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In ecology, biodiversity-ecosystem functioning (BEF) research has seen a shift in

perspective from taxonomy to function in the last two decades, with successful

application of trait-based approaches. This shift offers opportunities for a deeper

mechanistic understanding of the role of biodiversity in maintaining multiple ecosystem

processes and services. In this paper, we highlight studies that have focused on

BEF of microbial communities with an emphasis on integrating trait-based approaches

to microbial ecology. In doing so, we explore some of the inherent challenges and

opportunities of understanding BEF using microbial systems. For example, microbial

biologists characterize communities using gene phylogenies that are often unable to

resolve functional traits. Additionally, experimental designs of existing microbial BEF

studies are often inadequate to unravel BEF relationships. We argue that combining

eco-physiological studies with contemporary molecular tools in a trait-based framework

can reinforce our ability to link microbial diversity to ecosystem processes. We conclude

that such trait-based approaches are a promising framework to increase the understanding

of microbial BEF relationships and thus generating systematic principles in microbial

ecology and more generally ecology.
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BEF RESEARCH—A BRIEF OVERVIEW

The relationship between biodiversity and ecosystem function-

ing (BEF) (Table 1) is complex and understanding this elusive

link is one of the most pressing scientific challenges with major

societal implications (Cardinale et al., 2012). However, previ-

ous studies established controversial views on BEF relationships,

using approaches which experimentally manipulated biodiver-

sity on the one hand and comparative approaches that correlate

diversity and ecosystem functioning across treatments or natu-

ral gradients on the other hand (Hooper et al., 2005; Balvanera

et al., 2006). In essence, comparative studies cannot unequivocally

demonstrate causal effects of biodiversity on ecosystem functions,

since apparent correlations may arise for many reasons, includ-

ing the reverse relationship (e.g., ecosystem functions such as

productivity altering biodiversity), or unobserved drivers affect-

ing diversity and/or ecosystem functions. In an effort to better

understand mechanisms, BEF-research has increasingly moved

toward direct manipulation of diversity under otherwise con-

stant environmental conditions, an approach that can attribute

observed responses to the direct biodiversity manipulation. It

is important to distinguish these two cases. Approaches based

on either comparison across environmental gradients/treatments

or direct manipulation of biodiversity often led to conflicting

results. For example, increasing productivity caused by resource

supply often leads to reduced plant diversity, mainly through

enhanced competition for light, and hence apparent negative

BEF relationships (Abrams, 1995; Hautier et al., 2009), a pat-

tern that has also been reported in microbial systems (Patra

et al., 2005). In contrast, diversity manipulations generally reveal

positive biodiversity-productivity relationships (Balvanera et al.,

2006). These seemingly contradictory results are in fact consistent

when accounting for the interplays between site fertility, diversity,

and productivity (Schmid, 2002).

Biodiversity effects on ecosystem functioning mainly arise

from niche-related mechanisms that shape interactions of the

biological units (e.g., OTUs, species, genotypes, ecotypes, func-

tional groups, or phylogenetic groups) that vary genetically

and in the expressed functional traits (see Table 1 for defini-

tion). These mechanisms are traditionally classified into three

broad groups. First, differentiation in resource niches can lead
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to reduced competition, and an increased community niche size

(Table 1). As a result, the associated capture of limiting resources

is more efficient and community or ecosystem-level performance

increases (Loreau, 2000). Such “complementarity effects” emerge

from competition for resources (Salles et al., 2009), and from

differences in niches related to pathogens and predation. When

host-specific organisms are involved, an increase in diversity typ-

ically positively affects ecosystem function. For instance Zhu et al.

