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Abstract

Classifiers can be trained with data-dependent

constraints to satisfy fairness goals, reduce churn,

achieve a targeted false positive rate, or other pol-

icy goals. We study the generalization perfor-

mance for such constrained optimization prob-

lems, in terms of how well the constraints are

satisfied at evaluation time, given that they are sat-

isfied at training time. To improve generalization,

we frame the problem as a two-player game where

one player optimizes the model parameters on a

training dataset, and the other player enforces the

constraints on an independent validation dataset.

We build on recent work in two-player constrained

optimization to show that if one uses this two-

dataset approach, then constraint generalization

can be significantly improved. As we illustrate

experimentally, this approach works not only in

theory, but also in practice.

1. Introduction

It is useful to train classifiers with data-dependent con-

straints in order to achieve certain guarantees on the training

set, such as statistical parity or other fairness guarantees,

specified recall, or a desired positive classification rate (e.g.

Scott & Nowak, 2005; Zafar et al., 2015; Goh et al., 2016;

Woodworth et al., 2017; Narasimhan, 2018)). However, a

key question is whether the achieved constraints will gen-

eralize. For example: will a classifier trained to produce

80% statistical parity on training examples still achieve 80%
statistical parity at evaluation time?

Unfortunately, the answer is “not quite.” Because such
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constraints are data-dependent, overfitting can occur, and

constraints that were satisfied on the training set should be

expected to be slightly violated on an i.i.d. test set. This

is particularly problematic in the context of fairness con-

straints, which will typically be chosen based on real-world

requirements (e.g. the 80% rule of some US laws (Biddle,

2005; Vuolo & Levy, 2013; Zafar et al., 2015; Hardt et al.,

2016)). In this paper, we investigate how well constraints

generalize, and propose algorithms to improve the general-

ization of constraints to new examples.

Specifically, we consider problems that minimize a loss

function subject to data-dependent constraints, expressed in

terms of expectations over a data distribution D:

min
θ∈Θ

Ex∼D [ℓ0 (x; θ)] s.t.
∀i∈[m]

Ex∼D [ℓi (x; θ)] ≤ 0 (1)

where x ∈ X is a feature vector, D is the data distribution

over X , Θ is a space of model parameters for the function

class of interest, and ℓ0, ℓ1, . . . , ℓm : X ×Θ → R are losses

associated with the objective and the m constraints∗. We do

not require these loss functions to be convex. Appendix B†

contains two examples of how Equation 1 can be used to

express certain data-dependent constraints (see Goh et al.

(2016); Narasimhan (2018) for more).

One typically trains a classifier on a finite training set drawn

from D, but the true goal is to satisfy constraints in expec-

tation over D, as in Equation 1. To this end, we build on a

long line of prior work that treats constrained optimization

as a two-player game (e.g. Christiano et al., 2011; Arora

et al., 2012; Rakhlin & Sridharan, 2013; Kearns et al., 2017;

Narasimhan, 2018; Agarwal et al., 2018). The first player

optimizes the model parameters θ, and the second player

enforces the constraints, e.g. using the Lagrangian:

L (θ, λ) := Ex∼D

[

ℓ0 (x; θ) +

m
∑

i=1

λiℓi (x; θ)

]

(2)

In practice, one would approximate the Lagrangian with an

i.i.d. training sample from D, and the first player would

∗Table 5, in the supplementary material, summarizes notation.
†Appendices can be found in the supplementary material.
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minimize over the model parameters θ ∈ Θ while the second

player maximizes over the Lagrange multipliers λ ∈ R
m
+ .

Our key idea is to treat constrained optimization similarly to

hyperparameter optimization: just as one typically chooses

hyperparameters based on a validation set, instead of the

training set, to improve classifier generalization, we would

like to choose the Lagrange multipliers on a validation set

to improve constraint generalization. In “inner” optimiza-

tions we would, given a fixed λ, minimize the empirical

Lagrangian on the training set. Then, in an “outer” opti-

mization, we would choose a λ that results in the constraints

being satisfied on the validation set. Such an approach,

could it be made to work, would not eliminate the con-

straint generalization problem completely—hyperparameter

overfitting (e.g. Ng, 1997) is a real problem—but would

mitigate it, since constraint generalization would no longer

depend on size of the training sample and the complexity of

Θ (which could be extremely large, e.g. for a deep neural

network), but rather on the size of the validation sample

and the effective complexity of R
m
+ ∋ λ, which, being m-

dimensional, is presumably much simpler than Θ.

The above approach is intuitive, but challenges arise when

attempting to analyze it. The most serious is that since θ
is chosen based on the training set, and λ on the validation

set, the θ-player is minimizing a different function than the

λ-player is maximizing, so the two-player game is non-zero-

sum (the players have different cost functions). To handle

this, we must depart from the Lagrangian formulation, but

the key idea remains: improving generalization by using a

separate validation set to enforce the constraints.

