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Abstract

Theoretical and empirical evidence indicates that the depth of neural networks
is crucial for their success. However, training becomes more difficult as depth
increases, and training of very deep networks remains an open problem. Here we
introduce a new architecture designed to overcome this. Our so-called highway
networks allow unimpeded information flow across many layers on information
highways. They are inspired by Long Short-Term Memory recurrent networks and
use adaptive gating units to regulate the information flow. Even with hundreds of
layers, highway networks can be trained directly through simple gradient descent.
This enables the study of extremely deep and efficient architectures.

1 Introduction & Previous Work

Many recent empirical breakthroughs in supervised machine learning have been achieved through
large and deep neural networks. Network depth (the number of successive computational layers) has
played perhaps the most important role in these successes. For instance, within just a few years, the
top-5 image classification accuracy on the 1000-class ImageNet dataset has increased from ∼84%
[1] to ∼95% [2, 3] using deeper networks with rather small receptive fields [4, 5]. Other results on
practical machine learning problems have also underscored the superiority of deeper networks [6]
in terms of accuracy and/or performance.

In fact, deep networks can represent certain function classes far more efficiently than shallow ones.
This is perhaps most obvious for recurrent nets, the deepest of them all. For example, the n bit
parity problem can in principle be learned by a large feedforward net with n binary input units, 1
output unit, and a single but large hidden layer. But the natural solution for arbitrary n is a recurrent
net with only 3 units and 5 weights, reading the input bit string one bit at a time, making a single
recurrent hidden unit flip its state whenever a new 1 is observed [7]. Related observations hold for
Boolean circuits [8, 9] and modern neural networks [10, 11, 12].

To deal with the difficulties of training deep networks, some researchers have focused on developing
better optimizers (e.g. [13, 14, 15]). Well-designed initialization strategies, in particular the nor-
malized variance-preserving initialization for certain activation functions [16, 17], have been widely
adopted for training moderately deep networks. Other similarly motivated strategies have shown
promising results in preliminary experiments [18, 19]. Experiments showed that certain activation
functions based on local competition [20, 21] may help to train deeper networks. Skip connec-
tions between layers or to output layers (where error is “injected”) have long been used in neural
networks, more recently with the explicit aim to improve the flow of information [22, 23, 2, 24].
A related recent technique is based on using soft targets from a shallow teacher network to aid in
training deeper student networks in multiple stages [25], similar to the neural history compressor
for sequences, where a slowly ticking teacher recurrent net is “distilled” into a quickly ticking stu-
dent recurrent net by forcing the latter to predict the hidden units of the former [26]. Finally, deep
networks can be trained layer-wise to help in credit assignment [26, 27], but this approach is less
attractive compared to direct training.
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Very deep network training still faces problems, albeit perhaps less fundamental ones than the prob-
lem of vanishing gradients in standard recurrent networks [28]. The stacking of several non-linear
transformations in conventional feed-forward network architectures typically results in poor propa-
gation of activations and gradients. Hence it remains hard to investigate the benefits of very deep
networks for a variety of problems.

To overcome this, we take inspiration from Long Short Term Memory (LSTM) recurrent networks
[29, 30]. We propose to modify the architecture of very deep feedforward networks such that infor-
mation flow across layers becomes much easier. This is accomplished through an LSTM-inspired
adaptive gating mechanism that allows for computation paths along which information can flow
across many layers without attenuation. We call such paths information highways. They yield high-
way networks, as opposed to traditional ‘plain’ networks.1

Our primary contribution is to show that extremely deep highway networks can be trained directly
using stochastic gradient descent (SGD), in contrast to plain networks which become hard to opti-
mize as depth increases (Section 3.1). Deep networks with limited computational budget (for which
a two-stage training procedure mentioned above was recently proposed [25]) can also be directly
trained in a single stage when converted to highway networks. Their ease of training is supported
by experimental results demonstrating that highway networks also generalize well to unseen data.

2 Highway Networks

Notation We use boldface letters for vectors and matrices, and italicized capital letters to denote
transformation functions. 0 and 1 denote vectors of zeros and ones respectively, and I denotes an
identity matrix. The function σ(x) is defined as σ(x) = 1

1+e−x
, x ∈ R. The dot operator (·) is used

to denote element-wise multiplication.

