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date. The rice dataset had strong population structure and 
the approach based on stratified sampling showed the high-
est accuracies for all traits. In general, CDmean minimized 
the relationship between genotypes in the TRS, maximizing 
the relationship between TRS and the test set. This makes it 
suitable as an optimization criterion for long-term selection. 
Our results indicated that the best selection criterion used to 
optimize the TRS seems to depend on the interaction of trait 
architecture and population structure.

Introduction

Genomic selection (GS) emerged from the need to improve 
prediction of complex traits based on marker information 
(Meuwissen et al. 2001). The objective of GS is to improve 
the precision of selection by generating a genomic-esti-
mated breeding value (GEBV) for selection candidates 
by simultaneously using genome-wide molecular marker 
information.

Genomic selection uses a training population set (TRS) 
of individuals that have been both genotyped and phe-
notyped to train a model that takes genotypic informa-
tion from a candidate population of untested individu-
als and produces GEBVs for selection (Meuwissen et al. 
2001). Genomic selection modeling takes advantage of 
the increasing abundance of molecular markers through 
modeling of many genetic loci with small effects (Whit-
taker et al. 2000; Xu 2003; Solberg et al. 2008; Habier 
et al. 2009; Zhang et al. 2011; Poland and Rife 2012). Over 
the last decade, simulation and empirical cross-validation 
studies in plants have shown GS to be more effective than 
strategies that use only a subset of markers with significant 
effects (Bernardo and Yu 2007; Heffner et al. 2009, 2011; 
Lorenzana and Bernardo 2009; Crossa et al. 2010; Jannink 
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et al. 2010; Gonzalez-Camacho et al. 2012; Massman et al. 
2013). Genomic Selection is superior to phenotype based-
estimates for increasing gains per unit time even if both 
models show the same efficiency, because in principle, 
there is no need to record phenotypes of the candidates for 
the selection, hence shortening the length of the breeding 
cycle (Heffner et al. 2010).

The most commonly used methods to estimate GEBVs 
are (1) best linear unbiased prediction from mixed model 
analysis using a genomic-estimated relationship matrix 
(GBLUP) (Habier et al. 2007; Zhong et al. 2009) and (2) ran-
dom regression-best linear unbiased predictions (RR-BLUP; 
Whittaker et al. 2000; Meuwissen et al. 2001). Genomic best 
linear unbiased prediction is a method that utilizes a genomic 
relationship matrix and potentially pedigree information 
to estimate the genetic merit of an individual. Elements of 
the genomic relationship matrix are estimated based on the 
proportion of the genome that two individuals share and pre-
dictions may be more accurate than those based on pedigree 
alone. For RR-BLUP, marker effects in the calibration set 
(CS) are estimated and then the GEBVs of the selection can-
didates are calculated by multiplying their marker scores by 
these estimates. Nevertheless, Habier et al. (2007) showed 
that both methods are equivalent.

The prediction accuracy of the GEBVs is normally 
evaluated using the correlation between the GEBVs and 
the true breeding values (TBV), r (GEBV, TBV). This cor-
relation provides an estimate of selection accuracy and is 
directly related to selection response (Falconer and Mackay 
1996), where R = irσA, i = selection intensity, r = accu-
racy, and σA = the square root of the additive genetic vari-
ance (Falconer and Mackay 1996). Response to selection 
is important for determining gain per unit time and cost 
and for comparing breeding strategies. While new studies 
demonstrate that GS has great potential to increase rates of 
genetic gain, parameters determine its effectiveness for any 
specific breeding population. Factors that affect prediction 
accuracy include the number of markers used for estimat-
ing the GEBVs (Schaeffer 2006), trait heritability (Hef-
fner et al. 2009), calibration population size (Jannink et al. 
2010), statistical models (Heslot et al. 2012), number and 
type of molecular markers (Chen and Sullivan 2003; Poland 
and Rife 2012), linkage disequilibrium (Habier et al. 2007), 
effective population size (Daetwyler et al. 2008), relation-
ship between calibration and test set (TS) (Albrecht et al. 
2011; Clark et al. 2011, 2012; Pszczola et al. 2012) and 
population structure (De Roos et al. 2009; Saatchi et al. 
2010, 2011; Windhausen et al. 2012; Guo et al. 2014).

In this study, we focus on the impact of population struc-
ture on GS accuracy. As a consequence of having different 
population genetic histories, distinct subpopulations could 
have differences in allele frequencies for many polymor-
phisms throughout the genome. If the populations have 

different overall values for the phenotype, any polymor-
phisms that differ in frequency between the two popula-
tions will be associated with the phenotype even though 
they are not casual or in strong linkage disequilibrium with 
casual polymorphisms (Pritchard and Donnelly 2001; Mar-
chini et al. 2004; Price et al. 2010). Population structure is 
a key factor affecting predictions of breeding values with 
genomic models and could result in biased accuracies of 
genomic predictions (Saatchi et al. 2011; Riedelsheimer 
et al. 2013; Wray et al. 2013). Accordingly, population 
structure needs to be taken into account because it could 
lead to unrealistic assessments of accuracy (Riedelsheimer 
et al. 2013; Windhausen et al. 2012) and preferential selec-
tion of individuals within a single subpopulation, which 
would result in a loss of diversity in the breeding program.