Fortunately, the recent work of Cotter et al. (2019) gives

a strategy for dealing with a non-zero-sum game in the

context of constrained supervised learning. We adapt their

approach to our setting to give bounds on constraint gener-

alization that are agnostic to model complexity. After some

preliminary definitions in Section 3, in Section 4 we present

algorithms for which we can provide theoretical bounds.

In Section 5, we perform experiments demonstrating that

our two-dataset approach successfully improves constraint

generalization even when our theorems do not hold. In other

words, providing independent datasets to each player works

well as a heuristic for improving constraint generalization.

2. Related Work

While several recent papers have proved generalization

bounds for constrained problems (e.g. Goh et al., 2016;

Agarwal et al., 2018; Donini et al., 2018), the problem of

improving constraint generalization is a fairly new one, hav-

ing, so far as we know, only been previously considered in

the work of Woodworth et al. (2017), who handled general-

ization subject to “equalized odds” constraints in the setting

of Hardt et al. (2016). Specifically, their approach is to first

learn a predictor on S(trn), and then to learn a “correction”

on S(val) to more tightly satisfy the fairness constraints. The

second stage requires estimating only a constant number of

parameters, and the final predictor consequently enjoys a

generalization guarantee for the fairness constraints which

is independent of the predictor’s complexity, with only a

modest penalty to the loss. However, their approach relies

heavily upon the structure of equalized odds constraints: it

requires that any classifier can be modified to satisfy the

fairness constraints and have low loss on a validation set by

tuning only a small number of parameters.

Woodworth et al. (2017)’s approach can be summarized

as “train a complicated model on a training set, and then

a simple correction on a validation set”. If, as they show

to be the case for equalized odds constraints, the “simple

correction” is capable of satisfying the constraints without

significantly compromising on quality, then this technique

results in a well-performing model for which validation con-

straint generalization depends not on the complexity of the

“complicated model”, but rather of the “simple correction”.

In this paper, we extend this two-dataset idea to work on

data-dependent constraints in general.

Our main baseline is Agarwal et al. (2018)’s recently-

proposed algorithm for fair classification using the La-

grangian. Their proposal, like Algorithm 1, uses an oracle to

optimize w.r.t. θ (they use the terminology “best response”),

and, like all of our algorithms, results in a stochastic classi-

fier. However, our setting differs slightly from theirs—they

focus on fair classification, while we work in the more gen-

eral inequality-constrained setting (Equation 1). For this rea-

son, in Appendix F we provide an analysis of the Lagrangian

formulation for inequality constrained optimization.

3. Background & Definitions

Our algorithms are based on the non-zero-sum two-player

game proposed by Cotter et al. (2019), which they call the

“proxy-Lagrangian” formulation. The key novelty of their

approach is the use of “proxy” constraint losses, which are

essentially surrogate losses that are used by only one of the

two players (the θ-player). It is because the two players

use different losses that their proposed game is non-zero-

sum. The motivation behind their work is that a surrogate

might be necessary when the constraint functions are non-

differentiable or discontinuous (e.g. for fairness metrics,

which typically constrain proportions, i.e. linear combina-

tions of indicators), but the overall goal is still to satisfy

the original (non-surrogate) constraints. Our work differs

in that we use a non-zero-sum game to provide different

datasets to the two players, rather than different losses.

Despite this difference, the use of proxy-constraints is per-
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fectly compatible with our proposal, so we permit the ap-

proximation of each of our constraint losses ℓi with a (pre-

sumably differentiable) upper-bound ℓ̃i. These are used

only by the θ-player; the λ-player uses the original con-

straint losses. The use of proxy constraint losses is entirely

optional: one is free to choose ℓ̃i := ℓi for all i.

Definition 1. Let S(trn) and S(val) be two random datasets
each drawn i.i.d. from a data distribution D. Given proxy

constraint losses ℓ̃i (x; θ) ≥ ℓi (x; θ) for all x ∈ X , θ ∈ Θ

and i ∈ [m], the empirical proxy-Lagrangians L̂θ, L̂λ :
Θ× Λ → R of Equation 1 are:

L̂θ (θ, λ) :=
1

|S(trn)|

∑

x∈S(trn)

(

λ1ℓ0 (x; θ) +

m
∑

i=1

λi+1ℓ̃i (x; θ)

)

L̂λ (θ, λ) :=
1

|S(val)|

∑

x∈S(val)

m
∑

i=1

λi+1ℓi (x; θ)

where Λ := ∆m ⊆ R
m+1
+ is the m-probability-simplex.

The difference between the above, and Definition 2 of Cotter

et al. (2019), is that L̂θ is an empirical average over the

training set, while L̂λ is over the validation set. The θ-

player seeks to minimize L̂θ over θ, while the λ-player

seeks to maximize L̂λ over λ. In words, the λ-player will

attempt to satisfy the original constraints on the validation

set by choosing how much to penalize the proxy constraints

on the training set.

