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ABSTRACT 

One of the attractions of neural network approaches to pattern 

recognition is the use of a discrimination-based training method. 

We show that once we have modified the output layer of a multi

layer perceptron to provide mathematically correct probability dis

tributions, and replaced the usual squared error criterion with a 

probability-based score, the result is equivalent to Maximum Mu

tual Information training, which has been used successfully to im

prove the performance of hidden Markov models for speech recog

nition. If the network is specially constructed to perform the recog

nition computations of a given kind of stochastic model based clas

sifier then we obtain a method for discrimination-based training of 

the parameters of the models. Examples include an HMM-based 

word discriminator, which we call an 'Alphanet' . 

1 INTRODUCTION 

It has often been suggested that one of the attractions of an adaptive neural network 

(NN) approach to pattern recognition is the availability of discrimination-based 

training (e.g. in Multilayer Perceptrons (MLPs) using Back-Propagation). Among 

the disadvantages of NN approaches are the lack of theory about what can be 

computed with any partir.ular structure, what can be learned, how to choose a 

network architecture for a given task, and how to deal with data (such as speech) in 

which an underlying sequential structure is ofthe essence. There have been attempts 

to build internal dynamics into neural networks, using recurrent connections, so that 

they might deal with sequences and temporal patterns [1, 2], but there is a lack of 

relevant theory to inform the choice of network type. 

Hidden Markov models (HMMs) are the basis of virtually all modern automatic 

speech recognition systems. They can be seen as an extension of the parametric 

statistical approach to pattern recognition, to deal (in a simple but principled way) 

witli temporal patterning. Like most parametric models, HMMs are usually trained 

using within-class maximum-likelihood (ML) methods, and an EM algorithm due to 

Baum and Welch is particularly attractive (see for instance [3]). However, recently 
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some success has been demonstrated using discrimination-based training methods, 

suc.h as the so-called Maximum Mutual Information criterion [4] and Corrective 

Training[5] . 

This paper addresses two important questions: 

• How can we design Neural Network architectures with at least the desirable 

properties of methods based on stochastic models (such as hidden Markov 

models)? 

• What is the relationship between the inherently discriminative neural network 

training and the analogous MMI training of stochastic models? 

We address the first question in two steps. Firstly, to make sure that the outputs 

of our network have the simple mathematical properties of conditional probability 

distributions over class labels we recommend a generalisation of the logistic nonlin

earity; this enables us (but does not require us) to replace the usual squared error 

criterion with a more appropriate one, based on relative entropy. Secondly, we 

also have the option of designing networks which exactly implement the recognition 

computations of a given stochastic model method. (The resulting 'network' may be 

rather odd, and not very 'neural', but this is engineering, not biology.) As a con

tribution to the investigation of the second question, we point out that optimising 

the relative entropy criterion is exactly equivalent to performing Maximum Mutual 

Information Estimation. 

By way of illustration we describe three 'networks' which implement stochastic 

model classifiers, and show how discrimination training can help. 

2 TRAINABLE NETWORKS AS PARAMETERISED CON

DITIONAL DISTRIBUTION FUNCTIONS 

We consider a trainable network, when used for pattern classification, as a vector 

function Q( re, 8) from an input vt>ctor re to a set of indicators of class membership, 

{Qj}, j = 1, ... N. The parameters 8 modify the transfer function. In a multi

layer perceptron, for instance, the parameters would be values of weights. Typically, 

we have a training set of pairs (ret,ct), t = 1, ... T, of inputs and associated true 

class labels, and we have to find a value for 8 which specialises the function so that 

it is consistent with the training st't. A common procedure is to minimise E( 8), the 

sum of the squart's of the differt'nces hetwt'en the network outputs and true class 

indicators, or targets: 
'1' N 

E(8) =: L L(Qj(ret, 8) - bj ,c,)2, 
t=l j==l 

where bj,c = 1 if j = c, otht'rwise O. E and Q will be written without the 8 argument 

where the meaning is clear, and wt' may drop the t subscript. 

It is well known that the value of F(~) which minimises the expected value of 

(F(~) - y)2 is the expected value of y given~. The expected value of bj,e, is 

P( C = j I X = red, the probability that the class associated with ret is the jth class. 
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From now on we shall assume that the desired output of a classifier network is this 

conditional probability distribution over classes, given the input. 

The outputs must satisfy certain simple constraints if they are to be interpretable as 

a probability distribution. For any input, the outputs must all be positive and they 

must sum to unity. The use of logistic nonlinearities at the outputs of the network 

ensures positivity, and also ensures that each output is less than unity. These 

constraints are appropriate for outputs that are to be interpreted as probabilities 

of Boolean events, but are not sufficient for I-from-N classifiers. 

