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Abstract

On-line boosting allows to adapt a trained classifier

to changing environmental conditions or to use sequen-

tially available training data. Yet, two important prob-

lems in the on-line boosting training remain unsolved:

(i) classifier evaluation speed optimization and, (ii) au-

tomatic classifier complexity estimation. In this paper

we show how the on-line boosting can be combined with

Wald’s sequential decision theory to solve both of the

problems.

The properties of the proposed on-line WaldBoost al-

gorithm are demonstrated on a visual tracking problem.

The complexity of the classifier is changing dynamically

depending on the difficulty of the problem. On average,

a speedup of a factor of 5-10 is achieved compared to

the non-sequential on-line boosting.

1 Introduction

On-line boosting [2] proved its usefulness in many

practical applications like object tracking [3, 14] and

background modeling [4] and is used to improve object

detectors over time (e.g. [5, 13]). Yet, there remain two

important unsolved problems for practical applications:

(i) optimization of the classifier evaluation speed, and

(ii) automatic determination of the classifier complex-

ity. Both problems are closely related, i.e., having the

least complex classifier that solves the problem leads

also to optimal speed. We show, how to solve both of

these problems.
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To overcome the first point, following the idea of Vi-

ola and Jones [11] who proposed a cascaded AdaBoost

classifier, other authors tried to improve the evaluation

speed of the classifier by e.g. introducing a FloatBoost

(weak classifiers can be also removed from the strong

classifier) [7], a vector boosting [6] or by using sequen-

tial decision making theory [10]. All these methods

work in an off-line manner, meaning all the training

samples are given in advance and the classifier is kept

fixed after being trained. Recently, Wu and Nevatia [13]

investigated to use the cascade approach in the on-line

boosting framework. Their approach uses many heuris-

tic decisions and is not well founded in the theory.

All current approaches for on-line learning need the

number of weak classifier to be given in advance [9, 2].

However, in tasks where the decision problem changes

over time, like in object tracking, it is impossible to

specify the classifier complexity in advance. A com-

mon approach is to train complex classifiers which can

handle all situations but this is less effective when the

task becomes easier.

In this paper, we introduce Wald sequential decision

theory in the on-line framework inspired by the Wald-

Boost algorithm [10]. Our approach overcomes both

problems of classifier speed and complexity optimiza-

tion in the on-line setting. Experiments on a visual ob-

ject tracking task show that the method is able to au-

tomatically adapt the classifier complexity to changing

problem difficulty.

2 Preliminaries

2.1 On-line Boosting for feature selection

The goal of training in both off-line [1] and on-

line [9] boosting is to minimize the training error by

selecting and combining a set of “weak” classification



algorithms {hn(x)|hn(x) : X → {+1,−1}} into a

strong classifier H(x)

H(x) = sign(fn(x)) where fn(x) =

N
∑

n=1

αnhn(x) .

(1)

The main differences between off-line and on-line Ad-

aBoost training is the way the data is obtained and how

the strong classifier is built. In off-line training all the

data is available in advance. The on-line training uses

one training sample at a time. To build a classifier in

the off-line training one weak classifier is added each

training round while, in the on-line training, the strong

classifier is initialized at the beginning and is updated

by each training sample.

Here we describe the on-line boosting for feature

selection proposed by Grabner and Bischof [2]. The

main idea is to perform on-line boosting on selec-

tors rather than on the weak classifiers directly. Each

selector keeps a set of M weak classifiers Hn =
{hn

1 (x), . . . , hn

M
(x)} and the training procedure selects

the one with the minimal estimated error to be included

into the strong classifier. To estimate the weak clas-

sifiers error an importance/difficulty λ of a sample is

propagated through the set of N selectors. The selectors

are initialized randomly with weak classifiers. When

a new training sample (x, y), where y ∈ {−1,+1} is

the label, arrives the selectors are updated sequentially.

