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ABSTRACT 24 

Growing evidence indicates that species respond idiosyncratically when exposed to the 25 

same changes in climate. As a result, understanding the potential influence of biological 26 

traits on species’ distributional responses is a research priority. Yet, empirical support 27 

for hypothesised influences of traits on climate change responses remains equivocal.  28 

In this paper, we developed a novel approach to determine whether biological 29 

traits predict the degree of climatic niche tracking of British breeding birds in response 30 

to recent climate change. First, we quantified how well predicted positive and negative 31 

changes in probability of presence from climate-based species distribution models 32 

agreed with observed local gains and losses in species’ occupancy – our measure of 33 

climatic niche tracking. Second, we examined whether the degree of climatic niche 34 

tracking could be predicted by species’ ecological and life-history traits, as well as 35 

phylogenetic relationships.  36 

Overall, British breeding birds displayed a low degree of climatic niche tracking 37 

over the period of our study, though this varied substantially among species. Models 38 

incorporating traits and phylogeny explained a low proportion of the variation in climatic 39 

niche tracking. Nevertheless, we did find statistical evidence that species with lower 40 

lifespans tracked their climatic niches more closely, whilst species with a mixed diet 41 

displayed a lower degree of climatic niche tracking.  42 

We present here a tractable approach for quantifying the degree to which 43 

observed local range gains and losses can be related to climate redistribution and apply 44 

it to British breeding birds. Although we do not find strong evidence that traits predict the 45 

degree of climatic niche tracking, we discuss why this is likely to be a consequence of 46 
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the features of our study system rather than the approach itself. We believe this 47 

approach may prove to be useful as datasets of temporal changes in species 48 

distributions become increasingly available. 49 

 50 

Keywords: climatic niche tracking, species distribution models, traits, climate change, 51 

range shifts, birds, temporal validation 52 

 53 

INTRODUCTION 54 

Global climatic conditions are changing rapidly and further dramatic changes are 55 

projected for this century (IPCC, 2013). Spatial and temporal variability in rates of 56 

change lead to the continuous redistribution of climatic conditions across the globe 57 

(Loarie et al., 2009). If species have evolved physiological adaptations to local climatic 58 

conditions (Phillimore et al., 2010), they may respond to climate change by either 59 

migrating to track their existing climatic associations, persisting in situ within altered 60 

climatic conditions through plasticity or adaptation, or becoming locally extinct (La Sorte 61 

& Jetz, 2012). Understanding how species respond to climate redistribution is critical for 62 

improving our forecasts of species’ future responses and the conservation value of our 63 

mitigation actions.  64 

It is now clear that animal species are responding idiosyncratically to changes in 65 

climate (Chen et al., 2011; Rapacciuolo et al., 2014a), as they did in the Pleistocene 66 

(Stewart, 2008; Hofreiter & Stewart, 2009). As a result, a growing body of theory 67 

focuses on the potential influence of biological traits on the distributional responses of 68 

species to climate change (Williams et al., 2008; Foden et al., 2013). While substantial 69 
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progress in this area has been achieved for ectothermic vertebrates (Buckley, 2010; 70 

Huey et al., 2012), empirical support toward trait-based hypotheses of climate change 71 

responses in endotherms remains contrasting (Angert et al., 2011; Cahill et al., 2013; 72 

McCain & King, 2014). One reason for this may be that the majority of studies to date 73 

have focused on related but slightly different questions. Some have focused on trait 74 

correlates of overall distributional response or vulnerability, without specific attention to 75 

climate responses (Angert et al., 2011; Pocock, 2011; Bradshaw et al., 2014). These 76 

studies are of limited use for understanding trait effects on climate responses since 77 

these responses are confounded with responses to additional synergistic drivers of 78 

change. Other studies, while focusing on climatic associations, typically focus on 79 

changes in species’ geographic ranges as a whole (Kharouba et al. 2009, Dobrowski et 80 

al. 2011, Smith et al. 2013; but see McCain and King 2014). However, migration, 81 

persistence, and extinction are not mutually exclusive responses to climate change 82 

across the range of a single species (Tingley et al., 2012; Rapacciuolo et al., 2014a; 83 

Rowe et al., 2014). Instead, overall species’ trends result from the net demographic 84 

impacts of these three possible responses (Angert et al., 2011). Identifying local 85 

responses independent of overall trends is a crucial step towards a comprehensive 86 

spatially-explicit assessment of species’ vulnerability to climate change. This is 87 

especially important given that synergistic drivers of change (e.g. land use change and 88 

extreme disturbance events) also impact biodiversity heterogeneously across space 89 

and may exacerbate local vulnerability  (Turner, 2010). 90 

In this paper, we overcome some of the limitations of existing studies by using a 91 

recently-published method (Rapacciuolo et al., 2014b) to spatially quantify the 92 
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agreement between observed range changes and predictions based on climate 93 

redistribution – a spatially-explicit measure of climate niche tracking. Our objectives 94 

were to examine whether British breeding birds are tracking their climatic niches over 95 

time and whether biological traits are related to the degree of climatic niche tracking. 96 