(2000) demonstrated that genetically diversified rice crops had

89% greater yield, while a major rice disease had 94% less severe

effects on diversified crops compared to rice monoculture con-

trols. A second group of mechanisms is generally summarized

under the term “selection effects,” represented by the probabil-

ity that high diversity communities are more likely to contain

species with particular traits that translate into above-average per-

formance. Such effects are typically restricted to few species, and

occur at the expense of others. Finally, “facilitation effects” occur

when certain species modify environmental conditions in a way

that is beneficial for other species (Bruno et al., 2003). A typical

example is the presence of legumes and their nitrogen-fixing sym-

bionts that lead to a nutrient enrichment of the ecosystem and

improved performance of non-fixing plant species and nitrogen-

related microbial processes (Spehn et al., 2005; Le Roux et al.,

2013).

BEF relationships ultimately arise from functional differences

among the biological units of which communities are comprised.

For instance, in plant communities, functional diversity was the

driving factor explaining plant productivity (Tilman, 1997). In

another study Norberg et al. (2001) introduced a framework

that suggests a linear relationship between variances in pheno-

types within functional groups and responses to environmental

changes. A later example focused on the role of functional diver-

sity to explain BEF relationships and whether or not this is linked

to phylogenetic diversity (Flynn et al., 2011). However, functional

traits and the resulting ecological niches are the determinants

of species interactions and consequently ecosystem functioning.

Traits refer to the physiology, morphology, or genomic character-

istics that affect the fitness or function of an organism. Traits can

be used to infer its performance under different environmental

conditions (Violle et al., 2007), they can be measured or scaled-up

at the community level, and eventually be related to community

and ecosystem functioning (Violle et al., 2007; Wallenstein and

Hall, 2012).

Meta-analyses clearly demonstrated that the relationship

between biodiversity and ecosystem functioning has primar-

ily been studied for higher organisms (Balvanera et al., 2006;

Cardinale et al., 2012). A systematic search of published papers

which refer to microbial diversity and ecosystem functioning nev-

ertheless shows that the total number of papers is quite similar

for plant- and microbe-related studies identifying the analysis of

BEF relationships as a key objective (Figure 1). However, a closer

examination reveals that most microbial BEF studies rely on com-

parative designs where biodiversity is not directly manipulated

(Figure 1).

Microbial BEF research is evolving rapidly (Allison and

Gessner, 2012; Bouskill et al., 2012) but microbial ecologists

often quantify traits at scales ranging from populations (e.g.,

FIGURE 1 | Temporal variations in (top) the number of publications on

Biodiversity-Ecosystem Functioning, BEF, relationships in a broad

sense for microorganisms as compared to plants, and (bottom) the

percentage of publications on microbial BEF or plant BEF where

biodiversity was directly manipulated. The search terms used are

provided in Supplementary Material 1. At each step of the search profile

development, we checked on subsamples that the search hits

corresponded to the targeted type of studies. We also checked that a

selection of key experiments/papers we knew about were found.

physiological characteristics of strains) to communities (e.g.,

functional gene pools or substrate utilization patterns from envi-

ronmental samples) and rarely consider existing trait-related con-

cepts to evaluate BEF relationships as used in ecology. Trait-based

approaches could be particularly useful in microbial ecology

by complementing microbial approaches based on taxonomy or

functional gene/protein sequence diversity and enhancing our

ability to link microbial diversity to the functioning of microbial

communities and ecosystems.

We review microbial studies relating diversity and process

rates, focusing more particularly on the application of trait-

based approaches, and identify their current progress and pitfalls.

We distinguish the application of trait-based approaches for

comparative studies across environmental gradients/treatments

(Table 1), and BEF-studies in which biodiversity is manipu-

lated directly (Table 2). We highlight why trait-based approaches

could spur significant progress in the understanding of micro-

bial BEF relationships in the future and evaluate how traits can

be more directly incorporated into microbial BEF studies. Finally,

we discuss the potential and challenges of microbial trait-based

approaches to promote the emergence of principles in microbial

ecology and BEF relationships in general.

DISTINCTION OF BEF RELATIONSHIPS IN MICROBIAL

SYSTEMS

COMPARATIVE INVESTIGATION OF MICROBIAL BEF RELATIONSHIPS

There are many examples where bacterial composition changes

along environmental gradients (Hughes Martiny et al., 2006;
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Table 1 | Common terms used in BEF and trait-based BEF approaches.