3.1. Generalization

Our ultimate interest is in generalization, and our bounds

will be expressed in terms of both the training and validation

generalization errors, defined as follows:

Definition 2. Define the training generalization error

bound G̃(trn)(Θ) such that:
∣

∣

∣

∣

∣

∣

Ex∼D [ℓ (x, θ)]−
1

|S(trn)|

∑

x∈S(trn)

ℓ (x, θ)

∣

∣

∣

∣

∣

∣

≤ G̃(trn)(Θ)

for all θ ∈ Θ and all ℓ ∈
{

ℓ0, ℓ̃1, . . . , ℓ̃m

}

(the objective

and proxy constraints, but not the original constraints).

Likewise, define the validation generalization error bound

G(val)(Θ̂) to satisfy the analogous inequality in terms of

S(val), for all θ ∈ Θ̂ ⊆ Θ and all ℓ ∈ {ℓ1, . . . , ℓm} (the

original constraints, but not the objective or proxy con-

straints).

Throughout this paper, Θ̂ := {θ(1), . . . , θ(T )} ⊆ Θ is the

set of T iterates found by one of our proposed algorithms.

Each of our guarantees will be stated for a particular stochas-

tic model θ̄ supported on Θ̂ (i.e. θ̄ is a distribution over Θ̂),

instead of for a single deterministic θ ∈ Θ̂. Notice that

the above definitions of G̃(trn)(Θ) and G(val)(Θ̂) also ap-

ply to such stochastic models: by the triangle inequality, if

every θ ∈ Θ̂ generalizes well, then any θ̄ supported on Θ̂
generalizes equally well, in expectation.

4. Algorithms

Our overall goal is to demonstrate that providing the θ- and

λ-players with independent datasets improves constraint

generalization, and in this section we prove that it does so

in the context of the proxy-Lagrangian game of Cotter et al.

(2019). They proposed having the θ-player minimize ordi-

nary external regret, and the λ-player minimize swap regret

using an algorithm based on Gordon et al. (2008). Rather

than finding a single solution (a pure equilibrium of Defi-

nition 1), they found a distribution over solutions (a mixed

equilibrium). Our proposed approach follows this same

pattern, but we build on top of it to address generalization.

To this end, we draw inspiration from Woodworth et al.

(2017) (see Section 2), and isolate the constraints from the

complexity of Θ by using two independent datasets: S(trn)

and S(val). The “training” dataset will be used to choose the

model parameters θ, and the “validation” dataset to choose

λ, and thereby impose the constraints. Like Woodworth

et al. (2017), the resulting constraint generalization bounds

will be independent of the complexity of the function class.

We’ll begin, in Section 4.1, by proposing and analyzing

an oracle-based algorithm that improves generalization by

discretizing the candidate set, but makes few assumptions

(not even convexity). Next, in Section 4.2, we give an

algorithm that is more “realistic”—there is no oracle, and

no discretization—but requires stronger assumptions.

In Section 5, we will present and perform experiments on

simplified “practical” algorithms with no guarantees, but

that incorporate our key idea: having the λ-player use an

independent validation set.

4.1. Covering-based Algorithm

The simplest way to attack the generalization problem, and

the first that we propose, is to discretize the space of allowed

λs, and associate each λ with a unique θ ∈ Θ, where this

association is based only on the training set. If the set of dis-

cretized λs is sufficiently small, then the set of discretized

θs will likewise be small, and since it was chosen indepen-

dently of the validation set, its validation performance will

generalize well.

Specifically, we take Cr to be a radius-r (external) cover-

ing of Λ := ∆m ⊆ R
m+1
+ w.r.t. the 1-norm. The set of

allowed λs is the covering centers, while, following Chen

et al. (2017), Agarwal et al. (2018) and Cotter et al. (2019),

the θs are found using an oracle:

Definition 3. A ρ-approximate Bayesian optimization ora-

cle is a function Oρ : (Θ → R) → Θ mapping functions to
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Algorithm 1 Finds an approximate equilibrium of the empirical proxy-Lagrangian game (Definition 1), with Theorem 1

being its convergence and generalization guarantee. This is essentially a discretized version of Algorithm 4 of Cotter et al.

(2019)—like that algorithm, because of its dependence on an oracle, this algorithm does not require convexity. Here, Oρ is a

deterministic Bayesian optimization oracle (Definition 3), and Cr is a radius-r (external) covering of Λ := ∆m ⊆ R
m+1
+

w.r.t. the 1-norm. The θ-player uses oracle calls to approximately minimize L̂θ (·, λ), while the λ-player uses a swap-regret

minimizing algorithm in the style of Gordon et al. (2008), using the left-stochastic state matrices M (t) ∈ R
(m+1)×(m+1).