First, we built climate-based species distribution models and generated predictions of 97 

change in the probability of presence of bird species based on the redistribution of each 98 

species’ historical climatic niche across Great Britain. Second, we quantified how the 99 

agreement between these predictions and observed species’ gains and losses over the 100 

same time interval varied spatially throughout species’ geographic ranges. British 101 

breeding birds are one of only a handful of systems enabling such analyses at a large 102 

spatial scale, since their distributions have been sampled comprehensively at repeated 103 

time intervals across all of Great Britain’s 10-km Ordnance Survey National Grid 104 

squares (Sharrock, 1976; Gibbons et al., 1993). Given this unusually-constant sampling 105 

effort over time and space, we were able to derive estimates of local range gains and 106 

losses over an approximately 30-year period and relate them to climate redistribution 107 

over the same spatial and temporal scale.  108 

Finally, because the degree to which species track their climatic conditions is 109 

likely to depend on their particular ecological and life-history traits (Williams et al., 2008; 110 

Huey et al., 2012; Foden et al., 2013), we tested four hypotheses of the effect of traits 111 

on climatic niche tracking. We hypothesised that: (i) more mobile species which can 112 

disperse greater distances would be better able to track their climatic niches across 113 

newly-suitable areas (Schloss et al., 2012); (ii) species with faster life histories would be 114 

better able to track their climatic niches due to their higher intrinsic rate of population 115 
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growth and resulting ability to recover quickly from low numbers (Angert et al., 2011; 116 

Auer & King, 2014); (iii) habitat specialists would be less able to track their climatic 117 

niches given their greater difficulty in establishing populations in new habitats and/or 118 

keeping high numbers under altered conditions (Angert et al., 2011). (iv) higher-trophic-119 

level species would display less climatic niche tracking given the higher number of 120 

trophic links separating them from the direct effects of climate on primary producers 121 

(Huntley et al., 2004). Furthermore, we tested for phylogenetic signal in climatic niche 122 

tracking in order to assess whether additional attributes of species not captured by our 123 

traits could be associated with variation in climatic niche tracking. 124 

 125 

METHODS 126 

Species distribution data 127 

We used occupancy records for 226 British breeding birds at a 10-km grid square 128 

resolution in two time periods of intensive recording effort (t1: 1968–1972; t2: 1988–129 

1991), each leading to the publication of a national breeding bird atlas (Sharrock, 1976; 130 

Gibbons et al., 1993). To avoid problems related to building models with extremely 131 

small sample sizes (Wisz et al., 2008), we excluded 43 species occupying fewer than 132 

20 grid squares in either time period. We excluded a further 71 predominantly-aquatic 133 

species (i.e. marine birds, waterfowl, and shorebirds), given the substantial difficulties in 134 

defining local range gains/losses for these species. Although species’ absence from 135 

each 10–km grid square was not recorded during sampling, 98 – 100% grid squares in 136 

Great Britain were sampled meticulously during both time periods, with high levels of 137 

replicate recording and under-recorded areas targeted by extra recording schemes 138 
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(Sharrock, 1976; Gibbons et al., 1993). Thus, we assumed that each surveyed grid 139 

square in which a species was not recorded represented an absence. However, 140 

preliminary analysis indicated that model fit was particularly low in coastal grid squares 141 

with very little land cover. Based on these results, we excluded grid squares with less 142 

than 10% land cover. We therefore proceeded to analyse presence-absence data for 143 

112 bird species across 2603 of Great Britain’s 10–km grid squares at two time periods. 144 

 145 

Observed range changes 146 

We compared species’ occupancy (y) between t1 and t2 across grid squares to identify 147 

observed changes in occupancy (Δy) – including instances of gain (where yt1 = 0 and yt2 148 

= 1), persistence (where yt1 = 1 and yt2 = 1) and loss (where yt1 = 1 and yt2 = 0) – as well 149 

as areas that remained unoccupied (where yt1 = 0 and yt2 = 0).  150 

 151 

Climate predictors 152 

We obtained data on four climate variables – mean temperature of the coldest month 153 

(°C), mean temperature of the warmest month (°C), ratio of actual to potential 154 

evapotranspiration (standard moisture index), and total annual precipitation (mm) – from 155 

the Climate Research Unit ts2.1 (Mitchell & Jones, 2005) and the Climate Research 156 

Unit 61-90 (New et al., 1999). We chose these variables to reflect known climatic 157 

constraints on bird distributions (Lennon et al., 2000; Illán et al., 2014). In each grid 158 

square, we calculated the mean value of each predictor over the periods 1966 – 1972 159 

and 1986 – 1991, corresponding to t1 and t2, respectively, with two years tagged onto 160 

the start. We included these additional years since the presence-absence of birds in a 161 
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particular breeding season is likely to depend on the climate of previous years (Araújo 162 

et al., 2005; Bradshaw et al., 2014).  163 

 164 

Climatic niches and climate redistribution 165 

We estimated the realised climatic niches of bird species by correlating presence-166 

absence data with climate variables in period t1 using generalised boosted models 167 

(GBMs; Ridgeway 1999). We chose GBMs as they were the most temporally-168 

transferable single method in a previous study of climatic associations in British birds 169 

(Rapacciuolo et al., 2012) and perform consistently-well in additional studies of temporal 170 

transferability (Dobrowski et al., 2011; Smith et al., 2013). We fitted these models using 171 

the gbm package (Ridgeway, 2013) in R version 3.1.3 (R Core Team, 2014). We used 172 

custom code provided by Elith et al., (2008) to identify the optimal number of trees to be 173 

fitted in each model and avoid over-fitting calibration data. This code performs a 10-fold 174 

cross-validation procedure for each 50-tree increment, checking for improvements in 175 

calculated deviance on held-out data. Final models were fitted using the optimal number 176 

of trees identified through cross-validation (with a minimum of 1000 trees), 5 nodes, a 177 

learning rate of 0.001, and a bag fraction of 0.5. We assessed model fit in t1 using the 178 

area under curve (AUC) of the receiver operating characteristic function (Hanley & 179 

