)

−1X′
2y)−n/2

(y′y − n/(n + 1)y′X1(X′
1X1)−1X′

1y)−n/2 .

For largen and very smallδ [namely,δ = o(n−1)], computation shows that

B10
∼= 1√

n
exp

(
−(ȳ − yn)

2

2S2/n

)
,

whereȳ andS2 are the usual sample mean and sum of squared deviations. Since
the exponential term is bounded inn, it follows thatB10 → 0 asn grows. Hence
this Bayes factor is inconsistent underM1, a particularly troubling result.

The difficulty here is that, in a sense, one would like to chooseg = n for the
information component due toβ1, but g = 1 for the component due toβ2. The
arithmetic IBF and empirical posterior prior (either the weighted or unweighted
versions) do this type of adjustment automatically. [It should be mentioned that
this would also cause a difficulty with fractional Bayes factors, unless differing
fractions are allowed; see De Santis and Spezzaferri (1998a, 1999) and Berger and
Pericchi (2001) for discussion.]

In Example 5 it was noted that a problem can also arise withtoo informative
training samples, and that it can be wise to restrict attention to training samples
whose information content remains modest compared to the information in the
entire sample.

EXAMPLE 18 (Example 15 continued). Consider the regression example,
but with covariatesdi = i. Then the information is rapidly growing withi. The
expected posterior prior in (19) can then be shown to have variance that is O(n−1),
so that the prior becomes increasingly (and arguably inappropriately) concentrated
asn → ∞. [The same is true if equal weighting is used for the training samples;
hence the use of weights in (19) neither helped nor hurt.] Here, simply using only
the first, say,n0 training samples (i.e., those with a modest amount of information)
would avoid the problem.

It is interesting to note that the commong-prior in this situation has variance
n(

∑
d2
i )−1 = O(n−2), which inappropriately concentrates much faster than does

the expected posterior prior in (19).
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6. Conclusions. It is notoriously difficult to develop model selection method-
ologies that are successful over a wide range of problems. In judging success,
our “goal” of developing objective procedures that behave like some reasonable
Bayesian procedures may seem to be a rather modest criterion, but it is far stronger
than any other criterion we know. We also feel that “testing” a procedure on ex-
treme examples is by far the best method of judging the limits of the procedure,
and in suggesting needed refinements. As we have tested intrinsic Bayes factors
and expected posterior priors in the years since their development, it has become
increasingly clear that the original suggestion—to always use minimal training
samples—was too limited. This paper presented a summary of the highlights of
these investigations and our suggestions for the needed refinements. The two ma-
jor conclusions that emerged are:

• In situations, such as censoring, in which certain observations would never be
part of an MTS, instead utilize SMTS, which will allow possible involvement
of all observations.

• In situations, such as the linear model, in which MTS can contain drastically
different information content, consider weighting the training samples (or
randomly choosing them) according to their information content.

Random training samples are also useful in other situations, such as when
only sufficient statistics, not the actual data, are available. And there are further
interesting possibilities that we have not explored, such as forming random training
samples by sampling from the data until one has obtained a training sample with
at least some pre-specified information content.

Attention in this paper was primarily confined to the arithmetic IBF and the
expected posterior prior. However, the generalizations of training samples can
(and should) also be used with other training-sample approaches. For instance, the
geometric IBF can use the generalizations in exactly the same way as the arithmetic
IBF. The median IBF is often preferable to the arithmetic or geometric IBFs from
a robustness perspective [Berger and Pericchi (1998)], and randomized training
samples can again be utilized directly in its computation. It is not immediately
obvious how to utilize weighted training samples with the median IBF, however.
The easiest approach is to draw random training samples with probabilities
proportional to the weights and then use the median IBF with these training
samples.

Finally, it should be noted that this was not meant to be a survey paper, and so
we have not dealt with all issues involved in suitably defining training samples.
For instance, in Sivaganesan and Lingham (1999) it is shown how transformations
of the data are sometimes needed to obtain suitable training samples.
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APPENDIX

LEMMA 2. In the situation of Example 10, use of the arithmetic IBF based on
the Jeffreys-rule prior results in an intrinsic prior with median O(r−1).

PROOF. Since any single observation, censored or uncensored, is an MTS for
the Jeffreys-rule prior, (5) leads to the following intrinsic prior:

π I(θ) = πJ(θ)

[∫ r

0

θ0 exp(−θ0x)∫
πJ(θ)θ exp(−θx) dθ

θ exp(−θx) dx(23)

+ exp(−θ0r)∫
πJ(θ)exp(−θr) dθ

exp(−rθ)

]
.

To study the behavior of the median of this intrinsic prior asr → 0, note that
the mass of the first term on the right-hand side of (23) is, switching order of
integration, ∫ ∫ r

0

θ0 exp(−θ0x)∫
πJ(θ)θ exp(−θx) dθ

πJ(θ)θ exp(−θx) dθ dx

=
∫ r

0
θ0 exp(−θ0x) dx

= 1− e−θ0r → 0 asr → 0.

Hence the median asr → 0 depends only on the second term on the right-hand side
of (23). Computation shows that

∫
πJ(θ)exp(−θr) dθ ∼= 1.5814 (not depending

on r). Also, exp(−θ0r) → 1 asr → 0, so that the median, med(r), asr → 0 is
approximately given by the solution to

0.5 ∼=
∫ med(r)

0

1

1.5814
πJ(θ)exp(−rθ) dθ.

The change of variablesy = rθ , results in the equation

0.7907∼=
∫ r med(r)

0
y−1(1− exp(−y)

)−1/2 exp(−y) dy.

Solving this equation forr med(r) results in the conclusion that med(r) ∼=
0.191/r , completing the proof. �
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