Recently, the design of the TRS has attracted much inter-
est in both animal and plant breeding, since it is critical to the 
accuracy of the prediction models. Knowing the predictability 
of a model is one of the key elements for a better allocation of 
resources in plant breeding, especially due to the high costs 
of phenotyping. Several studies have noted that the accuracy 
of genomic predictions is highly influenced by the population 
used to calibrate the model (Habier et al. 2007, 2010; Clark 
et al. 2011, 2012; Saatchi et al. 2011; Albrecht et al. 2011; 
Pszczola et al. 2012). Larger TRSs tend to increase accuracy 
but simulations suggest that, in some cases, small TRSs can 
be just as accurate (Habier et al. 2009). Generally, larger 
TRSs are required for traits controlled by more genes with 
smaller effects (Goddard and Hayes 2009). From the mixed 
model framework, given the trait heritability, marker data, 
and a TRS, it is possible to derive a measure of the quality 
of prediction for a set of genotypes. Two of those measures 
are the prediction error variance (PEV) and the coefficient of 
determination (CD). Rincent et al. (2012) used those criteria 
in an optimization procedure to choose a TRS of a given size 
in a maize diversity panel.

In quantitative genetics the PEV is central to the calcula-
tion of accuracies of estimated breeding values (Henderson 
1975), to the restricted maximum likelihood (REML) algo-
rithms for the estimation of variance components (Patter-
son and Thompson 1971), and to methods that restrict the 
variance of response to selection (Meuwissen and Wool-
liams 1994). The trends in genetic variance over time can 
be explored using breeding values and PEV of Mendelian 
sampling deviations (Lidauer et al. 2007). Choosing a TRS 
by seeking to minimize the PEV, however, may (1) result in 
the sampling of close relatives since the PEV does not take 
into account the genetic variance within the TRS (2) lead 
to TRSs that diverge between traits of differing heritability. 
To mitigate the first problem, Rincent et al. (2012) used the 
CD (Laloë 1993) that maximizes the expected reliabilities of 
contrasts between each selection candidate and the popula-
tion mean. The CD can be defined as the squared correlation 
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between the true and the predicted contrast of genetic values. 
It is a function of the PEV and of the genetic variance.

Rincent et al. (2012) proposed CDmean as a criterion 
to maximize the consistency of prediction for several CS 
sizes. This criterion gave higher predictions than random 
samples and the PEVmean, because CDmean took into 
account covariance among the TRS genotypes and avoided 
the selection of closely related individuals. When all the 
genotypes are independent, PEVmean and CDmean are 
equivalent (Laloë 1993).

The purpose of this study was to compare the perfor-
mance of different optimization criteria, including one pro-
posed by Rincent et al. (2012), in the presence of population 
structure and to evaluate how population structure interacts 
with these criteria in the choice of the TRS. During the dif-
ferent optimization methods, the genotypes for all the indi-
viduals in the CS are used, but the phenotypes were only 
required for individuals selected in the TRS at the model 
building stage. Finally, accuracies of the models were evalu-
ated by calculating Pearson correlations between the pre-
dicted values and the observed phenotype values in the TS.

Materials and methods

Genetic dataset material

Wheat dataset

A population of 1,127 soft winter wheat varieties and 
F5—derived advanced breeding genotypes resulting from 
many different crosses in the Cornell University Wheat 

Breeding Program (Ithaca, NY) were analyzed in this 
study. Lines were genotyped with 38,893 genotyping-by-
sequencing (GBS) markers (Table 1). Information about 
the construction and elaboration of the GBS libraries can 
be found in Poland and Rife (2012) and the latest updates 
on the GBS approach for wheat can be found on the web-
site http://www.wheatgenetics.org/research). In summary, 
the GBS libraries were constructed in 95-plex using the 
P384A adaptor set. Genomic DNA was co-digested with 
the restriction enzymes PstI (CTGCAG) and MspI (CCGG) 
and barcoded adapters were ligated to genotype samples. 
Samples were pooled by plate into a single library and 
polymerase chain reaction amplified. Each library was 
sequenced on a single lane of Illumina HiSeq 2000 (Cor-
nell Life Science Core Laboratory Center). Missing marker 
values were imputed using a multivariate normal (MVN)-
expectation maximization (EM) algorithm (Poland and Rife 
2012). The EM algorithm represents a general approach 
to calculating maximum likelihood estimates of unknown 
parameters when data are missing (Dempster et al. 1977). 
The EM imputation was designed for use with genotyping-
by-sequencing (GBS) markers, which tend to be high den-
sity but have lots of missing data.

Phenotypic data for five traits in the wheat dataset were 
analyzed: grain yield, test weight, lodging, heading date 
and plant height (Table 1). The experiments were carried 
out over 6 years from 2007 to 2012, with one location in 
2007 and three locations per year from 2008 to 2012 near 
Ithaca, NY. Each location was arranged in an unreplicated 
augmented, row-column design (Federer 1956) with six 
check varieties replicated ten times each. First, in a mixed 
effect model an analysis was used to calculate best linear 
unbiased estimates (BLUEs) of locations and year effects 
(Mohring and Piepho 2009) and BLUPs for the genotypes 
(i.e., varieties or accessions) as random effects in ASRmel-
R (Gilmour et al. 1995). Subsequently, these BLUPS were 
used for model building and the calculation of the accura-
cies of the models.