Definition

Functional traits Well-defined, measurable properties at the individual level (e.g., organisms, populations) generally used to link

performance and contribution to one or several function(s) in any given ecosystem. Thereby, any key property

related to physiology, morphology, or genomic information that affects the fitness or function of an organism can be

regarded as a functional trait (Violle et al., 2007).

Community trait mean Mean value calculated for each trait as the mean trait value in a community which can be weighted by the relative

abundance of individual taxa in a community (Díaz et al., 2007; Violle et al., 2007)

Gradient analysis Assessment of functioning, abundances and/or diversity of organisms along an environmental gradient in the field,

or in the laboratory along pre-defined treatment gradients (McGill et al., 2006)

Ecosystem functions/functioning Ecosystem functions in a broad sense can be categorized into functions, e.g., fluxes of energy, nutrients and

organic matter; and functioning, e.g., primary production, disturbance resistance, and services like crop yield, wood

production, and soil erosion control (Balvanera et al., 2006; Cardinale et al., 2012)

Application N-dimensional hypervolume with n as the number of dimensions defining the niche, e.g., salinity, temperature,

food availability (Begon et al., 2006).

Table 2 | Comparison between trait-based studies that relate microbial biodiversity and ecosystem functioning across environmental

gradients/treatments, and those directly manipulating components of diversity.

Comparative studies Manipulated diversity studies

Level of trait assessment Functional group/Community Strain

Trait resolution Community-mean traits/within community distribution of

traits

Taxon-specific traits/multiple traits in individual

taxa/tradeoffs among traits

Key eco-physiological techniques Stable isotope probing; Biolog/Ecoplates; etc. Metabolic and physiological studies of individual cells

and strains

Key -omics techniques DNA and RNA single gene sequence diversity;

environmental (meta-)genomics, transcriptomics,

proteomics, and metabolomics

Genomics, transcriptomics, proteomics, and

metabolomics on cells and strains

Main scale The real world (field studies; complex natural communities) Laboratory (model systems)

Level of understanding Correlational link between biodiversity and functioning

along environmental gradients

Causal/direct/mechanistic link between biodiversity and

functioning; complementarity/selection/facilitation

effects

Fierer et al., 2007; Van Der Gucht et al., 2007; Attard et al.,

2010; Nemergut et al., 2011; Newton et al., 2011; Ghiglione et al.,

2012). However, it is often difficult to mechanistically understand

the observed correlation between diversity and function in such

comparative approaches, because diversity is an observed, depen-

dent variable rather than an applied treatment. Moreover, many

environmental parameters can co-vary with diversity, driving

observed relationships.

It is particularly difficult to explain such correlations between

microbial diversity and ecosystem function in relation to func-

tional diversity. Many bacterial groups are not available in pure

culture, which hinders determination of their physiology and

consequently assessment of their functional roles in aquatic and

terrestrial environments. Recent evidence suggests that a poten-

tially large portion of the microbial diversity detected in gradient

studies are not directly contributing to function, being either

dead, in a dormant state or present as extracellular DNA (Lennon

and Jones, 2011; Blagodatskaya and Kuzyakov, 2013). Although

the “dormant diversity” is part of a microbial seed bank from

which different traits can be resuscitated (Lennon and Jones,

2011), it can obscure environmental microbial BEF studies. The

use of isotope probing (SIP) represents a way to single out taxa

that are actively contributing to function while accounting for

non-active, members of a community (Bodelier et al., 2013).