McNeil, 1982) – a measure of discrimination – and the point biserial correlation (COR) 180 

(Elith et al., 2006) – the Pearson correlation between observations and predictions. We 181 

calculated these measures of fit by averaging their values over each of the 10 folds held 182 

out during model calibration.  183 
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We used the realised climatic niches identified in t1 to generate (i) modelled 184 

estimates of probability of presence in t1 (mt1) based on climate predictor values for that 185 

period, and (ii) modelled estimates of probability of presence in t2 (mt2) after updating 186 

climate predictor values to reflect the redistribution of climatic conditions in t2.  We then 187 

estimated change in modelled probability of presence given the redistribution of climatic 188 

conditions (Δm) by subtracting mt1 from mt2. It is important to note that the predicted 189 

probability that a species will shift its range is not only conditional on its modelled 190 

change in probability of presence but also on its baseline probability of presence 191 

(Rapacciuolo et al., 2014b). As a result, we weighted Δm values relative to mt1 (Δmw; 192 

calculated by dividing negative Δm values by mt1 and positive Δm values by 1 - mt1).  193 

Δmw values range from -1 – a 100% loss in predicted probability of presence to 1 – a 194 

100% gain in probability of presence.  195 

 196 

Climatic niche tracking 197 

Temporal validation plots 198 

We estimated the relationship between observed changes in occupancy (Δy) and 199 

predicted changes given climate redistribution (Δmw) throughout the study area using 200 

temporal validation (TV) plots (Rapacciuolo et al., 2014b). The approach of TV plots is 201 

illustrated in Figure 1. For a given species, TV plots quantify the agreement between the 202 

probability of observing instances of loss, persistence, or gain (collectively, Δy values) 203 

and changes in modelled probability of presence given the redistribution of climate 204 

variables (negative and positive Δmw values) throughout study sites. They do so by 205 

fitting two non-parametric functions with a logit link. The loss function (red line; Fig. 1c) 206 
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models the probability that a grid square is lost from the species’ distribution (1; red tick 207 

marks in bottom rug plot of Fig. 1c) or not (0; all non-loss observations, expect stable 208 

absences, which cannot experience additional loss) as a function of Δmw values. In 209 

parallel, the gain function (blue line; Fig. 1c) models the probability that a grid square 210 

has been gained (1; blue tick marks in top rug plot of Fig. 1c) or not (0; all non-gain 211 

observations, expect persistence observations, which cannot experience additional 212 

gain) as a function of Δmw values. By subtracting the loss from the gain function to 213 

calculate a single curve (continuous black line; Fig. 1c), TV plots estimate the relative 214 

probability that sites are observed to be gained, remain stable (neither gained nor lost), 215 

or be lost for any given value of Δmw across the modelled range of Δmw values (see 216 

Rapacciuolo et al., 2014b for additional details).  217 

 218 

Measuring climatic niche tracking 219 

Assuming that changes in climate fully drive observed range changes and the 220 

processes of local gain and loss are unlimited and instantaneous (i.e. there are no time 221 

lags) every site with a predicted Δmw value of -1 should be observed to be lost whilst 222 

every site with a predicted Δmw value of 1 should be observed to be gained. Although 223 

there is an infinite number of monotonically-increasing curves connecting these two 224 

points, an ideal expectation for perfect niche tracking can be defined as a 1:1 line 225 

between observed and predicted changes passing from the origin (dashed black line; 226 

Fig. 1c). This line represents an ideal expectation for perfect niche tracking since it 227 

reflects the condition where every modelled Δmw value exactly equals the probability of 228 

observing a given change.  229 
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Based on this assumption, we quantified climatic niche tracking using 230 

Rapacciuolo et al. (2014b)’s accuracy of temporal validation (AccTV), which accounts for 231 

the deviation between the ideal expectation and the modelled relationship between 232 

observed and predicted changes (the TV curve). AccTV is given by the mean absolute 233 

deviation between the ideal and the TV curve across all grid squares (Fig. 2), subtracted 234 

from 1 (Rapacciuolo et al., 2014b). AccTV values of 1 indicate perfect climatic niche 235 

tracking, whilst values < 1 indicate progressively lower tracking.  236 

We tested whether AccTV values derived from temporal validation plots reliably 237 

measured climatic niche tracking using simulation (Appendix S1). We simulated range 238 

changes in a virtual species over a 2600-site artificial landscape based on change in 239 

two uniformly-distributed random climate covariates. We simulated varying scenarios of 240 

climatic niche tracking by modifying the degree to which range changes in the virtual 241 

species were determined by the specified functional response to climate. As expected, 242 

when the specified climate functional response fully determined the virtual species’ 243 

range changes (i.e. perfect climate niche tracking), AccTV values had a mean (± 244 

standard deviation) of 0.94 ± 0.01 (based on 999 simulation runs; Appendix S1, Fig. 1). 245 