Given a set of unconstrained values, Vj(:e), we can ensure both conditions by using 

a Normalised Exponential transformation: 

Qj(~) = eVj(a!) / L eVIe(~) 
Ie 

This transformation can be considered a multi-input generalisation of the logistic, 

operating on the whole output layer. It preserves the rank order of its input values, 

and is a differentiable generalisation of the 'winner-take-all' operation of picking the 

maximum value. For this reason we like to refer to it as soft max. Like the logistic, 

it has a simple implementation in transistor circuits [6]. 

If the network is such that we can be sure the values we have are all positive, it may 

be more appropriate just to normalise them. In particular, if we can treat them as 

likelihoods of the data given the possible classes, Lj(~) = P(X = ~ Ie =i), then 

normalisation produces the required conditional distribution (assuming equal prior 

probabilities for the classes). 

3 RELATIVE ENTROPY SCORING FOR CLASSIFIERS 

In this section we introduce an information-theoretic criterion for training I-from

N classifier networks, to replace the squared error criterion, both for its intrinsic 

interest and because of the link to discriminative training of stochastic models. 

the class with highest likelihood. This is justified by 

if we assume equal priors P(c) (this can be generalised) and see that the denominator 

P(~) = Lc P(~ I c)P(c) is the same for all classes. 

It is also usual to train such classifiers by ma:¥:imising the data likelihood given 

the correct classes. Maximum Likelihood (ML) training is appropriate if we are 

choosing from a family of pdfs which includes the correct one. In most real-life 

applications of pattern classification we do not have knowledge of the form of the 

data distributions, although we may have some useful ideas. In tbat case ML may 

be a rather bad approach to pdf estimation for the purpose of pattern clauification, 

because what matters is the f'elalive densities. 

An alternative is to optimise a measure of success in pattern classification, and this 

can make a big difference to performance, particularly when the assumptions about 

the form of the class pdfs is badly wrong. 
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To make the likelihoods produced by a SM classifier look like NN outputs we can 

simply normalise them: 

Ie 

Then we can use Neural Network optimisation methods to adjust the parameters. 

a SUlll, weighted by the joint probability, of the MI of the joint events 

,.... P(X=:r,Y=y) 
I(X, Y) = ,L; P(X:=::r, Y=y)log p{X - =:r)p - (Y~Yf 

(~,y) 

For discrimination training of sets of stochastic models, Bahl et.al. suggest max

imising the Mutual Information, I, between the training observations and the choice 

of the correspolluing correct class. 

,"" P(C =.: Ct,X=Zt) ,........... P(C=Ct IX=zt}P(X=zd 
I(X, C) = ,L; log = ,L; log . 

P(C=cdP(X=z) P(C=ct}P(X=z) 
t t 

P(C=Ct I X = zt} should be read as the probability that we choose the correct class 

for the tth training example. If we are choosing classes according to the conditional 

distribution computed using parameters (J then P(C=Ct IX = zd = QCt(z,(J), 

and 

If the second term involving the priors is fixed, we are left with maximising 

LlogQCt(:rt,6) = -J. 
t 

The RE-based score we use is J ..;; -- }:;:;;1 L;=l Pjtlog Qj{ zd, where Pjt is the 

probability of class j associated with input Zt 1ll the training set. If as usual the 

training set specifies only oue true class, Ct for each Zt then Pj,t = [)j,Ct and 

T 

J = -- LlogQCt(zt}, 

t=l 
the sum of the logs of the outputs for the correct classes. 

J can be derived from the Relative Entropy of distribution Q with respect to the 

true conditional distribution P, averaged over the input distribution: 

J d:r P(X = z)G(Q I P), where G(Q I P) = - L P(c I z)log ~~(Iz~)' 
C 

information, cross entropy, asymmetric divergence, directed divergence, I-divergence, 

and Kullback-Leibler number. RE scoring is the basis for the Boltzmann Machine 

learning algorithm [7] and has also been proposed and used for adaptive networks 

with continuous-valued outputs [8, 9, 10, 11], but usually in the form appropriate 

to separate logistics and independent Boolean targets. An exception is [12]. 