It is crucial to relate a particular process to the diversity

of the respective, functionally coherent group; such an analysis

has the potential for successfully detecting causal links between

microbial diversity and ecosystem function. For instance, some

studies reported clear relationships between the diversity of soil

ammonia- (Webster et al., 2005) or nitrite-oxidizers and nitrifi-

cation across management practices in relation to the availability

of inorganic nitrogen (Attard et al., 2010). The abundance of soil

Nitrobacter, which are nitrite-oxidizing bacteria with high growth

rate/specific activity and low N substrate affinity, increased along

a nitrogen gradient (Attard et al., 2010). In contrast, the abun-

dance of Nitrospira, which are nitrite-oxidizing bacteria with low

growth rate/specific activity and high N substrate affinity tended

to decrease along this gradient. While in this case both changes in

diversity and functioning of nitrite-oxidizers respond to changes

along an environmental gradient, diversity changes are important
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in allowing function to increase with increased N availability.

Using a number of traits derived from eco-physiological studies

with various guilds of nitrifiers, a trait-based modeling frame-

work successfully predicted a number of functions (i.e. ammonia

oxidation, N2O emission) in published datasets in various envi-

ronmental gradients (Bouskill et al., 2012). Of course, this study

heavily relies on the coverage of nitrifier diversity by cultured

representatives and associated trait information.

A trait-based perspective can facilitate the handling and inter-

pretation of microbial diversity along environmental gradients

by measuring functional traits under the specific conditions a

given community is exposed to, i.e. as “realized community mean

traits.” This differs from “a priori” trait values of organisms mea-

sured under standardized conditions, and will in part mirror

responses to the specific environment and the specific diversity

of the community.

DIRECT MANIPULATION OF DIVERSITY TO STUDY MICROBIAL BEF

RELATIONSHIPS

Microbial BEF relationships can also be studied by analyzing the

effect of a targeted reduction in microbial biodiversity, e.g., in

soil and aquatic microcosms (Le Roux et al., 2011). For instance,

reductions in the diversity of pasture soil communities by pro-

gressive fumigation or serial dilution had no consistent effect

on a range of soil processes (Griffiths et al., 2000, 2004). The

removal of diversity for key microbial functional groups such as

nitrifiers or denitrifiers provided important information on the

extent of functional redundancy within these functional groups

(Wertz et al., 2007; Philippot et al., 2013). Reduction of diver-

sity in aquatic microbial communities clearly showed that some

metabolic functions (i.e., chitin and cellulose degradation) were

controlled by single phylotypes and their traits rather than by

richness of the total community (Peter et al., 2011), whereas

other functions such as growth were positively correlated to

richness. It has to be noted that removal experiments prescribe

particular scenarios of diversity loss (e.g., a suspension/dilution

approach implies that less abundant species are removed first)

which are important for effects on ecosystem functioning (Jones

and Lennon, 2010).

An additional step toward understanding the functional role of

microbial diversity stems from studies assembling communities

through the combination of microbial populations, for example

by random selection from a source species pool. This so-called

“assemblage approach” has already been used to describe how

the diversity of fungal communities influence litter decomposi-

tion (Janzen et al., 1995; Cox et al., 2001), the role of mycorrhizal

fungal diversity on plant productivity (Van Der Heijden et al.,

1998; Jonsson et al., 2001), the role of bacterial diversity on cel-

lulose degradation (Wohl et al., 2004), the role of evenness on

the stability of microbial ecosystem functions (Wittebolle et al.,

2009), and the role of soil bacterial diversity on mineralization or

denitrification (Bell et al., 2005; Salles et al., 2009).

Assemblage experiments offer opportunities to identify mech-

anisms that may underlie microbial BEF relationships (Le Roux

et al., 2011). In particular, functional traits of the assembled

strains can be characterized, providing information on whether

trait complementarity or selection are major mechanisms for

explaining observed BEF relationships (Roscher et al., 2012).

For instance, key traits among denitrifying bacteria were linked

to the use of different carbon (C) sources that strongly deter-

mined the functioning of assembled communities on a mix of

C sources (Salles et al., 2009, 2012). The complementarity for

traits was a much better predictor of denitrification than taxa

richness, the phylogenetic diversity of the communities based on

16S rRNA gene sequences, or even the diversity assessed by func-

tional gene/protein sequences (Salles et al., 2012). In contrast,

antagonistic controlling mechanisms were observed for assem-

bled communities of Pseudomonas fluorescens, where inhibition of

strains determined the performance of the assembled community

(Jousset et al., 2011).