AccTV values decreased progressively with climatic niche tracking; values of 0.41 ± 0.03 246 

were associated with scenarios where 100% of the virtual species’ range changes were 247 

random with respect to climate change.  248 

Since temporal validation plots use changes in modelled probability of presence 249 

weighted by baseline probability of presence (mt1), they may be sensitive to errors in 250 

model calibration in t1. For instance, say we have a site where mt1 = 0.8 but the species 251 

is absent in t1 (yt1 = 0): even a small increase in probability of presence in t2 (Δm = 0.1) 252 
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will lead to a large weighted modelled change (Δmw = 0.1/(1 – 0.8) = 0.5) and, thus, a 253 

large deviation from observed change if the species remains absent (yt2 = 0). As a 254 

result, we also used our simulation to examine the effect of calibration errors on AccTV 255 

values (Appendix S1). Keeping the degree of niche tracking constant, we found that 256 

AccTV values were indeed sensitive to calibration errors and decreased with calibration 257 

accuracy (Appendix S1, Fig. S2). However, relatively large errors in model calibration 258 

(AUC = 0.70 ± 0.01; COR = 0.36 ± 0.02) were necessary to substantially affect AccTV 259 

values (≤ 0.85) when tracking was perfect. Thus, to remove the confounding effect of 260 

calibration error on AccTV values, we selected conservative thresholds for t1 AUC and 261 

COR representing acceptable calibration errors based on our simulations (AUC = 0.8; 262 

COR = 0.4). We then excluded all species with calibration AUC and COR values below 263 

these thresholds (18 out of 112 species). 264 

 265 

Effect of phylogeny and traits on climatic niche tracking 266 

Phylogenetic signal 267 

We used a recently-published molecular phylogeny (Thomas, 2008; Cassey et al., 268 

2012) to identify evolutionary relationships among 109 species from the full set of 112. 269 

We tested whether closely-related species tended to have more similar AccTV values 270 

than species drawn at random from the phylogeny by estimating the maximum 271 

likelihood value of Pagel’s λ (Pagel, 1999). λ measures the agreement between 272 

observed trait variation across a phylogeny and a pure Brownian model of evolution 273 

(Freckleton et al., 2002); it ranges from 0 for phylogenetic independence to 1 for 274 

phylogenetic dependence. Importantly, we accounted for measurement error in AccTV 275 
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values by incorporating within-species standard errors in our estimation of λ (Ives et al., 276 

2007). We estimated λ values using the function phylosig in the R package phytools 277 

(Revell, 2012). 278 

 279 

Biological traits 280 

To test our four trait-based hypotheses, we obtained data on four biological traits of 281 

British birds: natal dispersal, adult survival, trophic level and species specialization 282 

index (SSI). We obtained natal dispersal estimates (in km) from Barbet-Massin et al. 283 

(2012). These estimates were obtained directly or extrapolated from published 284 

estimates of mean straight-line distance (in km) between the location birds were ringed 285 

in their year of birth and the location in which they were recovered at first breeding age 286 

(Paradis et al., 1998). We chose adult survival – calculated as the average proportion of 287 

birds of breeding age surviving each year (Robinson 2005) – as our measure of life-288 

history speed. We also considered body size and reproductive output as additional 289 

measures of life-history speed but, given the high inter-correlation among the three 290 

variables, we only kept adult survival. We generated a factor variable for trophic level by 291 

placing each species into one of 5 categories (modified from Huntley et al. 2004): (i) 292 

exclusively herbivorous species; (ii) herbivorous/insectivorous species, with 293 

predominantly herbivorous diet; (iii) herbivorous/insectivorous species, with 294 

predominantly insectivorous  diet; (iv) insectivorous species and carnivorous species 295 

predominantly consuming herbivorous prey; (v) carnivorous species predominantly 296 

consuming carnivorous prey. Finally, we estimated species’ habitat specialization using 297 

the species specialization index (SSI), a measure of evenness in habitat affinity 298 
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(Devictor et al., 2008b). The higher the SSI, the more specialised a species. SSI values 299 

were calculated by Le Viol et al. (2012) for 99 of the species in our final dataset, based 300 

on the coefficient of variation in habitat affinity across 98 habitat categories in Europe 301 

(Le Viol et al., 2012).   302 

 303 

Trait models  304 

We examined whether biological traits could predict variation in climatic niche tracking, 305 

as measured by AccTV. Because shared natural history among our set of species 306 

unaccounted by the modelled traits may lead more phylogenetically-related species to 307 

respond more similarly, modelling individual species as statistically-independent units 308 

may lead to biased results. Therefore, we accounted for shared phylogenetic history in 309 

our trait models using phylogenetic generalised least squares (PGLS) models – as 310 

implemented in the R package CAPER (Orme et al., 2011) – which incorporate 311 

covariances between species into the model’s error term. To avoid under- or over-312 

correcting for phylogenetic autocorrelation, we estimated the degree of phylogenetic 313 

dependence in model residuals by estimating the maximum-likelihood value of Pagel’s λ 314 