A plain feedforward neural network typically consists of L layers where the lth layer (l ∈
{1, 2, ..., L}) applies a non-linear transformation H (parameterized by WH,l) on its input xl to
produce its output yl. Thus, x1 is the input to the network and yL is the network’s output. Omitting
the layer index and biases for clarity,

y = H(x,WH). (1)

H is usually an affine transform followed by a non-linear activation function, but in general it may
take other forms, possibly convolutional or recurrent. For a highway network, we additionally define
two non-linear transforms T (x,WT) and C(x,WC) such that

y = H(x,WH)·T (x,WT) + x · C(x,WC). (2)

We refer to T as the transform gate and C as the carry gate, since they express how much of the
output is produced by transforming the input and carrying it, respectively. For simplicity, in this
paper we set C = 1− T , giving

y = H(x,WH)·T (x,WT) + x · (1− T (x,WT)). (3)

The dimensionality of x,y, H(x,WH) and T (x,WT) must be the same for Equation 3 to be valid.
Note that this layer transformation is much more flexible than Equation 1. In particular, observe that
for particular values of T ,

y =

{

x, if T (x,WT) = 0,

H(x,WH), if T (x,WT) = 1.
(4)

Similarly, for the Jacobian of the layer transform,

1This paper expands upon a shorter report on Highway Networks [31]. More recently, a similar LSTM-
inspired model was also proposed [32].
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Figure 1: Comparison of optimization of plain networks and highway networks of various depths.
Left: The training curves for the best hyperparameter settings obtained for each network depth.
Right: Mean performance of top 10 (out of 100) hyperparameter settings. Plain networks become
much harder to optimize with increasing depth, while highway networks with up to 100 layers can
still be optimized well. Best viewed on screen (larger version included in Supplementary Material).

dy

dx
=

{

I, if T (x,WT) = 0,

H ′(x,WH), if T (x,WT) = 1.
(5)

Thus, depending on the output of the transform gates, a highway layer can smoothly vary its behavior
between that of H and that of a layer which simply passes its inputs through. Just as a plain layer
consists of multiple computing units such that the ith unit computes yi = Hi(x), a highway network
consists of multiple blocks such that the ith block computes a block state Hi(x) and transform
gate output Ti(x). Finally, it produces the block output yi = Hi(x) ∗ Ti(x) + xi ∗ (1 − Ti(x)),
which is connected to the next layer.2

2.1 Constructing Highway Networks

As mentioned earlier, Equation 3 requires that the dimensionality of x,y, H(x,WH) and
T (x,WT) be the same. To change the size of the intermediate representation, one can replace
x with x̂ obtained by suitably sub-sampling or zero-padding x. Another alternative is to use a plain
layer (without highways) to change dimensionality, which is the strategy we use in this study.

Convolutional highway layers utilize weight-sharing and local receptive fields for both H and T
transforms. We used the same sized receptive fields for both, and zero-padding to ensure that the
block state and transform gate feature maps match the input size.

2.2 Training Deep Highway Networks

We use the transform gate defined as T (x) = σ(WT
Tx + bT), where WT is the weight matrix

and bT the bias vector for the transform gates. This suggests a simple initialization scheme which
is independent of the nature of H: bT can be initialized with a negative value (e.g. -1, -3 etc.) such
that the network is initially biased towards carry behavior. This scheme is strongly inspired by the
proposal [30] to initially bias the gates in an LSTM network, to help bridge long-term temporal
dependencies early in learning. Note that σ(x) ∈ (0, 1), ∀x ∈ R, so the conditions in Equation 4
can never be met exactly.

In our experiments, we found that a negative bias initialization for the transform gates was sufficient
for training to proceed in very deep networks for various zero-mean initial distributions of WH

and different activation functions used by H . In pilot experiments, SGD did not stall for networks
with more than 1000 layers. Although the initial bias is best treated as a hyperparameter, as a
general guideline we suggest values of -1, -2 and -3 for convolutional highway networks of depth
approximately 10, 20 and 30.