One shortcoming of assemblage experiments is that the assem-

bled, e.g., bacterial communities rarely exceed 100 taxa and hence

the diversity is very low compared to the richness observed in

most natural communities. Besides, only culturable microorgan-

isms can be used to assemble these communities, even though

culture-independent studies suggest the importance of taxa in

ecosystem functioning that have not been cultivated (Chen et al.,

2008; Mackelprang et al., 2011; Iverson et al., 2012). Nevertheless,

studies employing direct manipulation of biodiversity by removal

or random assembly of microbial populations remain scarce and

represent less than 1% of published microbial studies focusing

on the relationship between diversity and ecosystem function-

ing (Figure 1). We believe that an increased effort to couple

trait-based approaches and assemblage experiments could be a

very powerful strategy to specifically identify and decipher the

mechanisms underlying microbial BEF relationships.

TRAIT-BASED APPROACHES TO ADVANCE MICROBIAL BEF

STUDIES

INTEGRATING TRAIT-BASED AND PHYLOGENETIC/TAXONOMIC

APPROACHES TO UNDERSTAND MICROBIAL BEF

Prior to development and adoption of phylogenetic based tools,

bacterial taxonomy was based on phenotypes and physiologi-

cal characteristics that could only be measured in pure cultures

(Staley, 2006). Today, the availability of large databases of marker

genes (e.g., the Ribosomal Database Project or Greengenes) has

enabled the establishment of a detailed classification scheme for

microorganisms that also includes those groups that we have

not yet been able to cultivate. However, for studying microbial

BEF relationships, a classical taxonomic/phylogenetic approach

is hampered by the current species definition (Schleifer, 2009)

which can demarcate taxonomic units—which can still be enor-

mously diverse both in functionality and ecology (Staley, 2006;

Green et al., 2008). In our opinion, the inherent limitations with

regards to the concept of microbial species are not the major

issues here, and two other factors are of much more central

importance.

To understand BEF relationships it is necessary to study traits

at the level of individual cells or organisms (Lavorel et al., 2013).

The niches that correspond to traits are hyper-dimensional, and

BEF studies call for determining whether niches of functional

units overlap. To fully appreciate functional diversity, whether

assessed as richness, divergence or dispersion of traits (Hedberg

et al., 2013), one has to characterize and account for trade-offs
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among the different traits. For example, plant leaf trait trade-

offs have been shown to affect litter decomposition and therewith

the incidence of wild fires (Brovkin et al., 2012), whereas trade-

offs for key traits among bacterial decomposers can restrict the

bacterial degradation of recalcitrant carbon to sites with high

nitrogen availability (Treseder et al., 2011) and influence how

bacteria contend with other abiotic factors such as moisture

variability (Lennon et al., 2012). However, characterizing func-

tional trait values and quantifying trade-offs only may lead to

spurious correlations and there are only a few examples that

demonstrate actual trade-offs supported by plausible physical or

chemical mechanisms (e.g., Edwards et al., 2011). Hence, knowl-

edge about trade-offs is indispensable for accurate descriptions

of functional BEF relationships and necessitates identification of

relevant functional units such as species, ecotypes, or genotypes.