(Pagel, 1999) simultaneously with the other model parameters.  315 

We constructed a PGLS model set including all possible combinations of the 316 

single and additive effects of natal dispersal, adult survival, trophic level and SSI, as 317 

well as an intercept-only model. We standardised all continuous predictors in each 318 

model (by subtracting the mean and dividing by the standard deviation); effect sizes 319 

obtained this way provide a measure of the importance of each predictor on the 320 

response (Schielzeth, 2010). All PGLS models assumed normally-distributed model 321 
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residuals; visual inspection of residuals vs fitted values plots and quantile-quantile plots 322 

confirmed that no model violated this assumption.     323 

In order to derive reliable estimates of the sign and magnitude of the effect of 324 

each predictor based on the full set of potential trait models, we employed multimodel 325 

inference (Burnham & Anderson, 2004; Johnson & Omland, 2004). We first ranked all 326 

potential models using the Akaike Information Criterion correction for small sample 327 

sizes (AICc; Burnham and Anderson 2002). For each model in the full set, we quantified 328 

the probability that it was the best model given the data using AICc weights (AICw), and 329 

its structural goodness-of-fit using adjusted R2. Taking each predictor in turn, we then 330 

considered the full set of models in which the predictor appeared and calculated: i) its 331 

relative importance, by summing the AICw values across the model set (∑AICw), and ii) 332 

model-averaged coefficients and standard errors by averaging coefficients across all 333 

models in the set that included the focal variable, weighted by each model’s AICw 334 

(Johnson & Omland, 2004). For predictor coefficient averages, AICw values were 335 

recalculated over all models in which each predictor appeared, in order to make sure 336 

AICw values used for weighting added up to 1.  337 

 338 

RESULTS 339 

Climatic niches and climate redistribution 340 

When assessed against held out presence-absence data in t1, our models showed 341 

excellent discrimination (AUC; mean ± standard deviation = 0.90 ± 0.06; see Fig. S1 in 342 

supporting information) and correlation (COR; 0.60 ± 0.20). However, 18 (out of 112) 343 

species did exceed our simulation-based thresholds for acceptable error during model 344 
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calibration (AUC < 0.8; COR < 0.4), so we only considered the remaining 94 species in 345 

further analyses.  346 

When projected on updated climate values in t2, the mean discriminatory power 347 

and correlation of our models both decreased (AUC: 0.86 ± 0.08; COR: 0.53 ± 0.17; Fig. 348 

S1). We examined the pattern of grid square-wise mean predicted change in probability 349 

of presence (Δmw) across all species and found that the majority of grid squares across 350 

Great Britain were predicted to have a positive mean Δmw (i.e. overall gains; see Fig. 351 

S2). Mean Δmw values were highest in the highlands of Wales and western Scotland – 352 

where total precipitation increased most and standard moisture decreased least (Figure 353 

S3a, b) – and lowest in the Shetland Islands and south-eastern England – where mean 354 

temperatures increased most (Fig. S3c, d). 355 

 356 

Climatic niche tracking 357 

The degree of climatic niche tracking among the 94 British bird species was low overall 358 

(AccTV: 0.52 ± 0.20; Fig. 3). When compared with our simulation results, the observed 359 

mean AccTV for British birds approached the value derived from scenarios where only 360 

10% of the virtual species’ range changes were determined by climate (Appendix S1, 361 

Fig. S1). However, observed AccTV values varied considerably among bird species, with 362 

a number of species tracking their climatic niches closely and others shifting their 363 

ranges irrespective of or even opposite to climatic expectations (Fig. 3). 364 

 365 

Effect of phylogeny and traits on climatic niche tracking 366 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 26, 2017. ; https://doi.org/10.1101/103507doi: bioRxiv preprint 

https://doi.org/10.1101/103507
http://creativecommons.org/licenses/by-nc-nd/4.0/


17 

 

We limited our comparative analyses to 70 species with complete phylogenetic and trait 367 

information, as well as low calibration error (there was no significant difference in AccTV 368 

distribution between this subset and the set of 94 species of Fig. 3; t144 = -0.54, p = 369 

0.59; Fig. S4). After accounting for uncertainty due to measurement error, the 370 

phylogenetic signal in AccTV values was not significantly different from 0 (λ = 0; p = 1). 371 

Although a low phylogenetic signal may suggest the use of PGLS models is 372 

unwarranted, the phylogenetic signal in the residuals of trait models was not null (upper 373 

95% confidence intervals of maximum-likelihood lambda values across trait models 374 

ranged from 0.17 – 0.29; Table 1). As a result, we proceeded by running phylogenetic 375 

trait models and present the results from these models below. However, we also ran 376 

non-phylogenetic generalised linear models (GLMs) for comparison. Given the minimal 377 

phylogenetic correction applied in PGLS models (Table 1), differences from GLMs were 378 

negligible (Tables S2, S3).  379 

The best-supported trait model had a relatively low AICc weight (AICw = 0.283; 380 

Tables 1, S2), indicating there was no overwhelming support towards any particular trait 381 

model (Johnson & Omland, 2004). Overall, models incorporating phylogeny and traits 382 

explained a very small portion of variation in AccTV values, up to a maximum adjusted R2 
383 

of 0.14 (mean-adjusted R2 ± standard deviation: 0.050 ± 0.054; Tables 1, S2). 384 

Relative importance values supported adult survival as the most important trait 385 

predictor of AccTV (∑AICw = 0.91; Table 2), with model-averaged coefficients indicating a 386 

negative effect of adult survival on AccTV (Table 2). Furthermore, trophic level was also 387 

an important predictor of AccTV (∑AICw = 0.57); species with a mixed 388 

herbivorous/insectivorous diet had lower AccTV values compared to exclusively-389 
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herbivorous and exclusively-carnivorous species (Table 2). We found no support for an 390 

effect of natal dispersal or SSI on AccTV (Tables 2, S4). 391 

 392 

DISCUSSION 393 

Evidence that species are responding individualistically to the same changes in climate 394 

(Chen et al., 2011; Rapacciuolo et al., 2014a) highlights the key role that biological traits 395 

play in determining distributional responses to climate change (Williams et al., 2008; 396 