First, the importance weight λ of the sample is initial-

ized to 1. The weak classifier with the smallest esti-

mated error is selected by the selector. Then, the corre-

sponding voting weight αn and the importance weight

λ of the sample are updated and passed to the next se-

lector Hn+1. The weight λ increases if the sample is

misclassified by the current selector or decreased oth-

erwise. Finally, a strong classifier is build as a linear

combination of N weak classifiers selected in individ-

ual selectors.

2.2 WaldBoost

The WaldBoost algorithm [10] is an off-line training

algorithm which combines the AdaBoost training and

Wald’s sequential decision theory [12]. Its training goal

is to minimize the training error as in AdaBoost but at

the same time to minimize the evaluation time.

The WaldBoost algorithm uses outputs of weak clas-

sifiers found by AdaBoost as measurements (i.e. it uses

AdaBoost as a measurement selector). The classifier is

evaluated after each measurement and the decision is

drawn or another measurement is taken

Hn(x) =











+1, fn(x) ≥ θ
(n)
B

−1, fn(x) ≤ θ
(n)
A

continue, θ
(n)
A

< fn(x) < θ
(n)
B

(2)

where fn(x) is defined in Eq. (1). The goal of training is

to find the proper weak classifiers hn and the thresholds

θ
(n)
A

and θ
(n)
B

. The thresholds can be computed given

the classifier response function fn(x). From the Wald

theory, we are looking for two thresholds on the likeli-

hood ratio Rn. Unfortunately, Rn is difficult to estimate

due to the high dimensionality of both probability den-

sities. Instead, a projection to a one dimensional space

is used [10]

Rn(x) ∼= R̂n(x) =
p(fn(x)|y = −1)

p(fn(x)|y = +1)
. (3)

However, the training process rebuilds repeatedly the

training and the validation set using bootstrapping (i.e.

already decidable training samples are replaced by

those which could not be decided yet). As the vali-

dation set used for estimating the thresholds changes,

direct density estimation gives p(fn(x)|y = C,→ n)
where C ∈ {−1,+1} and → n stands for the condition

that the sample has not been decided up to training step

n, instead of desired p(fn(x)|y = C). Using Bayes

formula we get

R̂n(x) =
p(fn(x)|y = −1,→ n)p(→ n| + 1)

p(fn(x)|y = +1,→ n)p(→ n| − 1)
(4)

which leads to estimation of the likelihood ratio taking

into account the bootstrapping.

From Wald’s theory the thresholds θ
(n)
A

and θ
(n)
B

are

estimated using R̂n by finding thresholds for which

R̂n ≥ A or R̂n ≤ B respectively where A = (1−β)/α
and B = β/(1 − α), and α is allowed false negative

rate and β allowed false positive rate of the classifier

specified by the user. A practical way of estimating the

thresholds is to look for such values of fn(x) for which

the ratio of negative and positive samples multiplied by

the correction factor which takes the discarded samples

into account, fulfills the conditions.

3 On-line WaldBoost

The proposed on-line WaldBoost algorithm com-

bines on-line boosting and Wald’s sequential analysis

described in Sec. 2. The general training scheme is

shown in Fig. 1. As in Sec. 2.1 the selectors are up-

dated using the actual training sample, the weak classi-

fier is chosen as the best classifier in the selector, and



Figure 1. Training scheme of the on-line WaldBoost algorithm.

the sample importance weight λ reflects the difficulty

of the sample. The main difference is that the training

can be terminated earlier if the Wald conditions hold,

i.e. the sample is used for updating only those selectors

to which it is passed undecided.

In order to find the Wald thresholds θ
(n)
A

and θ
(n)
B

the

likelihood ratio R̂(x) from Eq. 4 has to be estimated.

In the off-line training the statistics are computed on an

independent validation dataset. The on-line training of-

fers an elegant way to compute an unbiased estimate of

the statistics using the given sample only. The idea is to

use the current training sample first as a test sample (not

seen before) to update the Wald statistics before it is

used for training the strong classifier. The probabilities

p(→ n|C) can be estimated by computing the portion of

samples seen so far and not decided until n-th selector.