DiscreteTwoDataset
(

L̂θ, L̂λ : Θ×∆m → R,Oρ : (Θ → R) → Θ, Cr ⊆ R
m+1, T ∈ N, ηλ ∈ R+

)

:

1 Initialize M (1) ∈ R
(m+1)×(m+1) with Mi,j = 1/ (m+ 1)

2 For t ∈ [T ]:
3 Let λ(t) = fixM (t) // Fixed point of M (t), i.e. a stationary distribution

4 Let λ̃(t) = argminλ̃∈Cr

∥

∥

∥
λ(t) − λ̃

∥

∥

∥

1
// Discretization to closest point in Cr

5 Let θ(t) = Oρ

(

L̂θ

(

·, λ̃(t)
))

6 Let ∆̂
(t)
λ be a supergradient of L̂λ

(

θ(t), λ(t)
)

w.r.t. λ

7 Update M̃ (t+1) = M (t) ⊙ . exp
(

ηλ∆̂
(t)
λ

(

λ(t)
)T

)

// ∆λT is an outer product; ⊙ and . exp are element-wise

8 Project M
(t+1)
:,i = M̃

(t+1)
:,i /

∥

∥

∥
M̃

(t+1)
:,i

∥

∥

∥

1
for i ∈ [m+ 1] // Column-wise projection w.r.t. KL divergence

9 Return θ(1), . . . , θ(T ) and λ(1), . . . , λ(T )

θs such that, if we take θ̂ = Oρ(L̂θ(·, λ)) for some λ, and

θ∗ is a minimizer of L̂θ(·, λ), then f(θ̂) ≤ f(θ∗) + ρ. Fur-

thermore, every time it is given the same f , Oρ will return

the same θ (i.e. it is deterministic).

We will take the discretized set of θs to be the oracle solu-

tions corresponding to the covering centers, i.e. ΘCr
:=

{Oρ(L̂θ(·, λ̃)) : λ̃ ∈ Cr}. The proof of the upcoming theo-

rem shows that if the radius parameter r is sufficiently small,

then for any achievable objective function value and corre-

sponding constraint violations, there will be a θ ∈ ΘCr
that

is almost as good. Hence, despite the use of discretization,

we will still be able to find a nearly-optimal and nearly-

feasible solution. Additionally, since the set of discretized

classifiers is finite, we can apply the standard generalization

bound for a finite function class, which will be tightest when

we take r to be as large as possible while still satisfying our

optimality and feasibility requirements.

Algorithm 1 combines our proposed discretization with the

oracle-based optimization procedure proposed by Cotter

et al. (2019). As desired, it finds a sequence of solutions

Θ̂ := {θ(1), . . . , θ(T )} for which it is possible to bound

G(val)(Θ̂) independently of the complexity of the function

class parameterized by Θ, and finds a random parameter

vector θ̄ supported on Θ̂ that is nearly optimal and feasible.

Theorem 1. Given any ǫ > 0, there exists a covering Cr

such that, if we take T ≥ 4B2
∆ (m+ 1) ln (m+ 1) /ǫ2

and ηλ =
√

(m+ 1) ln (m+ 1) /TB2
∆, where B∆ ≥

maxt∈[T ]

∥

∥

∥
∆

(t)
λ

∥

∥

∥

∞
is a bound on the gradients, then the

following hold, where Θ̂ :=
{

θ(1), . . . , θ(T )
}

is the set of

results of Algorithm 1.

Optimality and Feasibility: Let θ̄ be a random variable

taking values from Θ̂, defined such that θ̄ = θ(t) with proba-

bility λ
(t)
1 /

∑T
s=1 λ

(s)
1 , and let λ̄ :=

(

∑T
t=1 λ

(t)
)

/T . Then

θ̄ is nearly-optimal in expectation:

Eθ̄,x∼D

[

ℓ0
(

x; θ̄
)]

≤ Ex∼D [ℓ0 (x; θ
∗)] (3)

+
1

λ̄1

(

ρ+ 2ǫ+ 2G̃(trn)(Θ) +G(val)(Θ̂)
)

where θ∗ minimizes Ex∼D [ℓ0 (x; ·)] subject to the proxy-

constraints Ex∼D

[

ℓ̃i (x; θ
∗)
]

≤ 0. It is also nearly-

feasible:

max
i∈[m]

Eθ̄,x∼D

[

ℓi
(

x; θ̄
)]

≤
ǫ

λ̄1
+G(val)(Θ̂) (4)

Additionally, if there exists a θ′ ∈ Θ that satisfies all of the
constraints with margin γ (i.e. Ex∼D [ℓi (x; θ

′)] ≤ −γ for
all i ∈ [m]), then:

λ̄1 ≥
1

γ +Bℓ0

(

γ − ρ− 2ǫ− 2G̃(trn)(Θ)−G(val)(Θ̂)
)

(5)

where Bℓ0 ≥ supθ∈Θ Ex∼D [ℓ0 (x; θ)] −
infθ∈Θ Ex∼D [ℓ0 (x; θ)] is a bound on the range of

the objective loss.

Generalization: With probability 1 − δ over the sampling

of S(val):

G(val)(Θ̂) < Bℓ

√

m ln (10B
ℓ̃
/ǫ) + ln (2m/δ)

2 |S(val)|
(6)

where Bℓ̃ ≥ |ℓ (x, θ)| for all ℓ ∈
{

ℓ0, ℓ̃1, . . . , ℓ̃m

}

, and

Bℓ ≥ maxi∈[m] (bi − ai) assuming that the range of each

ℓi is the interval [ai, bi].
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Proof. In Appendix E.1.