O’Connor et al., 2012; Foden et al., 2013). By comparing the redistribution of species’ 397 

climatic associations with their recently-observed range gains and losses, we were able 398 

to test a number of hypotheses of the effect of biological traits on species’ climatic niche 399 

tracking.  400 

Overall, our results indicate that British breeding birds did not track their climatic 401 

niches closely and observed species’ range shifts deviated substantially from climate 402 

change expectations over an approximately 30-year period. However, there was high 403 

heterogeneity among species in their degree of climatic niche tracking. A number of 404 

species, whose demographic rates are known to be significantly impacted by climate, 405 

did show a relatively high degree of climatic niche tracking. These included the Pied 406 

White Wagtail (Motacilla alba), whose first egg dates and juvenile survival rates 407 

increase with spring temperatures (Mason & Lyczynski, 1980; Crick & Sparks, 1999), 408 

the Merlin (Falco columbarius), whose regional declines have previously been linked 409 

with climate change drivers (Ewing et al. 2011), and the Blackcap (Sylvia atricapilla), 410 

whose overwinter survival rates have been improved by milder winter conditions 411 

(Plummer et al. 2015). In contrast, several other species appeared to have shifted 412 
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irrespective of, or even counter to, climate redistribution. Previous studies over similar 413 

timescales also found high heterogeneity in the degree of climatic niche tracking across 414 

bird species (Gregory et al., 2005; Green et al., 2008; Maggini et al., 2011; La Sorte & 415 

Jetz, 2012). One possible explanation for this pattern is that some species’ distributional 416 

responses may lag behind climate change (Menéndez et al., 2006; Devictor et al., 417 

2008a). Indeed, studies over longer timescales suggest that, given enough time, the 418 

overall degree of climatic niche tracking is generally higher (e.g. Tingley et al. 2009, 419 

2012). Alternatively, observed distribution changes of British breeding birds over our 420 

study period may not have been primarily driven by climate. For instance, population 421 

declines and range contractions in a number of British bird species are thought to be a 422 

consequence of changes in land-use (Thomas et al., 2004; Eglington & Pearce-Higgins, 423 

2012). This explains why species such as the Nightingale and the Turtle Dove – which 424 

have been hugely impacted by agricultural intensification and changing farming 425 

practices (Fuller et al., 1995; Browne et al., 2004) – displayed the lowest degree of 426 

climatic niche tracking. Lag effects and alternative drivers of change are only two of the 427 

potential explanations for mismatches between observations and climate-based 428 

predictions. Those and additional factors – such as changing biotic interactions – are 429 

undoubtedly required for a full attribution of observed range shifts. However, a full 430 

attribution of the drivers of recent range shifts was beyond the scope of our study, which 431 

instead focused on distinguishing species whose changes were consistent with climate 432 

predictions from species requiring additional processes. With this objective in mind, we 433 

believe that temporal validation plots and associated measures such as AccTV are a 434 
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useful tool and that their utility should increase as more temporal datasets of species’ 435 

distribution shifts become available.  436 

Models incorporating both species’ traits and phylogeny explained only a small 437 

portion of the variation in climatic niche tracking among British breeding birds. This is in 438 

line with previous studies of the effect of traits on measures of the agreement between 439 

climate-based predictions and observations (McPherson & Jetz, 2007; Angert et al., 440 

2011; Smith et al., 2013). In general, species’ responses to climate change are likely to 441 

be complex, idiosyncratic and difficult to predict given the multitude of interacting 442 

biological and environmental factors underlying them (Pimm 2009; Walther 2010; 443 

LaSorte and Jetz 2012). Our models were over-simplistic – limited to a number of 444 

hypotheses based on solid theoretical foundations – and should undoubtedly include 445 

additional processes. For instance, behavioural attributes such as activity times and 446 

nesting behaviour have been posited as important predictors of variation in climate 447 

change responses in mammals (McCain & King, 2014) and represent a fruitful direction 448 

for further theoretical and empirical work. Furthermore, an approach that directly tests 449 

the effects of species’ biological traits on climatic niche tracking may be preferable or at 450 

least complementary with the indirect statistic on statistic approach we use here. 451 

However, it is not obvious how one would develop such direct approach without 452 

incurring a significant loss of information from the calculation of assemblage-level trait 453 

summaries (e.g. Douma et al., 2012). 454 

Together with the general challenges shared among studies of climate change 455 

responses, a number of factors specific to our study system may underlie the low 456 

explanatory power of our models. Although the British breeding bird data we use here 457 
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are among the highest quality datasets on spatiotemporal biodiversity changes, their 458 

temporal and spatial extents may not be sufficient to detect climatic niche tracking. First, 459 

a 30-year time interval may not be sufficient to detect substantial distributional 460 

responses to climate changes for most British breeding bird species. While this may be 461 

due to the aforementioned lag effects, it may also simply result from the fact that 462 

climatic conditions in Britain may not have changed sufficiently to generate a response 463 

for most species. AccTV estimates may be particularly prone to error for species 464 

experiencing lower magnitudes and extents of climate change. For instance, lower 465 

magnitudes and extents of climate change have been found to bias AccTV towards 466 

higher values by leading to intrinsically-lower mean deviations between predictions and 467 

observations (Rapacciuolo et al., 2014b). Despite the low correlation of AccTV with both 468 

magnitude (measured as the range of Δmw values; ρ = 0.12) and extent of change 469 