Rice dataset

The rice diversity panel consisted of 413 diverse acces-
sions of inbred lines of rice (O. sativa) from 82 countries, 
including many landraces, representing all the major rice-
growing regions of the world. This panel was genotyped 
with a 44-K chip (44,100 SNPs) and after filtering a total 
of 36,901 SNP markers were retained for genetic analysis 
(Ammiraju et al. 2006) (Table 1). Across the 12 chromo-
somes of rice, SNPs cover roughly 380 Mb of the genome 
at a density of about 1 SNP per 10 Kb. Each line was evalu-
ated for important agronomic traits over 2 years with two 
replicates from 2006 to 2007. From this dataset, four differ-
ent traits were selected (florets per panicle, flowering time 

Table 1  Germplasm description summary and heritabilities values 
for each trait

GBS genotyping by sequencing, SNP single nucleotide polymor-
phism, h2 narrow sense heritability, YLD yield, TWT test weight, 
LODG lodging, HD heading date, HT plant height, FP florets per 
panicule, FT flowering time, PH plant height, PC protein content

Wheat Rice

Population size 1,127 405

Markers 38,893 GBS 36,901 SNPs

Subpopulation 4 3

Environments 3 2

Years 6 2

Trait h2 Trait h2

YLD 0.79 FP 0.78

TWT 0.92 FT 0.85

LODG 0.78 PH 0.89

HD 0.94 PC 0.70

HT 0.95

http://www.wheatgenetics.org/research
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in Arkansas, plant height and protein content) and pheno-
typic means of each inbred line across years and replicates 
were used for analysis (Table 1). All of the data from this 
study are publicly available at http://www.ricediversity.org 
and more details can be found in Zhao et al. (2011) and 
their supplementary data.

Training set optimization methods

In this study, three different methods were developed to 
study the optimization of the TRS. Method 1 optimizes 
the TRS by stratified sampling, method 2 by CDmean, 
PEVmean and random sampling and method 3 combined 
previous methods to build the TRS. More details about the 
methods can be found in supplementary information S1, 
S2 and S3. Initially, the overall population was randomly 
divided into a calibration set (CS) and a test set (TS). Next, 
the CS was further divided into a training set population 
(TRS) and a remaining set (RS). Genotypes belonging to 
the TRS were used to create the prediction equation by a 
mixed model. The remaining genotypes in the RS were 

used to build the TRS in method 2 and method 3. The TS 
is the set of genotypes from the base population where 
predictions will be made, that is to say, where GEBVs are 
calculated to make selection. In our study, for all methods, 
the CS and the TS were randomly obtained from the overall 
population (Fig. 1, number 1). To ensure an accurate com-
parison among methods, the same CS and TS genotypes 
were used for each one of the TRS methodologies. In this 
study, we used datasets with information for all the pheno-
types and genotypes. This allowed us to evaluate the accu-
racy of different TRS optimization methods. Nevertheless, 
in a real scenario the phenotypes are only available when 
the TRS is selected after the optimization process. Con-
sequently, when selecting the TRS, only marker informa-
tion was used. From the CS a subset of genotypes will be 
selected for phenotyping, which will build the TRS. The 
model built based on the phenotypes and genotypes in the 
TRS will be used to estimate the GEBVs for the genotypes 
in the TS. Here, we imposed the same population structure 
between CS and TS to avoid a potential prediction accu-
racy deflation that could arise when the TS population is 
not similarly stratified (Windhausen et al. 2012).

Fig. 1  Example of optimization of training population set (TRS) 
scheme in the wheat dataset. The three methods are represented 
in numerical circles. Number 1 represents the stratified sampling 
method, number 2 the CDmean and PEVmean approaches and num-
ber 3 the stratified CDmean. C1–C4 acronyms indicate the number of 

cluster after analysis. More details about the specific methods can be 
found in the supplementary information in figures S3, S4 and S5. The 
optimization process was repeated over 50 runs and in a TRS size of 
25, 50, 100, 200 and 300 genotypes

http://www.ricediversity.org
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Method 1—optimization based on stratified sampling 
by clusters

In this method, two random samples from the base popu-
lation were taken to generate the Calibration set (CS) and 
the test set (TS). Then, a cluster analysis was run on the 
CS as follows: Genotypic markers were used to calculate 
the Euclidean distances between genotypes. Hierarchi-
cal clustering analysis using the Ward criterion (i.e., at 
each step the pair of clusters with minimum between-
cluster distance are merged, generating clusters that were 
more equal in size) was applied to the Euclidean distance 
matrix. Principal components analysis (PCA) on geno-
typic data was used to visualize the structure of our pop-
ulations. For the Cornell wheat program population, we 
selected four distinct subpopulations, based on genetic 
relationship and breeder´s knowledge. For the rice data-
set we selected three distinct subpopulations. When the 
cluster analysis is obtained, the TRS is created by select-
ing a number of genotypes from each cluster proportional 
to the size of the cluster. Consequently, clusters with 
more genotypes will have a larger representation in the 
TRS than smaller clusters. With this method, we selected 
25, 50, 100, 200 and 300 wheat genotypes and 25, 50, 
100, 150 and 175 rice genotypes for the TRS. This meth-
odology was repeated 50 times, and each time CS and 
TS were saved to assure a legitimate comparison among 
methods. The same CS and TS generated here were used 
to build the CS and TS for methods 2 and 3. Stratified 
sampling in clusters assured a high degree of genetic var-
iability in the TRS, since each subpopulation was repre-
sented proportionally to its size. The optimization frame-
work is shown in Fig. 1 number 1 and in supplementary 
information S1.