The relevance of trade-offs among microbial traits is recog-

nized (Litchman et al., 2007), but better characterizing trade-offs

among microbial traits are likely to be of increasing impor-

tance for microbial BEF studies for several reasons. First, they

aid in reducing the number of functional dimensions that need

to be considered. Second, the co-occurrence of traits and trade-

offs help to define microbial strategies beyond the familiar r

vs. K strategies. For example, the life-history scheme designed

for plants (Grime, 1977) was used to classify methane-oxidizing

bacteria according their competitive ability, ruderal and stress tol-

erating properties based on culture and environmental traits (Ho

et al., 2013). This conceptual approach combines information

about phylogeny and function and aggregates traits into com-

munity responses, allowing for mixed life strategies and offering

more flexibility to accommodate the vast metabolic flexibility

of bacteria (Figure 2). Though, extrapolation of this concep-

tual framework to microbial communities deserves experimental

validation. There is considerable debate regarding the coher-

ence between phylogeny and the distribution of functional traits

(Losos, 2008). If traits are conserved to some degree throughout

evolution (trait conservatism), phylogenetic diversity could be a

promising proxy for assessing trait diversity. For instance, Cadotte

et al. (2008) analyzed 29 studies in which angiosperm biodiversity

was manipulated in a systematic way and found that phyloge-

netic diversity indices explained significantly more variation in

FIGURE 2 | Reflection of microbial traits on the

Competitor-Ruderal-Stress tolerator life strategy framework as was

proposed for plants (Grime, 1977). The scheme has been adapted

for Ho et al. (2013) who used this framework for assigning

life-strategies to methane-oxidizing bacteria. The scheme groups

subsets of microbial traits which collectively would be of most

importance for the respective strategy. The traits collectively

accommodate exploring and exploiting habitats, competing with other

organisms, tolerating or avoiding surviving stress, and deprivation.

This classification is purely qualitative but, for some traits, life-history

strategies have been proposed in earlier studies (Fierer et al., 2007;

Portillo et al., 2013).
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productivity than plant species richness or other diversity mea-

sures that were available. Flynn et al. (2011) analyzed data from

29 experiments involving 174 plant species that were present

in 1721 combinations and found that functional trait diversity

and phylogenetic diversity explained similar amounts of variation

in the observed responses. Interestingly, phylogenetic diversity

explained variation in data that was not explained by traits, sug-

gesting that it is a surrogate to quantify trait differences along

niche axis that are difficult to assess directly (such as pathogen-

related niches, or complex hyper-dimensional combinations of

single traits assessed).

In microbial ecology, the extent to which functional traits

are phylogenetically conserved remains unclear. Considering the

rather extensive horizontal gene transfer (Polz et al., 2013) likely

compromising a unifying phylogenetic framework, functional

diversity measures do not necessarily follow either taxonomy,

phylogenetic or apparent evolutionary relationships. For instance,

variations in key functional traits of denitrifying bacteria were not

well correlated to their (16S rRNA-based) phylogenetic related-

ness or functional gene/protein sequence relatedness (Jones et al.,

2011; Salles et al., 2012). From another perspective, several studies

reported broad ecological coherence of high bacterial taxonomic

ranks building on 16S rRNA phylogeny (Fierer et al., 2007; Von

Mering et al., 2007; Philippot et al., 2009; Lennon et al., 2012).

The question thus remains whether or not one should abandon

taxonomy- and phylogeny-based approaches altogether for stud-

ies of BEF relationships. If traits are phylogenetically conserved

at least for some microbial groups, phylogenetic diversity could

serve as proxy for functional diversity. Calculating functional

diversity indices generally requires the assessment of traits at the

individual or some aggregated taxonomic level, which generally

is impossible in microbial studies that do not build assemblage-

based designs. Martiny et al. (2012) recently developed a new

phylogenetic metric which estimates the clade depth of shared

traits between organisms. This approach could be used to trans-

late differences in community composition into consequences for

microbial-mediated processes. Another approach models evolu-

tionary dynamics of bacteria to ecologically distinct lineages, so

called ecotypes, within natural communities, allowing for a highly

resolved ecological classification (Koeppel et al., 2008). Such dis-

tinction of microbial taxa based on ecological features would

bridge the gap between taxonomy- and trait-based approaches in

microbial ecology. We argue that trait-based approaches should

build on—not replace—taxonomy-based approaches. The infor-

mation needed to properly characterize the co-occurrence of

traits and trait trade-offs among microorganisms builds on tax-

onomic ranks, and there is certainly an incentive for more high-

throughput surveys of phenotypic characteristics of microbial

taxa (Bayjanov et al., 2012). Such approaches could mark the

beginning of a deviation from classical phylum-based approaches

in microbial BEF studies toward a classification based on func-

tional performance and role in the environment.