2Our pilot experiments on training very deep networks were successful with a more complex block design
closely resembling an LSTM block “unrolled in time”. Here we report results only for a much simplified form.
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Network Highway Networks Maxout [20] DSN [24]
10-layer (width 16) 10-layer (width 32)

No. of parameters 39 K 151 K 420 K 350 K
Test Accuracy (in %) 99.43 (99.4±0.03) 99.55 (99.54±0.02) 99.55 99.61

Table 1: Test set classification accuracy for pilot experiments on the MNIST dataset.

Network No. of Layers No. of Parameters Accuracy (in %)

Fitnet Results (reported by Romero et. al.[25])
Teacher 5 ∼9M 90.18
Fitnet A 11 ∼250K 89.01
Fitnet B 19 ∼2.5M 91.61

Highway networks
Highway A (Fitnet A) 11 ∼236K 89.18
Highway B (Fitnet B) 19 ∼2.3M 92.46 (92.28±0.16)
Highway C 32 ∼1.25M 91.20

Table 2: CIFAR-10 test set accuracy of convolutional highway networks. Architectures tested were
based on fitnets trained by Romero et. al. [25] using two-stage hint based training. Highway net-
works were trained in a single stage without hints, matching or exceeding the performance of fitnets.

3 Experiments

All networks were trained using SGD with momentum. An exponentially decaying learning rate was
used in Section 3.1. For the rest of the experiments, a simpler commonly used strategy was employed
where the learning rate starts at a value λ and decays according to a fixed schedule by a factor γ.
λ, γ and the schedule were selected once based on validation set performance on the CIFAR-10
dataset, and kept fixed for all experiments. All convolutional highway networks utilize the rectified
linear activation function [16] to compute the block state H . To provide a better estimate of the
variability of classification results due to random initialization, we report our results in the format
Best (mean ± std.dev.) based on 5 runs wherever available. Experiments were conducted using
Caffe [33] and Brainstorm (https://github.com/IDSIA/brainstorm) frameworks. Source
code, hyperparameter search results and related scripts are publicly available at http://people.
idsia.ch/˜rupesh/very_deep_learning/.

3.1 Optimization

To support the hypothesis that highway networks do not suffer from increasing depth, we conducted
a series of rigorous optimization experiments, comparing them to plain networks with normalized
initialization [16, 17].

We trained both plain and highway networks of varying varying depths on the MNIST digit clas-
sification dataset. All networks are thin: each layer has 50 blocks for highway networks and 71
units for plain networks, yielding roughly identical numbers of parameters (≈5000) per layer. In
all networks, the first layer is a fully connected plain layer followed by 9, 19, 49, or 99 fully con-
nected plain or highway layers. Finally, the network output is produced by a softmax layer. We
performed a random search of 100 runs for both plain and highway networks to find good settings
for the following hyperparameters: initial learning rate, momentum, learning rate exponential decay
factor & activation function (either rectified linear or tanh). For highway networks, an additional
hyperparameter was the initial value for the transform gate bias (between -1 and -10). Other weights
were initialized using the same normalized initialization as plain networks.

The training curves for the best performing networks for each depth are shown in Figure 1. As ex-
pected, 10 and 20-layer plain networks exhibit very good performance (mean loss < 1e−4), which
significantly degrades as depth increases, even though network capacity increases. Highway net-
works do not suffer from an increase in depth, and 50/100 layer highway networks perform similar
to 10/20 layer networks. The 100-layer highway network performed more than 2 orders of magni-
tude better compared to a similarly-sized plain network. It was also observed that highway networks
consistently converged significantly faster than plain ones.
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Network CIFAR-10 Accuracy (in %) CIFAR-100 Accuracy (in %)

Maxout [20] 90.62 61.42
dasNet [36] 90.78 66.22
NiN [35] 91.19 64.32
DSN [24] 92.03 65.43
All-CNN [37] 92.75 66.29
Highway Network 92.40 (92.31±0.12) 67.76 (67.61±0.15)

Table 3: Test set accuracy of convolutional highway networks on the CIFAR-10 and CIFAR-100
object recognition datasets with typical data augmentation. For comparison, we list the accuracy
reported by recent studies in similar experimental settings.