When reading the above result, it’s natural to wonder about

the role played by λ̄1. Recall that, unlike the Lagrangian for-

mulation, the proxy-Lagrangian formulation (Definition 1)

has a weight λ1 associated with the objective, in addition to

the m weights λ2, . . . , λm+1 associated with the constraints.

When the ith constraint is violated, the corresponding λi+1

will grow, pushing λ1 towards zero. Conversely, when the

constraints are satisfied, λ1 will be pushed towards one. In

other words, the magnitude of λ1 encodes the λ-player’s

“belief” about the feasibility of the solution. Just as, when

using the Lagrangian formulation, Lagrange multipliers will

tend to be small on a feasible problem, the proxy-Lagrangian

objective weight λ̄1 will tend to be large on a feasible prob-

lem, as shown by Equation 5, which guarantees that λ̄1 will

be bounded away from zero provided that there exists a

margin-feasible solution with a sufficiently large margin γ.

In practice, of course, one need not rely on this lower bound:

one can instead simply inspect the behavior of the sequence

of λ
(t)
1 ’s during optimization.

Equation 5 causes our results to be gated by the feasibility

margin. Specifically, it requires the training and validation

datasets to generalize well enough for ρ+2ǫ+2G̃(trn)(Θ)+
G(val)(Θ̂) to stay within the feasibility margin γ. Past this

critical threshold, λ̄1 can be lower-bounded by a constant,

and can therefore be essentially ignored. To get an intuitive

grasp of this condition, notice that it is similar to requiring

γ-margin-feasible solutions on the training dataset to gener-

alize well enough to also be margin-feasible (with a smaller

margin) on the validation dataset, and vice-versa.

Table 1 contains a comparison of our bounds, obtained with

the proxy-Lagrangian formulation and two datasets, versus

bounds for the standard Lagrangian on one dataset. The

“Assuming” column contains a condition resulting from the

above discussion. There are two key ways in which our

results improve on those for the one-dataset Lagrangian:

(i) in the “Infeasibility” column, our approach depends on

G(val)(Θ̂) instead of G̃(trn)(Θ), and (ii): as shown in Ta-

ble 2, for our algorithms the generalization performance

G(val)(Θ̂) of the constraints is bounded independently of

the complexity of Θ.

It’s worth emphasizing that this generalization bound (Ta-

ble 2) is distinct from the feasibility bound (the “Infeasibil-

ity” column of Table 1). When using our algorithms, testing

constraint violations will always be close to the validation

violations, regardless of the value of λ̄1. The “Assuming”

column is only needed when asking whether the validation

violations are close to zero.

‡ This condition could be removed by defining the feasibility

margin γ in terms of S(trn) instead of D, but in the context of

generalization, we should assume that S(trn) is drawn i.i.d. from

4.2. Gradient-based Algorithm

Aside from the unrealistic requirement for a Bayesian op-

timization oracle, the main disadvantage of Algorithm 1 is

that it relies on discretization. Our next algorithm instead

makes much stronger assumptions—strong convexity of the

objective and proxy constraint losses, and Lipschitz continu-

ity of the original constraint losses—enabling us to dispense

with discretization entirely in both the algorithm and the

corresponding theorem statement.

The proof of the upcoming theorem, however, still uses a

covering. The central idea is the same as before, with one

extra step: thanks to strong convexity, every (approximate)

minimizer of L̂θ(·, λ) is close to one of the discretized pa-

rameter vectors θ ∈ ΘCr
. Hence, the set of such minimizers

generalizes as well as ΘCr
, plus an additional term measur-

ing the cost that we pay for approximating the minimizers

with elements of ΘCr
.

The strong convexity assumption also enables us to replace

the oracle call with an explicit minimization procedure:

gradient descent. The result is Algorithm 2, which, like

Algorithm 1, both finds a nearly-optimal and nearly-feasible

solution, and enables us to bound G(val)(Θ̂) independently

of the complexity of Θ. Unlike Algorithm 1, however, it is

realistic enough to permit a straightforward implementation.

Theorem 2. Suppose that Θ is compact and convex,

and that ℓ (x; θ) is µ-strongly convex in θ for all ℓ ∈
{

ℓ0, ℓ̃1, . . . , ℓ̃m

}

. Given any ǫ > 0, if we take Tθ ≥
(

B2
∆̌
/µǫ

)

ln
(

B2
∆̌
/µǫ

)

, Tλ ≥ 4B2
∆ (m+ 1) ln (m+ 1) /ǫ2

and ηλ =
√

(m+ 1) ln (m+ 1) /TλB2
∆, where B∆ is as

in Theorem 1 and B∆̌ ≥ maxs,t∈[Tθ]×[Tλ]

∥

∥

∥
∆̌

(t,s)
θ

∥

∥

∥

2
is a

bound on the subgradients, then the following hold, where

Θ̂ :=
{

θ(1), . . . , θ(Tλ)
}

is the set of results of Algorithm 1.