There is another way of thinking about this 'log-of correct-output' score. Assume 

that the way we would use the outputs of the network is that, rather than choosing 
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the class with the largest output, we choose randomly, picking from the distribution 

specified by the outputs. (Pick class j with probability Qj.) The probability of 

choosing the class Ct for training sample IBt is simply Qet (tee). The probability of 

choosing the correct class labels for all the training set is n;=1 Qet (1Bt). We simply 

seek to maximise this probability, or what is equivalent, to minimise minus its log: 

T 

J = - L log Qet(ted· 
t=l 

In order to compute the partial derivatives of J wrt to parameters of the network, we 

first need :gj -= -Pjt!Qj The details of the back-propagation depend on the form 

of the network, but if the final non-linearity is a normalised exponential (softmax), 

'"' 8Jt Qj(:l) = exp(Vj(:z:))/ Lt exp(V" (:z:)), then [6] aV- -= (Qj(:z:t) - bj,et)' 

" J 

We see that the derivative before the output nonlinearity is the difference between 

the corresponding output and a one-from-N target. We conclude that softmax 

output stages and I-from-N RE scoring are natural partners. 

4 DISCRIMINATIVE TRAINING 

In stochastic model (probability-density) based pattern classification we usually 

compute likelihoods of the data given models for each class, P(IB I c), and choose. 

So minimising our J criterion is also maximising Bahl's mutual information. (Also 

see [13).) 

5 STOCHASTIC MODEL CLASSIFIERS AS NETWORKS 
5.1 EXAMPLE ONEs A PAIR OF MULTIVARIATE GAUSSIANS 

The conditional distribution for a pair of multivariate Gaussian densities with the 

same arbitrary covariance matrix is a logistic function of a weighted sum of the 

input coordinates (plus a constant). Therefore, even if we make such incorrect 

assumptions as equal priors and spherical unit covariances, it is still possible to find 

values for the parameters of the model (the positions of the means of the assumed 

distributions) for which the form of the conditional distribution is correct. (The 

means may be far from the means of the true distributions and from the data 

means.) Of course in this case we have the alternative of using a weighted-sum 

logistic, unit to compute the conditional probability: the parameters are then the 

weights. 

5.2 EXAMPLE TWO: A MULTI-CLASS GAUSSIAN CLASSIFIER 

Consider a model in which the distributions for each class are multi-variate Gaus

sian, with equal isotropic unit variances, and different means, {mj}. The prob

ability distribution over class labels, given an observation IB I is P( c = j lIB) = 
e 1'; / L" e V", where V; = -IIIB - mj 112. This can be interpreted as a one-layer 

feed-forward non-linear network. The usual weighted sums are replaced by squared 

Euclidean distances, and the usual logistic output non-linearities are replaced by a 

normalised exponential. 
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For a particular two-dimensional10-class problem, derived from Peterson and Bar

ney's formant data, we have demonstrated [6] that training such a network can 

cause the ms to move from their "natural" positions at the data means (the in-class 

maximum likelihood estimates), and this can improve classification performance on 

unseen data (from 68% correct to 78%). 

5.3 EXAMPLE THREE: ALPHANETS 

Consider a set of hidden Markov models (HMMs), one for each word, each param

eterised by a set of state transition probabilities, {a~j}' and observation likelihood 

functions {b~ ('" H, where a~j is the probability that in model k state i will be fol

lowed by state j, and b~ ( "') is the likelihood of model k emi tting observation '" from 

state j. For simplicity we insist that the end of the word pattern corresponds to 

state N of a model. 

The likelihood, Lie (lett) of model k generating a given sequence ",tt ~ "'1, •• " "'M 

is a sum, over all sequences of states, of the joint likelihood of that state sequence 

and the data: 
M 

LIe(ler) = L IT a!'_I"f b!I("'d with 8M = N. 
'I ... IM t=2 

This can be r.omput.ed efficiently via the forward recursion [3J 

glvlllg 

which we can think of as a recurrent network. (Note that t is used as a time index 

here.) 

If the observation sequence "':'" could only have come from one of a set of known, 

equally likely models, then the posterior probability that it was from model k is 

p(r=k I ",f!) = QIe(",f!) = Llc(",f1 ) / L Lr(",r)· 
r 

These numbers are the output of our special "recurrent neural network" for isolated 

word discrimination, which we call an "Alphanet" [14J. Backpropagation of partial 

derivatives of the J score has the form of the backward recurrence used in the 

Baum-Welch algorithm, but they include discriminative terms, and we obtain the 

gradient of the relative entropy/mutual information. 

6 CONCLUSIONS 

Discrimination-based training is different from within-class parameter estimation, 

and it may be useful. (Also see [15].) Discrimination-based training for stochastic 

models and for networks are not distinct, and in some cases can be mathematically 

identical. 

The notion of specially constructed 'network' architectures which implement stochas

tic model recognition algorithms provides a way to construct fertile hybrids. For 

instance, a Gaussian classifier (or a HMM classifier) can be preceeded by a nonlin

ear transformation (perhaps based on semilinear logistics) and all the parameters 
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of the system adjusted together. This seems a useful approach to automating the 

discovery of 'feature detectors'. 
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