3.2 Pilot Experiments on MNIST Digit Classification

As a sanity check for the generalization capability of highway networks, we trained 10-layer con-
volutional highway networks on MNIST, using two architectures, each with 9 convolutional layers
followed by a softmax output. The number of filter maps (width) was set to 16 and 32 for all the
layers. We obtained test set performance competitive with state-of-the-art methods with much fewer
parameters, as show in Table 1.

3.3 Experiments on CIFAR-10 and CIFAR-100 Object Recognition

3.3.1 Comparison to Fitnets

Fitnet training Maxout networks can cope much better with increased depth than those with tra-
ditional activation functions [20]. However, Romero et. al. [25] recently reported that training on
CIFAR-10 through plain backpropogation was only possible for maxout networks with a depth up
to 5 layers when the number of parameters was limited to ∼250K and the number of multiplications
to ∼30M. Similar limitations were observed for higher computational budgets. Training of deeper
networks was only possible through the use of a two-stage training procedure and addition of soft
targets produced from a pre-trained shallow teacher network (hint-based training).

We found that it was easy to train highway networks with numbers of parameters and operations
comparable to those of fitnets in a single stage using SGD. As shown in Table 2, Highway A and
Highway B, which are based on the architectures of Fitnet A and Fitnet B, respectively, obtain
similar or higher accuracy on the test set. We were also able to train thinner and deeper networks:
for example a 32-layer highway network consisting of alternating receptive fields of size 3x3 and
1x1 with ∼1.25M parameters performs better than the earlier teacher network [20].

3.3.2 Comparison to State-of-the-art Methods

It is possible to obtain high performance on the CIFAR-10 and CIFAR-100 datasets by utilizing
very large networks and extensive data augmentation. This approach was popularized by Ciresan
et. al. [5] and recently extended by Graham [34]. Since our aim is only to demonstrate that deeper
networks can be trained without sacrificing ease of training or generalization ability, we only per-
formed experiments in the more common setting of global contrast normalization, small translations
and mirroring of images. Following Lin et. al. [35], we replaced the fully connected layer used
in the networks in the previous section with a convolutional layer with a receptive field of size one
and a global average pooling layer. The hyperparameters from the last section were re-used for both
CIFAR-10 and CIFAR-100, therefore it is quite possible to obtain much better results with better
architectures/hyperparameters. The results are tabulated in Table 3.

4 Analysis

Figure 2 illustrates the inner workings of the best3 50 hidden layer fully-connected highway net-
works trained on MNIST (top row) and CIFAR-100 (bottom row). The first three columns show

3obtained via random search over hyperparameters to minimize the best training set error achieved using
each configuration

5



Figure 2: Visualization of best 50 hidden-layer highway networks trained on MNIST (top row) and
CIFAR-100 (bottom row). The first hidden layer is a plain layer which changes the dimensionality
of the representation to 50. Each of the 49 highway layers (y-axis) consists of 50 blocks (x-axis).
The first column shows the transform gate biases, which were initialized to -2 and -4 respectively.
In the second column the mean output of the transform gate over all training examples is depicted.
The third and fourth columns show the output of the transform gates and the block outputs (both
networks using tanh) for a single random training sample. Best viewed in color.

the bias, the mean activity over all training samples, and the activity for a single random sample for
each transform gate respectively. Block outputs for the same single sample are displayed in the last
column.

The transform gate biases of the two networks were initialized to -2 and -4 respectively. It is inter-
esting to note that contrary to our expectations most biases decreased further during training. For
the CIFAR-100 network the biases increase with depth forming a gradient. Curiously this gradient
is inversely correlated with the average activity of the transform gates, as seen in the second column.
This indicates that the strong negative biases at low depths are not used to shut down the gates, but to
make them more selective. This behavior is also suggested by the fact that the transform gate activity
for a single example (column 3) is very sparse. The effect is more pronounced for the CIFAR-100
network, but can also be observed to a lesser extent in the MNIST network.

The last column of Figure 2 displays the block outputs and visualizes the concept of “information
highways”. Most of the outputs stay constant over many layers forming a pattern of stripes. Most of
the change in outputs happens in the early layers (≈ 15 for MNIST and ≈ 40 for CIFAR-100).