Method 2—optimization criterion based on CDmean 
and PEVmean

The same CS and TS obtained in method 1 were used here 
to initiate the optimization. Firstly, a random sample of the 
target TRS size was obtained and the CDmean was calcu-
lated. Then, the optimization algorithm code provided by 
Rincent et al. was applied (Rincent et al. 2012) to our data-
sets. At each iteration, the algorithm randomly exchanged 
one genotype between the TRS and the set of RS geno-
types. CDmean and PEVmean were then calculated. If 
the criterion was improved, the genotype exchange was 
accepted and otherwise rejected. The TRS optimization 
sizes sampled were the same as method 1. For each panel, 
50 repetitions of the algorithm were performed and 2,000 
iterations were needed to reach a plateau in the CDmean or 
PEVmean. The optimization framework is shown in Fig. 1 
number 2 and in supplementary information S2.

PEV and CD optimization

A detailed description of the prediction model and optimi-
zation criteria was provided by Laloë (1993) and Rincent 
et al. (2012). We highlight here the model details and the 
calculation of PEVmean and CDmean. The criteria are 
based on the use of GBLUP (VanRaden 2008; Habier et al. 
2007) to calculate the GEBVs.

GBLUP mixed model can be formulated as

where y is a vector of phenotypes, β is a vector of fixed 
effects (population mean in our case), u is a vector of ran-
dom genetic values ε is the vector of random residuals.  
X and Z are design matrices.

The variance of the random effects u is var(u) = Gσ 2
g ,

where G is the genomic relationship matrix and σg
2 is the 

additive genetic variance in the panel. The variance of the 
residuals is var(ε) = Iσ 2

e , where I is the identity matrix.

Criteria of optimization

The prediction error variance of u can be derived from the 
Henderson equation:

where � = σ 2
e

/

σ 2
g
 is the ratio between the residual and 

the additive variances and G is the genomic relationship 
matrix. Using the notation

where M is a projector, orthogonal to the vector subspace 
spanned by X columns (MX = 0), M = I − X

(

X ′X
)−

X ′ 
where 

(

X ′X
)− is a generalized inverse of X ′X (Laloë 1993).

and therefore

Contrasts allow us to compare the precision of comparisons 
between genotypes. The contrast will perform the compari-
son between genotype i and j, therefore for any contrast c 
of the predicted performances PEV can be calculated as:

where c is a vector of a particular linear combination whose 
elements sum to 0.

y = Xβ + Zu + ε

(

X ′X X ′Z

Z ′X Z ′Z + �G−1

)(

β̂

û

)

=

(

X ′y

Z ′y

)

[

X ′X X ′Z

Z ′X Z ′Z + �G−1

]−1

=

[

C11 C12

C21 C22

]

var
(

u|û
)

= var
(

û|u
)

=
(

Z′MZ + �G−1
)−1

× σ 2
e

PEV
(

û
)

= var
(

u|û
)

= diag C22 × σ 2
e

PEV = diag

[

c
′
(

Z ′MZ + �G−1
)−1

c

c′c

]

× σ 2
e
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The aim in statistics is to minimize the error. Therefore, 
minimizing the mean of the PEVs of the contrast between 
each RS genotype and the mean of the CS panel is the goal 
of the optimization with PEV.

Laloë (1993) defined CD as the squared correlation 
between the true and the predicted contrast of genetic 
values.

The CD can be expressed as

where TSS is the total sum of squares, RSS is the residual 
of sum of squares, c is the contrast between genotypes, 
var(u) is the total genetic variance and var

(

u|û
)

 is the resid-
ual error variance or PEV. Making the corresponding sub-
stitution and calling

and taking the diagonal elements of this matrix the CD can 
be expressed as

The CD corresponds to the expected reliability of the 
contrast between the predicted value of a given individual 
of the RS population and the population mean. The CD 
always lies within the unit interval. In this case, the opti-
mization criteria will maximize the mean of the CD of 
the contrast between each non-phenotyped genotype (of 
the RS set) and the mean of the population (Rincent et al. 
2012).

The relationship matrix used for the calculation of 
PEVmean and CDmean was the genomic relation-
ship matrix (G). The relationship matrix is estimated as 
G = WW ′

f
 where Wik = Xik − 2pk is the mean centered 

marker k for individual i, pk is the frequency of the 1 allele 
at marker k for the entire population, and Xik denotes the 
number of minor alleles for the ith individual at marker k. 

Using a normalization constant of f = 2
∑

k

pk(1 − pk), the 

mean of the diagonal elements is 1 + f (Endelman and Jan-
nink 2012).