Optimality and Feasibility: Let θ̄ be a random variable tak-

ing values from Θ̂, defined such that θ̄ = θ(t) with probabil-

ity λ
(t)
1 /

∑T
s=1 λ

(s)
1 , and let λ̄ :=

(

∑T
t=1 λ

(t)
)

/Tλ. Then

θ̄ is nearly-optimal in expectation:

Eθ̄,x∼D

[

ℓ0
(

x; θ̄
)]

≤ Ex∼D [ℓ0 (x; θ
∗)]

+
1

λ̄1

(

2ǫ+ 2G̃(trn)(Θ) +G(val)(Θ̂)
)

where θ∗ minimizes Ex∼D [ℓ0 (x; ·)] subject to the proxy-

constraints Ex∼D

[

ℓ̃i (x; θ
∗)
]

≤ 0. It is also nearly-

feasible:

max
i∈[m]

Eθ̄,x∼D

[

ℓi
(

x; θ̄
)]

≤
ǫ

λ̄1
+G(val)(Θ̂)

Additionally, if there exists a θ′ ∈ Θ that satisfies all of the

D; imposing a stricter requirement (a margin condition) on how it
is sampled would defeat the purpose.
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Table 1. Simplified comparison of our suboptimality and infeasibility bounds (Theorems 1 and 2) to those for the Lagrangian formulation

trained only on S(trn). The “one-dataset” row is the result of an analysis of this one-dataset Lagrangian approach (essentially the same

algorithm as Agarwal et al. (2018)—see Appendix F for details). The “two-dataset” row contains the results for our algorithms, which

use the proxy-Lagrangian formulation on two independent datasets. In both cases, ε measures how far the sequence of iterates is from

being the appropriate type of equilibrium (ε = ρ+ 2ǫ for Theorem 1, and ε = 2ǫ for Theorem 2). The big-Os absorb only constants

which are properties of the constrained problem (Equation 1) and choice of proxy-constraint losses: γ and Bℓ0 . The key difference

is in the “Infeasibility” column: our proposal depends on G(val)(Θ̂)—which we bound independently of the model complexity (see

Table 2)—rather than G̃(trn)(Θ).

# Datasets Suboptimality Infeasibility Assuming

One O
(

ε+ G̃(trn)(Θ)
)

O
(

ε+ G̃(trn)(Θ)
)

G̃(trn)(Θ) ≤ γ/2‡

Two O
(

ε+ G̃(trn)(Θ) +G(val)(Θ̂)
)

O
(

ε+G(val)(Θ̂)
)

ε+ 2G̃(trn)(Θ) +G(val)(Θ̂) ≤ γ/2

Table 2. Comparison of the standard Rademacher complexity-based generalization bound (of the function class F parameterized by

Θ) to our bounds on G(val)(Θ̂). All bounds hold with probability 1 − δ, and we assume that

∣

∣

∣
S(trn)

∣

∣

∣
∝ n and

∣

∣

∣
S(val)

∣

∣

∣
∝ n (e.g. if

the data is split 50/50). The big-Os absorb only constants which are properties of the constrained problem (Equation 1) and choice of

proxy-constraint losses: Bℓ, B
ℓ̃
, L and µ. For our algorithms, the validation generalization performance of the constraints is independent

of the model complexity.

G̃(trn)(Θ) G(val)(Θ̂) (Theorem 1) G(val)(Θ̂) (Theorem 2)

O

(

Rn (F) +
√

ln(1/δ)
n

)

O

(

√

m ln(1/ǫ)+ln(m/δ)
n

)

O

(

√

m lnn+ln(m/δ)
n + ǫ

)

constraints with margin γ (i.e. Ex∼D [ℓi (x; θ
′)] ≤ −γ for

all i ∈ [m]), then:

λ̄1 ≥
1

γ +Bℓ0

(

γ − 2ǫ− 2G̃(trn)(Θ)−G(val)(Θ̂)
)

where Bℓ0 is as in Theorem 1.

Generalization: If, in addition to the above require-
ments, ℓ (x; θ) is L-Lipschitz continuous in θ for all ℓ ∈
{ℓ1, . . . , ℓm}, then with probability 1− δ over the sampling

of S(val):

G(val)(Θ̂) < (7)

Bℓ

√

2m

|S(val)|
max

{

1, ln

(

160L2B
ℓ̃
|S(val)|

mµB2
ℓ

)}

+Bℓ

√

ln (2m/δ)

2 |S(val)|
+ 2Lǫ

√

2

µ

where Bℓ̃ and Bℓ are as in Theorem 1.

Proof. In Appendix E.2.

The above optimality and feasibility guarantees are very sim-

ilar to those of Theorem 1, as is shown in Table 1 (in which

the only difference is the definition of ε). Algorithm 2’s

generalization bound (Equation 7) is more complicated than

that of Algorithm 1 (Equation 6), but Table 2 shows that the

two are roughly comparable. Hence, the overall theoretical

performance of Algorithm 2 is very similar to that of Algo-

rithm 1, and, while it does rely on stronger assumptions, it

neither uses discretization, nor does it require an oracle.