(measured as the total number of observed gains and losses; ρ = 0.10), we 470 

acknowledge that variation in these species-specific aspects of climate change 471 

exposure may still have impacted AccTV values. In general, we do caution against the 472 

use of temporal validation plots and AccTV for comparing among species and 473 

geographical areas with radically different climate change exposures. A second 474 

shortcoming of our particular study system is that Britain may not be a sufficient spatial 475 

extent to detect climate change responses for the species in our dataset, all of which 476 

have breeding ranges extending beyond Britain. Furthermore, Britain constitutes the 477 

northwestern boundary for many of these species’ ranges and may not accurately 478 

reflect the entire spectrum of climatic conditions they can occupy. An important 479 

consequence of this is that the climatic niches we estimated are likely to be incomplete 480 
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for some species. We acknowledge that the failure to capture the full extent of species’ 481 

climatic niches may be partially responsible for the deviations we identified between 482 

observed and predicted distribution changes. However, we preferred limiting our study 483 

to the standardised British data rather than incorporating additional European data on 484 

the species’ ranges (e.g. EBCC Atlas of European Breeding Birds; Hagemeijer & Blair, 485 

1997) to avoid the perils of integrating data across different spatial and temporal scales 486 

(McPherson et al., 2006; Bombi & D’Amen, 2012). These factors considered, the British 487 

breeding bird dataset we used here may appear as an unsuitable choice for testing 488 

hypotheses of the effect of traits on climatic niche tracking. However, it is one the few 489 

and, arguably, one of the highest-quality datasets that enables performing such tests. If 490 

hypotheses of climatic niche tracking are not testable using the best datasets currently 491 

available, they are in danger of not being testable at this time. 492 

Our models did provide evidence that life-history speed and trophic level were 493 

the most important predictors of climatic niche tracking we considered. As 494 

hypothesised, species with lower adult survival were more likely to have tracked their 495 

climatic niches over the time period of our study. A likely explanation for this is that short 496 

generation times and higher rates of population growth lead to a higher likelihood of 497 

rapid expansion and subsequent establishment into newly-suitable areas (Angert et al., 498 

2011; Anderson et al., 2012; O’Connor et al., 2012; Schloss et al., 2012). Our result is in 499 

line with recent findings that life-history speed is positively correlated with population 500 

increase (Robinson et al., 2014) and range expansion (Bradshaw et al., 2014) in British 501 

birds. Conversely, our hypothesis that increasing trophic level would lead to lower 502 

climatic niche tracking due to increasing separation from direct climatic effects was only 503 
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partially supported. Species from both the lowest (i.e. exclusively-herbivorous species) 504 

and the highest (i.e. exclusively-insectivorous/carnivorous species) trophic levels 505 

tracked their climatic niches more closely than species from intermediate trophic levels 506 

(i.e. mixed herbivorous/insectivorous species). In addition to our original hypothesis, a 507 

number of processes may underlie this result. For instance, evidence from mammals 508 

suggests that carnivores may be better able to track their climatic niches than 509 

herbivores and omnivores due to their higher dispersal velocity (Schloss et al., 2012) 510 

and wider range areas (Carbone et al. 2005). Furthermore, our measure of trophic level 511 

may have partially captured species’ differences in ecological generalisation, with 512 

mixed-diet generalists potentially displaying a lower degree of climatic niche tracking 513 

due to their lower susceptibility to climate change (Foden et al., 2013). Therefore, 514 

although we did not find evidence of an effect of natal dispersal or habitat specialisation 515 

on climatic niche tracking, it is possible that trophic level may have indirectly captured 516 

part of their hypothesised effects.  517 

A further noteworthy result was that the phylogenetic signal in climatic niche 518 

tracking was not significantly different from zero, suggesting that biogeographic 519 

responses to climate change may be highly idiosyncratic among closely-related species. 520 

This pattern does not appear to be limited to British birds. A number of studies 521 

highlighted how congeneric species of birds and mammals are shifting their ranges in 522 

opposite directions (Moritz et al., 2008; Tingley et al., 2012; Rapacciuolo et al., 2014a). 523 

Moreover, several studies reported that accounting for phylogenetic relatedness among 524 

species did not modify their conclusions on the effect of traits on the performance of 525 

climate-based species distribution models (Green et al., 2008; Pöyry et al., 2008; 526 
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Newbold et al., 2009). However, one study did find a weak but significant phylogenetic 527 

signal to the predicted suitable future climate of European species (Thuiller et al., 2011), 528 

which suggests that phylogeny remains an important factor to consider when assessing 529 

species’ vulnerability to climate change. At first glance, our finding of an extremely low 530 

phylogenetic signal appears at odds with the conclusions of Bradshaw et al. (2014), 531 

who found a mid-range phylogenetic signal in the change in area of occupancy for 106 532 

British bird species (approximately 62 of which were shared with our 70-species subset; 533 

Bradshaw et al. 2014). However, our measure of climatic niche tracking AccTV was only 534 

weakly correlated with change in area of occupancy (ρ = 0.13), as it was based on local 535 

rather than whole-range area changes. As a result, there is no real reason to expect 536 

congruence in phylogenetic signal among these two studies.  537 

Focusing on distribution changes consistent with climate change at the local 538 

scale can unveil patterns of species’ sensitivity to climate change which may not be 539 

identified by examining range changes as a whole. We present here a promising 540 

approach for doing so, which uses temporal validation plots and time series of 541 

distribution data to assess how well climate-based models predict observed distribution 542 

gains and losses at individual sites. Though we are unable to provide strong empirical 543 

evidence that biological traits mediate climatic niche tracking in this study, we believe 544 

our approach may prove to be useful in this context as biodiversity datasets at broad 545 

temporal and spatial extents become increasingly available. 546 

 547 

DATA ACCESSIBILITY 548 
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The species distribution data used in these analyses can be accessed via the National 549 