4.1 Routing of Information

One possible advantage of the highway architecture over hard-wired shortcut connections is that the
network can learn to dynamically adjust the routing of the information based on the current input.
This begs the question: does this behaviour manifest itself in trained networks or do they just learn
a static routing that applies to all inputs similarly. A partial answer can be found by looking at the
mean transform gate activity (second column) and the single example transform gate outputs (third
column) in Figure 2. Especially for the CIFAR-100 case, most transform gates are active on average,
while they show very selective activity for the single example. This implies that for each sample
only a few blocks perform transformation but different blocks are utilized by different samples.

This data-dependent routing mechanism is further investigated in Figure 3. In each of the columns
we show how the average over all samples of one specific class differs from the total average shown
in the second column of Figure 2. For MNIST digits 0 and 7 substantial differences can be seen
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Figure 3: Visualization showing the extent to which the mean transform gate activity for certain
classes differs from the mean activity over all training samples. Generated using the same 50-layer
highway networks on MNIST on CIFAR-100 as Figure 2. Best viewed in color.

within the first 15 layers, while for CIFAR class numbers 0 and 1 the differences are sparser and
spread out over all layers. In both cases it is clear that the mean activity pattern differs between
classes. The gating system acts not just as a mechanism to ease training, but also as an important
part of the computation in a trained network.

4.2 Layer Importance

Since we bias all the transform gates towards being closed, in the beginning every layer mostly
copies the activations of the previous layer. Does training indeed change this behaviour, or is the
final network still essentially equivalent to a network with a much fewer layers? To shed light on this
issue, we investigated the extent to which lesioning a single layer affects the total performance of
trained networks from Section 3.1. By lesioning, we mean manually setting all the transform gates
of a layer to 0 forcing it to simply copy its inputs. For each layer, we evaluated the network on the
full training set with the gates of that layer closed. The resulting performance as a function of the
lesioned layer is shown in Figure 4.

For MNIST (left) it can be seen that the error rises significantly if any one of the early layers is
removed, but layers 15− 45 seem to have close to no effect on the final performance. About 60% of
the layers don’t learn to contribute to the final result, likely because MNIST is a simple dataset that
doesn’t require much depth.

We see a different picture for the CIFAR-100 dataset (right) with performance degrading noticeably
when removing any of the first ≈ 40 layers. This suggests that for complex problems a highway
network can learn to utilize all of its layers, while for simpler problems like MNIST it will keep
many of the unneeded layers idle. Such behavior is desirable for deep networks in general, but
appears difficult to obtain using plain networks.

5 Discussion

Alternative approaches to counter the difficulties posed by depth mentioned in Section 1 often have
several limitations. Learning to route information through neural networks with the help of com-
petitive interactions has helped to scale up their application to challenging problems by improving
credit assignment [38], but they still suffer when depth increases beyond ≈20 even with careful ini-
tialization [17]. Effective initialization methods can be difficult to derive for a variety of activation
functions. Deep supervision [24] has been shown to hurt performance of thin deep networks [25].

Very deep highway networks, on the other hand, can directly be trained with simple gradient de-
scent methods due to their specific architecture. This property does not rely on specific non-linear
transformations, which may be complex convolutional or recurrent transforms, and derivation of
a suitable initialization scheme is not essential. The additional parameters required by the gating
mechanism help in routing information through the use of multiplicative connections, responding
differently to different inputs, unlike fixed “skip” connections.
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Figure 4: Lesioned training set performance (y-axis) of the best 50-layer highway networks on
MNIST (left) and CIFAR-100 (right), as a function of the lesioned layer (x-axis). Evaluated on
the full training set while forcefully closing all the transform gates of a single layer at a time. The
non-lesioned performance is indicated as a dashed line at the bottom.

A possible objection is that many layers might remain unused if the transform gates stay closed.
Our experiments show that this possibility does not affect networks adversely—deep and narrow
highway networks can match/exceed the accuracy of wide and shallow maxout networks, which
would not be possible if layers did not perform useful computations. Additionally, we can exploit
the structure of highways to directly evaluate the contribution of each layer as shown in Figure 4.
For the first time, highway networks allow us to examine how much computation depth is needed
for a given problem, which can not be easily done with plain networks.
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[8] Johan Håstad. Computational limitations of small-depth circuits. MIT press, 1987.
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