5. Experiments

While Section 4 has demonstrated the theoretical perfor-

mance of Algorithms 1 and 2, we believe that our proposed

two-dataset approach is useful as a heuristic for improving

constraint generalization performance, even when one is not

using a theoretically-justified algorithm. For this reason, we

experiment with two “practical” algorithms. The first, Algo-

rithm 3§, is a bare-bones version of Algorithm 2, in which

θ and λ are updated simultaneously using stochastic gradi-

ents, instead of in an inner and outer loop. This algorithm

implements our central idea—imposing constraints using

an independent validation dataset—without compromising

on simplicity or speed. The purpose of the second, Algo-

rithm 4§, is to explore how well our two-dataset idea can

be applied to the usual Lagrangian formulation (similarly

to Agarwal et al. (2018)). This algorithm simply “tacks on”

proxy-constraints and the use of two independent datasets

to the Lagrangian game. Neither algorithm enjoys the the-

oretical guarantees of Section 4, but, as we will see, both

succeed at improving constraint generalization.

In our experiments, each dataset is split into thee parts:

§In the supplementary material.
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Algorithm 2 Finds an approximate equilibrium of the empirical proxy-Lagrangian game (Definition 1) assuming that

ℓ (x; θ) is µ-strongly convex in θ for all ℓ ∈
{

ℓ0, ℓ̃1, . . . , ℓ̃m

}

(the objective and proxy constraint losses, but not the original

constraint losses). Theorem 2 is its convergence and generalization guarantee. The θ-player uses gradient descent, while the

λ-player uses the same swap-regret minimizing procedure as Algorithm 1.

ContinuousTwoDataset
(

L̂θ, L̂λ : Θ×∆m → R, Tθ, Tλ ∈ N, µ, ηλ ∈ R+

)

:

1 Initialize M (1) ∈ R
(m+1)×(m+1) with Mi,j = 1/ (m+ 1)

2 For t ∈ [Tλ]:
3 Let λ(t) = fixM (t) // fixed point of M (t), i.e. a stationary distribution

4 For s ∈ [Tθ]:

5 Initialize θ̃(t,1) = 0 // Assumes 0 ∈ Θ

6 Let ∆̌
(t,s)
θ be a subgradient of L̂θ

(

θ̃(t,s), λ(t)
)

w.r.t. θ

7 Update θ̃(t,s+1) = ΠΘ

(

θ̃(t,s) − ∆̌
(t,s)
θ /µs

)

8 Define θ(t) :=
(

∑Tθ

s=1 θ̃
(t,s)

)

/Tθ

9 Let ∆
(t)
λ be a gradient of L̂λ

(

θ(t), λ(t)
)

w.r.t. λ

10 Update M̃ (t+1) = M (t) ⊙ . exp
(

ηλ∆
(t)
λ

(

λ(t)
)T

)

// ∆λT is an outer product; ⊙ and . exp are element-wise

11 Project M
(t+1)
:,i = M̃

(t+1)
:,i /

∥

∥

∥
M̃

(t+1)
:,i

∥

∥

∥

1
for i ∈ [m+ 1] // Column-wise projection w.r.t. KL divergence

12 Return θ(1), . . . , θ(T ) and λ(1), . . . , λ(T )

training, validation and testing. We compare our proposed

two-dataset approach, in which S(trn) is the training dataset

and S(val) is the validation dataset, to the the natural baseline

one-dataset approach of using the union of the training and

validation sets to define both S(trn) and S(val). Hence, all

approaches “see” the same total amount of data.

This difference between the data provided to the two al-

gorithms leads to a slight complication when reporting

“training” error rates and constraint violations. For the two-

dataset approach, the former are reported on S(trn) (used to

learn θ), and the latter on S(val) (used to learn λ). For the

baseline one-dataset algorithm, both are reported on the full

dataset (i.e. the union of the training and validation sets).

“Testing” numbers are always reported on the testing dataset.

Our implementation uses TensorFlow, and is based on Cot-

ter et al. (2019)’s open-source constrained optimization li-

brary. To avoid a hyperparameter search, we replace the

stochastic gradient updates of Algorithms 3 and 4 with

ADAM (Kingma & Ba, 2014), using the default parame-

ters. For both our two-dataset algorithm and the one-dataset

baseline, the result of training is a sequence of iterates

θ(1), . . . , θ(T ), but instead of keeping track of the full se-

quence, we only store a total of 100 evenly-spaced iterates

for each run. Rather than using the weighted predictor of

Theorems 1 and 2, we use the “shrinking” procedure of Cot-

ter et al. (2019) (see Appendix C) to find the best stochastic

classifier supported on the sequence of 100 iterates.

In all experiments, the objective and proxy constraint func-

tions ℓ0, ℓ̃1, . . . , ℓ̃m are hinge upper bounds on the quantities

of interest, while the original functions ℓ1, . . . , ℓm are pre-

cisely what we claim to constrain (in these experiments,

proportions, i.e. linear combinations of indicators).

5.1. Datasets and Results

Our datasets are summarized in in Table 3, and described

below. On each dataset, we trained one of three different

types of models: linear, RTL (Canini et al., 2016), or a

neural network with one hidden layer containing 50 ReLU

neurons. The neural network models are more complex than

necessary for these datasets, and are used here because they

overfit, and therefore illustrate the improved generalization

performance of the two-dataset approach.