TOOLS AVAILABLE TO INTEGRATE TRAITS INTO MICROBIAL BEF

STUDIES

Measurements of taxonomic microbial diversity are very chal-

lenging since diversity levels are extremely high for most natural

microbial systems (Torsvik et al., 2002; Caporaso et al., 2011).

To obtain functional diversity measures in microbial BEF stud-

ies, the biggest challenges are (i) defining which microbial traits

are important with respect to ecosystem functioning or particular

ecosystem functions, and (ii) measuring these relevant traits.

For the assemblage studies, microbial ecologists can measure

multiple traits for individual microorganisms or populations and

quantify tradeoffs between traits. However, defining the types of

relevant traits to measure is a challenge, depending on the com-

munity functioning under study. On the other hand, traits can

be related to shifts in function across environmental gradients or

treatments, at the genetic or functional level, or directly at the

community scale. However, this is different from analyzing BEF-

relationships in the general ecological context, which requires

methods capable of quantifying the local functional diversity (i.e.,

the variation of trait combinations present at the individual level).

Community mean traits are not useful for this purpose, since

the information about effects of the local trait diversity (i.e.,

the putative local driver of a BEF-relationship) will be lost by

averaging.

The analysis of metabolic processes offers great potential

to evaluate aggregated trait values at the community scale.

Functional traits can be assessed by high-throughput assays, such

as Biolog or Ecoplates. These cultivation-based metabolic assays

can be used to characterize the community capacity to oxidize a

range of C sources (Garland, 1996) or to measure a functional

operating range of soil or aquatic microbial communities (Hallin

et al., 2012).

We see some advantage for microbial studies correlating

community-mean traits to functional capabilities of the com-

munity as a whole, since these are more easily measurable than

for higher organisms. Indeed, aggregated trait values would boil

down to a metric sizing of “meta-species,” which can illuminate

responses along environmental gradients and possible effects on

ecosystem functioning. A drawback is that the combination of

traits of all microbial individuals that compose the community

can hardly be characterized.

We can expect that our ability to identify and quantify func-

tional traits of microbial individuals and populations in nat-

ural, complex communities will increase in the coming years.

Despite the dogma that we cannot study the physiology of eco-

logically “relevant” microbes from environmental samples owing

to the challenges associated with the enrichment and isolation

of most taxa, we must recognize that there have already been

major advances in cultivation efforts over the past 20 years.

In situ enrichments (e.g., diffusion chambers and baited beads)

and other incubation methods can be used to determine cell-

specific metabolic rates, even at extremely low rates (Hoehler

and Jorgensen, 2013). Additional physiological features that are

tractable today (without isolation) include cell-size related nutri-

ent affinity and nutrient use efficiency (Edwards et al., 2012),

and specific substrate use with isotope tracking methods targeting

single cells of different size and shape (flow cytometry and sta-

ble isotope tracers, microautoradiography, nano-SIMS) (Nielsen

et al., 2003; Casey et al., 2007; Behrens et al., 2012; Garcia et al.,

2013). In addition, just like in the omics realm, there have been

major advances in microscopy and bio-molecular imaging over
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the last 20 years (Haagensen et al., 2011), with novel and refined

techniques that offer huge opportunities to access key aspects of

functional diversity, even within complex microbial communities.

For instance, we can now have access to the bulk biochemi-

cal composition of cells by RAMAN spectroscopy (Huang et al.,

2007), and to their spatial organization (Stiehl-Braun et al., 2011).