CD = R
2 =

TSS − RSS

TSS
=

var(u) − var
(

u|û
)

var(u)

=
var

(

c
′
u
)

− var
(

c
′(u|û

)

)

var(c′u)

(

ZM ′Z + �G
)−1

= θ

CD(c) =
σ 2

g
c
′
Gc − σ 2

e
c
′θc

σ 2
g

c′Gc
= 1 −

σ 2
e

c
′θc

σ 2
g

c′Gc
= 1 −

�c
′θc

c′Gc

=
c
′(G − �θ)c

c′Gc

CD = diag

[

c
′
(

G − �(Z ′MZ + �G−1)−1
)

c

c′Gc

]

Method 3—optimization criterion based on stratified 
sampling CDmean by cluster

The goal in this approach is to combine the strengths of 
methods 1 and 2. In this method, after the cluster analy-
sis, the algorithm will create the TRS based on CDmean 
applied within each cluster. That is, rather than random 
stratified sampling, TRS members are selected within each 
cluster by the CDmean method. The same conditions on 
TRS size, number of iterations and repetitions were applied 
in this method as described in previous methods. The opti-
mization framework is shown in Fig. 1 number 3 and sup-
plementary information S3.

Heritability calculation and statistical software

Trait heritability was estimated across e environments and 
r replicates using a mixed model where environment was 
treated as a fixed effect and genotypes and genotype x envi-
ronment interaction as random effects.

where  σ 2
g , σ 2

ge, σ
2
e   are the additive, genotype by envi-

ronment and residual variance components, e is num-
ber of environments and r is the number of replicates per 
environment.

All analyses were performed using R version 3.0 (2013). 
The package rrBLUP version 4.2 (Endelman 2011, http://
cran.r-project.org/web/packages/rrBLUP/) was used to cal-
culate GEBVs. We assessed the predictive ability of the 
models by the Pearson correlation coefficients between the 
GEBVs and the observed phenotypes in the TS (referred 
to here as accuracy). The training population set was also 
obtained by random sampling from the CS.

Results

Population structure

We performed PCA to summarize the genetic variation in 
both datasets. The analyses revealed structure in both popu-
lations (Fig. 2).

Wheat

Cluster analysis revealed that all of the clusters can be 
separated in the first two PC axes that accounted for 12.7 
and 8.3 % of the genetic variance, respectively (Fig. 2a). 
The number of lines per cluster ranged from 107 to 516 
(Table 2). The largest subpopulation size (516) corresponds 

h2 =
σ 2

g

σ 2
g +

σ 2
ge

e
+

σ 2
e

er

http://cran.r-project.org/web/packages/rrBLUP/
http://cran.r-project.org/web/packages/rrBLUP/
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to ancestral varieties from New York, Ontario, Ohio and 
Michigan, followed by genotypes derived from Harus/
Houser/SuMei crosses. The third was formed by Elite 
Eastern soft winter from the eastern United States. Finally, 
genotypes from Geneva/Cayuga crosses (New York) 
formed the forth cluster. The structure explained in yield, 
test weight and height was 6.1, 5.7 and 8.2 % respectively. 
Lodging and test weight showed the highest proportion of 

variance explained by the clusters with 15.4 and 13.0 %, 
respectively (Fig. S4).

Rice

The rice dataset is a very diverse panel from 82 countries 
and the analysis of population structure revealed three clear 
subpopulations. Clusters were separated in the first two PCs 
axes and accounted for 39.2 and 8.3 % of the total variance 
(Fig. 2b). Population sizes within clusters varied from 99 
to 145 genotypes. A more detailed description of the acces-
sions and geographical distribution of the rice germplasm 
can be found in Zhao et al. (2011). The proportion of the 
variance explained by the structure in the rice dataset can 
be found in supplementary information S5.

Training set prediction accuracies

Figures 3 and 4 show the accuracies of the predictions 
for the wheat and rice datasets. In general, accuracy val-
ues were lower in wheat. Accuracies ranged from 0.12 to 
0.59 and from 0.20 to 0.72 in wheat and rice, respectively. 
In both populations, accuracies increased as the TRS size 
increased. Different heritability values and � did not change 
the patterns of accuracy for either dataset. Nevertheless, 
there were noteworthy differences in GS accuracies among 
TRS selection methods of optimization studied here.

In the wheat dataset, predictions using the CDmean 
and StratCDmean methods showed the highest accura-
cies for all the traits except for test weight and heading 
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Fig. 2  Plots of the first two principal components and the cluster 
analysis using R with 38,893 GBS and 36,901 SNPs markers on a 
wheat and b rice germplasm. Each solid circle represents a genotype 

and the  colors indicate clusters membership. Legends summarize the 
distribution of the subpopulations for both germplasm. Number of 
genotypes per cluster is indicated in parenthesis (color figure online)

Table 2  Descriptions of wheat and rice clusters identified using hier-
archical clustering model analysis

NY New York, Ont Ontario, OH Ohio, MI, Michigan, IN Indiana, VA 
Virginia, IN Indica, CH China, PH Philippines, BR Brasil, US United 
Stated, AR Argentina, CO Congo, NI Nigeria, EU European Union, 
JA Japan
a Based on Zhao et al. (2011)

Cluster Number  
of lines

Originsa Representative 
line

Wheat C1 516 NY, Ont, OH, MI Ancestral varie-
ties

C2 350 NY, Ont, China Harus/Houser/ 
SuMei

C3 154 NY, MI, OH, IN, VA Elite Eastern

C4 107 NY Geneva/Caledo-
nia

Rice C1 145 IN, CH, PH, BR, Indica/Aus

C2 127 US, BR, AR, CO, NI Tropical 
Japonica

C3 99 UE, JA, CH Temperate 
Japonica
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date. In general, CDmean and StratCDmean were not sig-
nificantly different within traits, although some exceptions 
were found for the smaller TRS sizes (Fig. 3a, d). At the 
lowest TRS size, CDmean and StratCDmean showed the 
highest accuracies, with the exception of test weight and 
heading date. Usually, PEVmean showed lower accuracies 
than CDmean except for test weight where the PEVmean 
showed better accuracies in the two smallest TRS sizes. 
Stratified and random sampling showed similar patterns 
among traits. However, these methods showed the highest 
accuracies for test weight and heading date.