Communities and Crime: This UCI dataset (Dheeru &

Karra Taniskidou, 2017) includes features aggregated from

census and law enforcement data, on which we train a linear

model. The binary classification task is to predict whether

a community has a high (above the 70th percentile) or low

crime rate, as in Kearns et al. (2017). To form protected

groups, we use four racial percentage features as real-valued

protected attributes. Each is thresholded at the 50th per-

centile to form eight protected groups: low-Asian, high-

Asian, low-Black, high-Black, low-Hispanic, high-Hispanic,

low-White, and high-White. There are eight fairness con-

straints, which constrain each protected group’s false posi-

tive rate to be no larger than that of the full dataset.

Business Entity Resolution: This is a proprietary dataset

from Google for which the task is to predict whether a pair

of business descriptions describe the same real business.
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Table 3. Properties of datasets used in Section 5.1. For the one-dataset experiments, the entire training set was used for training. For the

two-dataset experiments, the training dataset was split in half between S(trn) and S(val).

Dataset Model Training examples Testing examples Features

Communities and Crime Linear 1 459 499 140
Business Entity Resolution RTL 11 560 3 856 37

Adult Neural Network 32 561 16 281 122
COMPAS Neural Network 4 110 2 026 32

Table 4. Error rates and maximum constraint violations for all compared algorithms, on the datasets of Table 3, as described in Section 5.1.

The “Unconstrained” columns contain the results for entirely-unconstrained models. All quantities are averaged over 100 runs. The

training constraint violations are occasionally exactly zero thanks to our use of Cotter et al. (2019)’s “shrinking” procedure (Appendix C).

Algorithm 3 Algorithm 4

Unconstrained One-dataset Two-dataset One-dataset Two-dataset

Dataset Error Viol. Error Viol. Error Viol. Error Viol. Error Viol.

Communities Train .121 .231 .153 0 .161 0 .163 −.001 .165 0
and Crime Test .142 .300 .173 .022 .199 −.008 .181 .001 .195 −.012

Entity Train .148 .309 .216 .026 .215 .040 .225 0 .261 .003
Resolution Test .156 .278 .222 .073 .221 .072 .232 .042 .267 .041

Adult
Train .102 .077 .132 0 .110 0 .131 0 .113 0
Test .156 .075 .156 .011 .169 .005 .156 .013 .165 .008

COMPAS
Train .216 .004 .216 −.005 .154 −.003 .216 −.005 .151 −.003
Test .353 .046 .353 .038 .378 .004 .349 .029 .378 .006

Features include measures of similarity between the two

business titles, phone numbers, and so on. We impose

several constraints: (i) for each of the 16 most common

countries, the recall must be at least 95%; (ii) for the set of

all chain businesses, and likewise for the set of all non-chain

businesses, the recall must be at least 95%; (iii) the accuracy

on non-chain businesses must be no more than 10% higher

then that on chain businesses. The purpose of this final

constraint is to cause small and large business to be treated

roughly comparably.

Adult: This is a version of the UCI Adult dataset, pre-

processed to include only binary features (using one-hot

encodings for categorical features, and bucketing for contin-

uous features). The classification task is to predict whether

a person’s yearly income is greater than $50 000, subject

to the 80% rule for demographic parity: for each of four

overlapping protected classes (Black, White, Female and

Male), the positive prediction rate must be at least 80% of

the overall positive prediction rate.

COMPAS: This is the ProPublica COMPAS dataset ana-

lyzed by Angwin et al. (2016), preprocessed similarly to

the Adult dataset. The classification task is to predict re-

cidivism, subject to equal opportunity (Hardt et al., 2016)

fairness constraints: for each of four overlapping protected

classes (Black, White, Female and Male), the positive pre-

diction rate on the positively-labeled examples must be at

most 5% higher than the overall positive prediction rate on

positively-labeled examples.

These datasets all have designated training/testing splits.

For the one-dataset (baseline) experiments, both S(trn) and

S(val) were taken to be the entire training set. For the two-

dataset experiments, the training set was randomly permuted

and split in half, into S(trn) and S(val). All reported numbers

are averaged over 100 such random splits.

Table 4 summarizes the results of these experiments. Except

on the Business Entity Resolution dataset, the two-dataset

experiments have a clear and significant advantage in terms

of constraint generalization performance, although it comes

at a cost: the error rates are, as expected, somewhat higher.

Additional experiments, performed on a simulated dataset,

can be found in Appendix D, and tell the same story.

On the Business Entity Resolution dataset, the testing con-

straint violations of Algorithms 3 and 4 are comparable to

those of the baselines, but the error rates were slightly worse.

On this dataset, it appears that the trade-off between (i) im-

proved constraint generalization and (ii) each player seeing

only half of the training data, wasn’t beneficial overall.

While one must be mindful of this trade-off, these results

show that providing independent datasets to the θ- and λ-

players tends to improve constraint generalization in prac-

tice, even when our proofs do not apply.
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