The densities p(fn(x)|y = C,→ n) are estimated from

the samples which are not decided until the n-th selec-

tor only. In our implementation they are approximated

by Gaussians. Given these probabilities and α and β pa-

rameters the thresholds θ
(n)
A

and θ
(n)
B

are estimated as in

Sec. 2.2. However, since a feature-switch in selector k
causes a wrong estimate of the statistics of subsequent

selectors, the statistics are reset where selectors n ≥ k,

i.e. p(fn(x)|y = C,→ n) is set to the uniform distribu-

tion and p(→ n|C) = 0.5 for C ∈ {−1,+1}.

This training scheme allows for classifier speedup in

both training and evaluation compared to the original

on-line boosting. Moreover, the number of selectors can

be set to a high number and the real classifier complex-

ity (i.e. number of weak classifiers used) is controlled

automatically.

4 Experiments

The properties of the proposed on-line WaldBoost

algorithm are demonstrated on the task of visual object

tracking. It is formulated as a binary classification prob-

lem where the classifier is used to distinguish the object

from the local background [3]. To be adaptive to the

object appearance changes, updates of the classifier are

performed – here we replaced the on-line boosting algo-

rithm with the on-line WaldBoost algorithm proposed in

this paper. For the on-line WaldBoost classifier N = 50
selectors were used which selects from a global fea-

ture pool of M = 250 weak classifier corresponding

to Haar-like features (same parameters as in [3]). The

Wald parameters were set to α = 0.02 and β = 0.

Fig. 4 shows a challenging tracking sequence includ-

ing appearance changes of the object as well as object

occlusions on a complex background. The second row

depicts the confidence maps of the classifier. Since we

use no motion model (cf. [14]), a confidence map is

computed by evaluating the classifier at all positions

within a local search region. The position of the object

corresponds to the maximum in the confidence map.

The values equal to zero show the positions rejected be-

fore reaching the end of the classifier sequence.

These early decisions lead to the speedup shown in

Fig. 5. The speedup is calculated as N/Ñ , where Ñ is

the average number of weak classifiers used before the

decision is reached over the whole search region. If all

values are equal to zero the object is considered to be

lost. If the object is “stable” in the scene, the speedup is

continuously increasing, since background patches can

be discarded early. On average, we achieved a speedup

of a factor of 5 to 10 without suffering a loss in track-

ing quality, i.e. we never discard the maximum peak of

the confidence map, so the tracking results are exactly

the same as reported in [3]. The same tracking results

are reached also for the other tracking sequences used

in [3, 8]. However, the speedup is not that big, since the

object and the background changes a lot. Nevertheless,

in the training the complexity of the classifier can still

be determined automatically.

In general, the achieved speedup depends on dynam-

ically changing problem difficulty and how often the

Wald statistics have to be reseted (e.g. at frame 2706).

Further, higher values of α lead to more speedup but

having the risk of loosing the object if it changes its

appearance too fast. The achieved speedup (≥ 1) can



(a) Frame 1 (b) Frame 400 (c) Frame 2000 (d) Frame 2759 (e) Frame 3659

Figure 2. Tracking of an object (1st row) and the classifier response map within the search
window (2nd row). Values equal to 0 mean early rejection, i.e. saving of the computation time.

Figure 3. Speed-up compared to the non-

sequential on-line boosting approach [3].

be used for instance for extending the search region to

handle faster movements or to include more degrees of

freedom like scale.

5 Conclusions

In this paper we have shown how to extend the on-

line boosting algorithm using Wald’s sequential deci-

sion theory. The proposed on-line WaldBoost training

algorithm is able to control the classifier complexity de-

pending on the problem difficulty. Moreover, the eval-

uation speed is increased through the sequential nature

of the classifier. We tested the on-line WaldBoost algo-

rithm on a visual tracking problem. The speedup is sig-

nificantly improved compared to the non-sequential on-

line boosting. We are confident that other applications

(e.g. improving object detectors) can benefit as well.

We are currently working on a refined statistic resetting

strategy for a weak classifier switch and a method to

adapt α on-line.
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