Sensitive fluorescence-based techniques enable visualization of

novel morphological and physiological features (porins, flagella,

proteins, and protein-coding genes etc.) and of associations based

on syntrophic interactions (Watrous et al., 2013). Hence, even if a

proper quantification of the functional diversity of natural, com-

plex communities from multiple trait values of individuals com-

posing these communities remains challenging, a toolkit already

exists to help microbial ecologists working in this domain. Finally,

the dramatically improved opportunities to reconstruct genomes

of so far uncultivated microbial populations and cells by bin-

ning of complex metagenomes (Rusch et al., 2010; Iverson et al.,

2012) has demonstrated great potential for resolving metabolic

and functional traits of uncultured and poorly known represen-

tatives in the microbial world (Wrighton et al., 2012). This can

even be combined with in situ substrate usage of uncultivated

microbes (Mayali et al., 2012). Single cell genome sequencing

(Stepanauskas, 2012) is another feasible way to elucidate and infer

genome encoded traits in uncultured microbial populations that

often make up the bulk portion of natural communities and are

likely to have a large impact on ecosystem functions.

We believe that microbial ecologist have the ability to provide

new insights to trait-based ecology as opposed to just borrowing

ideas and approaches from other non-microbial ecologists, fully

making use of the particularities of microbial systems and tools.

In particular, microbial ecology should play a key role in deci-

phering the effects of functional diversity and spatial distribution

in BEF studies, offering very relevant and manageable models to

address this key issue.

CONCLUSION AND PERSPECTIVES

Microbial communities are a key variable in how natural and

anthropogenic disturbances, including climate change, will affect

ecosystem functioning and hence delivery of services to human

societies. The trait-based approach is not the Holy Grail (Lavorel

and Garnier, 2002) but a promising framework and discourse for

future microbial research. In particular, promising experimental

approaches that incorporate functional traits can pave the road

to increase the understanding of microbial BEF relationships, and

BEF relationships in general.

Microbial ecologists face challenges but also great opportu-

nities in this context. Instead of simply suggesting the need to

renew approaches in BEF research using traits, we argue that

two main priorities for microbial BEF studies are (i) to reinforce

experimentally-sound studies of the role of microbial (trait-

based) diversity on ecosystem functioning, and (ii) to promote

efforts for measuring and archiving microbial traits in a way suit-

able for the highly diverse and dynamic microbial communities

that make up the biosphere.

The first priority arises from the current paucity of microbial

ecology in terms of BEF studies that directly manipulate diver-

sity using a trait-based approach. While assembled communities

clearly differ from complex communities from natural environ-

ments, this does not diminish the value and potential of such

studies to disentangle the possible key mechanisms underlying

BEF relationships.

Concerning the second priority, we call for more innovative

physiological studies in order to measure traits and their rele-

vant unit (e.g., single strains, population, or community-level).

More specifically, by measuring traits in a standardized manner,

e.g., incubation condition and media, and by applying analo-

gous tests also to organisms we cannot get in pure culture, we

may be able to reveal important trait distributions and gener-

ate a microbial trait database similar to, e.g., the TRY global

traits initiative for plants (Kattge et al., 2011). Microbial ecolo-

gists can also capitalize on novel powerful genome sequencing

tools being applied to communities or single uncultured cells,

which may serve as a tool for predicting ecosystem function

from detected (genomic) traits (Raes et al., 2011; Barberan et al.,

2012).

Microbial ecologists can provide new insights and concepts

to trait-based BEF studies, according to the particularities of

microbial systems and the tools available in microbial ecol-

ogy. For instance, BEF studies over many microbial generations

allow researchers to reveal the effect of eco-evolutionary feed-

backs on BEF relationships over reasonable time scales. Also,

accounting for spatial and temporal niche variability as well

as assessing the role of diversity in multiple related ecosystem

functions, microbial trait-based approaches may deliver mecha-

nistic insights in areas practically not feasible in higher organ-

isms, thus providing benefits to ecology as a whole, which is

still a major challenge for microbial ecologists (Prosser et al.,

2007).
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