Predictions using the rice dataset showed higher accura-
cies than the wheat dataset overall even though the CS size 
(250) was smaller than for wheat (627) (Fig. 4). The strati-
fied sampling method showed the highest accuracies for all 
traits. In this dataset, the calibration set of random sampling 
was always lower or equivalent to those obtained by strati-
fied sampling for all traits. At the smallest population size, 
CDmean and StratCDmean showed the highest reliabili-
ties but were not significantly different from stratified and 
random sampling. As the population size increased, their 

accuracies dropped below the stratified sampling approach, 
especially for plant height and protein content (Fig. 4c, 
d). Similar to the wheat population, PEVmean accuracies 
followed a pattern similar to CDmean and the differences 
between accuracies of CDmean and PEVmean were sig-
nificant only for florets per panicle and flowering time at 
intermediate population size. For these traits, PEVmean 
showed the lowest accuracies (Fig. 4a, b). More informa-
tion among accuracies across methods can be found in sup-
plementary information S6 and S7.

Selection optimization of the training sets

For both populations, Fig. 5 shows for the TRS size of 25, 
the PCA axes for the genotypes selected by the algorithms 
based on CDmean, PEVmean and stratCDmean methods. 
This figure illustrates the functional role of the algorithm in 
selecting the best genotypes to generate the optimized TRS 
as well as the variability of the panel captured by the TRS. 
In both populations, CDmean frequently selected most of 
the genotypes from the center of the PCs, and only rarely 
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Fig. 3  Accuracies of the predictions of the TS genotypes in the 
wheat germplasm. The calibration sets were defined by maximizing 
CDmean; minimizing PEVmean; maximizing CDmean within clus-
ter; stratified proportional sampling and random sampling. Four dif-
ferent population sizes (25, 50, 100, 200 and 300) were used for the 

optimization algorithm in five different traits (a yield, b test weight, c 
lodging, d heading date, e plant height). Standard error is indicated 
for each point over the 50 runs. Optimization of CDmean, PEVmean 
and StratCDmean was made with the heritability measured for each 
trait in each germplasm (color figure online)
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selected genotypes from the extremes of the clusters. This 
feature was observed more clearly for wheat than for rice 
(Figs. 3, 4, 5a, d). These patterns were stable across runs 
and traits. For the wheat dataset, most of the TRS geno-
types selected using the PEVmean method were from the 
Elite Eastern cluster, with few genotypes from the center 
of the PCs (Fig. 5b). This pattern was also observed in the 
rice population, where PEVmean did not select genotypes 
from the Temperate Japonica cluster and more frequently 
selected genotypes from the Indica/Aus cluster (Fig. 5e). 
Although StratCDmean selected genotypes more disperse 
within clusters than other sampling algorithm, this was 
not reflected in an increase of the accuracies (Fig. 5c, f). 
Although, the algorithm forced CDmean to pick genotypes 
within clusters, most of the genotypes that were repeatedly 
selected tended to be from the center of the PCs in both 
wheat and rice populations.

Relative phenotypic variance and accuracy

Because of the different behavior of the test weight and 
heading date traits in wheat, we conducted additional anal-
yses to determine the relationship between the phenotypic 
variance and accuracy. The ratio of the phenotypic variance 
of the genotypes most selected by CDmean and the total 
variance was plotted against the relative accuracy between 
CDmean and random sampling methods in a TRS size of 
40 genotypes. If the value of the ratio between CDmean 
and the total variance is greater than 1.0, it means that 
extreme phenotypes are overrepresented in the TRS, while 
close-to average phenotypes are underrepresented. There 
was a positive overall relationship between the phenotypic 
variance captured by the TRS, and the relative accuracy of 
CDmean versus the random sampling method. Within the 
dataset the same relationship was observed more clearly 
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Fig. 4  Accuracies of the predictions of the TS genotypes in the 
rice germplasm. The calibration sets were defined by maximizing 
CDmean; minimizing PEVmean; maximizing CDmean within clus-
ter; stratified proportional sampling and random sampling. Four dif-
ferent population sizes (25, 50, 100, 150 and 175) were used for the 

optimization algorithm in four different traits (a florets per panicle, b 
flowering time, c plant height, d protein content). Standard error is 
indicated for each point over the 50 runs. Optimization of CDmean, 
PEVmean and StratCDmean was made with the heritability measured 
for each trait in each germplasm (color figure online)
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in the wheat population than in rice. Figure 6 shows that 
CDmean only performed well when the ratio of the phe-
notypic variance of the TRS and the total phenotypic vari-
ance was greater than or equal to two. Yield, lodging and 
plant height were the only traits in the wheat germplasm, 
where CDmean performed better than random sampling. In 
the wheat dataset, CDmean did not perform well for test 
weight and heading date (Fig. 3c, d). For these traits, the 
accuracies were the lowest and CDmean did not capture a 
larger phenotypic variance. In the rice dataset, CDmean did 
not perform better than random sampling (Fig. 4). Here, as 
observed for wheat, rice traits were grouped together and 
showed the same positive relationship between the relative 
phenotypic variance and accuracy.

Discussion

In a scenario where we have a diverse panel of genotypes 
that have been genotyped but not phenotyped, the first 

question that arises is how to select the best genotypes to 
create a TRS to build our statistical model for making pre-
dictions in the TS. The goal is to select the minimum num-
ber of genotypes that assure an optimal accuracy on the TS 
population. Several studies (Maenhout et al. 2010; Saatchi 
et al. 2011; Clark et al. 2011, 2012; Pszczola et al. 2012) 
and more recently by Guo et al. (2014) have highlighted the 
criteria to build an optimal TRS.

Rincent et al. (2012) developed algorithms to select an 
improved TRS that strategically sampled the genotypic 
space when developing training sets for genomic predic-
tion. In this paper, our aim was to compare the performance 
of five algorithms, including the procedures from Rin-
cent et al. (2012), in the presence of population structure 
using three different TRS optimization selection methods. 
These methods were tested on two different germplasm 
panels with different origins, different population structure 
effects, and in nine different traits with heritabilities rang-
ing from 0.70 to 0.95 (Table 2). Our results indicated that 
the best selection criterion used to optimize the TRS was 
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Fig. 5  Genotypes selected from the optimization algorithm over the 
50 run are plotted on the principal components analysis in wheat and 
rice germplasm. The genotypes were selected based on CDmean (a, 
d), PEVmean (b, e) and StratCDmean (e, f). Green dots represent the 

genotypes selected by the algorithm over the 50 runs. Red dots indi-
cate those genotypes that were selected more than 15 and 27 times in 
wheat and rice germplasm, respectively (color figure online)
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not consistent among populations. This seems to indicate 
that the interaction of trait architecture and population 
structure plays an important role in the optimization of the 
TRS. In six out of the nine traits studied in this analysis, 
the stratified sampling method showed higher accuracies 
than CDmean, PEVmean and StratCDmean, indicating 
that the degree of population structure is important in the 
design of the TRS. In populations with strong structure, 
as observed for the rice population, stratified sampling 
performed better than other methods (Fig. 4). In contrast, 
CDmean and StratCDmean showed better accuracies where 
population structure effects were mild, as observed for the 
wheat germplasm (Fig. 3). The similarity of accuracies for 
CDmean and StratCDmean can be explained by the fact 
that the contrasts used for both approaches to calculate the 
CDmean statistics were the same.

The divergence in selection method performance for test 
weight and heading date traits in wheat was unexpected 
and additional analyses were performed to explain the 
result. We found that these different results for test weight 
and heading date could be explained by the total pheno-
typic variance sampled for the trait (Fig. 6). For those traits, 
stratified sampling showed higher accuracies than CDmean, 
PEVmean and StratCDmean methods but was not different 
from random sampling. Our results in Fig. 6 indicated that, 
when CDmean captures most of the phenotypic variance 
the accuracies increased, as indicated for the traits yield, 
lodging and plant height. In contrast to this observation, 
the large genotypic variance obtained by CDmean does 
not always translate into a higher phenotypic variance ratio 

in the TRS. This might explain why CDmean performed 
poorly for test weight and heading date, because on average 
it produced TRS with reduced phenotypic variance com-
pared to a random sampling. In addition, the lower phe-
notypic variance for test weight and heading date could be 
due to fewer genes affecting these traits in comparison to 
the other traits. These results seem to indicate that the best 
strategy may be to maximize the phenotypic variance cap-
tured by the TRS. In fact, recent studies (Jiménez-Montero 
et al. 2012; Boligon et al. 2012) have shown that strategies 
that maximize the phenotypic variance, through picking 
individuals from the two-tail distribution, are preferable to 
using genotypes with the largest or lowest phenotypic devi-
ation. Empirical studies are needed to endorse the simula-
tion results. Capturing most of the phenotypic variance in 
the training set seems to be key for optimal performance.

CDmean showed higher accuracies than PEVmean 
among traits and populations, with the only exception 
being for intermediate TRS set sizes for test weight for 
wheat (Fig. 3d). The optimal design for a TRS popula-
tion for use in genomic prediction should minimize the 
relationship among genotypes in the TRS and maximize 
the relationship of the TS genotypes to the TRS. Conse-
quently, the genotypes belonging to the TRS should not be 
closely related to each other but should be representative 
of the entire population. This is the main benefit to using 
the CDmean, because it takes into account the covariance 
among the candidate genotypes preventing the selection of 
closely related genotypes (Lalöe et al. 1993; Rincent et al. 
2012). The CDmean algorithm most frequently selected 
genotypes situated near the center of the PCA under the 
effect of population structure, indicating that CDmean min-
imized the genetic distance to each cluster resulting in opti-
mal performance when there was mild population structure. 
In contrast to the results found by Rincent et al. (2012), the 
CDmean method did not include all the extreme genotypes 
from each cluster. For example, in the wheat population the 
most frequent genotypes selected by CDmean belonged to 
the Ancestral Varieties (Fig. 5a).

The StratCDmean method was chosen to force the 
CDmean algorithm to select more extreme genotypes from 
different clusters. Although, StratCDmean improved the 
sampling of the extremes of the genotypes in different clus-
ters, our results indicated that this strategy did not improve 
the accuracies of the predictions in either the rice or the 
wheat datasets. This could be due to the fact that the con-
trasts used in the CDmean and StratCDmean were the same.

CDmean and StratCDmean gave the highest accuracies 
for the smallest TRS size in both populations (Figs. 4, 5). 
This indicated that under the effect of population structure, 
CDmean and StratCDmean will perform better, on average, 
than the other methods, and therefore would be favored 
among these methods when the size of the TRS is small.
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As observed by Rincent et al. (2012), the performance 
of the PEVmean in both populations revealed patterns 
similar to CDmean. One pitfall to using PEVmean to opti-
mize the TRS is that, in contrast to CDmean, PEVmean 
selected a high number of related genotypes to create the 
TRS, which was not optimal (Fig. 5b, e). While accuracies 
between PEVmean and CDmean were not very different 
among traits and germplasm, the fact that it included more 
closely related genotypes would limit long-term gains from 
selection needed in plant breeding schemes (Jannink et al. 
2010). Nevertheless, PEV is still an appropriate selection 
criterion for a measure of connectedness (Kennedy and 
Trus 1993). As shown in Fig. 5b, genotypes selected by 
PEVmean did not cover a wide genotypic space from the 
relationship matrix, but it selected a larger sample of Elite 
wheat genotypes.

The efficiency of the methods in terms of computational 
time also plays an important role in choosing a method for 
optimization. From the three methods used here, stratified 
sampling was the most efficient (less than a day), followed 
by StratCDmean (2 days), and CDmean (4 days). The fact 
that StratCDmean did not show large differences in accura-
cies in comparison with CDmean, and also improved the 
speed of the algorithm, made it more suitable than CDmean 
in the presence of population structure.

It is also important to note that the size of the CS can 
limit the use of CDmean. The algorithm requires the inver-
sion of large matrices at each iteration to optimize the 
TRS, making it computationally intensive for large popu-
lation CS sizes. For example in our study, the time to find 
the optimum took 50 % more time using the wheat dataset 
compared to rice. In addition, for stratified sampling and 
StratCDmean methods to be effective, a sufficient number 
of genotypes per cluster is required for the sampling algo-
rithm. When the number of genotypes per cluster is too 
small, the stratified sampling is less useful.

TRS design for GS has attracted much attention in both 
animal and plant breeding in recent years because it is criti-
cal to the accuracy of the prediction models. However, less 
consideration has been given to the test population in the 
optimization process. We believe that the use of informa-
tion from the test set could be valuable to improve accura-
cies of prediction models for TRS design. In this sense, an 
alternative to the maximization of the CDmean in the TRS 
could be the minimizing the PEVmean in the test set. Thus, 
the information about the test dataset could be used, while 
building the prediction model, by selecting the genotypes 
for the TRS that minimize the PEV of the test set.

In our optimization criteria, as well as in Rincent et al. 
(2012), the information from performance of relatives was 
incorporated through the use of a relationship matrix to cal-
culate GEBVs. This is appropriate if major genes are not 
involved in the trait of interest. If the genetic distance based 

on genome-wide markers does not reflect the variability 
of the trait because major genes are involved, markers are 
not expected to be efficient for guiding the sampling of 
the TRS. If the optimal calibration set depends on the trait 
considered, this might be a problem for the implementation 
of GS in breeding programs because selection objectives 
usually involve multiple traits. Instead of using genomic 
prediction models for traits with major genes, it might be 
better to use models that include large effect loci as fixed 
effects in GS models. Studies have shown that including 
large effect loci in GS models can improve significantly 
the prediction accuracies. (Heslot et al. 2012; Gianola 
2013; Bernardo 2014; Rutkoski et al. 2014). The informa-
tion about the trait architecture learned from these models 
could be used in the future for developing new criteria for 
optimization. In addition, it should be mentioned that our 
results come from an additive genetic model and it might 
be worthwhile to explore the use of other models that can 
capture genetic effects such as epistasis and genotype-by-
environment interaction. In this study, we only measure 
the effect of population structure on the optimization of the 
TRS, however some of the variation observed in our results 
could be due to other unmeasured features, because accura-
cies from prediction models depend on a complex network 
of different, interrelated factors.

We showed that population structure played an impor-
tant role in the optimization of the TRS. When popula-
tion structure effects are minor, CDmean performed bet-
ter than other selection methods and captured most of the 
genetic variability for most traits in the TRS. This makes 
it suitable as an optimization criterion for long-term selec-
tion. However, under strong population structure stratified 
sampling performed better than CDmean, indicating that 
population structure must be evaluated before optimi-
zation to be sure the algorithm used does not reduce the 
phenotypic variation. Our results indicate that the over-
all optimization method works best when the trait under 
study is polygenic, because the genome-wide relationship 
measured by the G matrix captures the phenotypic rela-
tionship adequately. If the underlying genetic control of 
the trait is not polygenic, then the success of the training 
optimization techniques will similarly depend on whether 
or not the alleles of the trait are aligned with the overall 
structure. Stratified sampling is expected to perform best 
if the alleles controlling the traits are distributed accord-
ing to the structure.
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