Biodiversity Network Gateway (1968–1972: https://data.nbn.org.uk/Datasets/GA000600; 550 

1988– 1991: https://data.nbn.org.uk/Datasets/GA000147). The climate data can be 551 

accessed via the Climate Research Unit (http://www.cru.uea.ac.uk/cru/data/hrg/). The 552 

bird phylogeny can be accessed from the relevant publications (Thomas, 2008; Cassey 553 

et al., 2012). R code to generate temporal validation plots can be found at 554 

https://github.com/giorap/tv-plots. 555 
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TABLES 825 

  826 

Table 1: Summary of model selection for phylogenetic generalised least squares 827 

(PGLS) models of climatic niche tracking (AccTV) as a function of biological traits in 828 

British birds. Traits considered were adult survival (Surv), trophic level (Troph), natal 829 

dispersal (Disp), and habitat specialization (species specialization index; SSI).  830 

 831 

AccTV PGLS models 
  

 
Model rank 

 
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

Surv ● ● ● ● ● ● ● ●         

Troph ● ●   ●   ●    ●  ● ● ● 

Disp 
 

● ●   ●  ●  ●   ● ●  ● 

Spec     ● ● ● ●   ●  ●  ● ● 

ΔAIC 0.0 1.4 1.5 1.6 2.4 3.3 3.6 3.7 4.3 5.6 6.4 6.5 7.7 8.7 8.9 11.2 

LL 17.4 17.9 13.1 12.0 17.4 13.3 12.1 18.0 9.6 10.0 9.6 12.9 10.0 13.0 12.9 13.0 

AICw 0.28 0.14 0.13 0.13 0.09 0.05 0.05 0.05 0.03 0.02 0.01 0.01 0.00 0.00 0.00 0.00 

λupper 0.12 0.12 0.17 0.15 0.12 0.17 0.15 0.13 0.20 0.28 0.21 0.20 0.29 0.24 0.20 0.25 

R2 0.14 0.14 0.07 0.05 0.12 0.06 0.04 0.13 0.00 0.00 0.00 0.04 0.00 0.02 0.02 0.01 

Notes: the variables included in each model are shown with the symbol ●. Models are 832 

ranked in order of increasing AICc differences (ΔAIC). The log likelihood (LL) and 833 

Akaike weights (AICw) indicate the relative likelihood of a model given the data, λupper 834 

represents the 95% upper confidence interval for the maximum-likelihood value of 835 

phylogenetic dependence in the model residuals (all maximum-likelihood λ means were 836 

0), and R2 indicates the proportion of the total variation in AccTV explained by the model 837 

predictors. All models were built using 70 species with reliable climatic niche tracking 838 

measures complete phylogenetic and trait information. 839 

 840 

 841 

 842 

 843 

 844 

 845 
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Table 2: Summed AIC weight (∑AICw) and model-averaged coefficient for each trait 852 

predictor of climatic niche tracking (AccTV) in British birds across the full set of 853 

phylogenetic generalised least squares (PGLS) models. The standard error for each 854 

coefficient estimate is indicated in brackets. Average coefficients with confidence limits 855 

not overlapping zero are shown in boldface.  856 

 857 

AccTV PGLS models 
  

∑AICw 
Model-averaged 

coefficient 

(Intercept) – 0.722 (0.252, 1.192) 

Survival 0.91 -0.069 (-0.121, -0.017) 

Trophic level 0.57 – 

2 – -0.473 (-0.882, -0.064) 

3 – -0.463 (-0.920, -0.006) 

4 – -0.333 (-0.736, 0.070) 

5 – -0.327 (-0.783, 0.130) 

Dispersal 0.40 0.031 (-0.021, 0.083) 

Specialization 0.25 -0.012 (-0.074, 0.049) 

 858 

Notes: Trophic levels are coded as follows: 2 = herbivorous/insectivorous species with 859 

predominantly-herbivorous diet, 3 = herbivorous/insectivorous species with 860 

predominantly-insectivorous diet, 4 = insectivorous species and carnivorous species 861 

mostly consuming herbivorous prey; 5 = carnivorous species mostly consuming 862 

carnivorous prey. All models were built using 70 species with reliable climatic niche 863 

tracking measures and complete phylogenetic and trait information. 864 

 865 

 866 

 867 

 868 

 869 

 870 
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FIGURE LEGENDS 872 

Figure 1: The approach of temporal validation (TV) plots exemplified using 873 

observations and model predictions for the Firecrest (Regulus ignicapillus). (a) 874 

Observed changes in the distribution of the Firecrest between t1 and t2, including 875 

observed gains (blue), losses (red), stable presences (dark grey), and stable absences 876 

(light grey). (b) Weighted changes in modelled probability of presence (Δmw) for the 877 

Firecrest between t1 and t2. Δmw values are derived by projecting in t2 a model 878 

calibrated using presence-absence and climate data in t1. Bluer and redder colours 879 

indicate increases and decreases in probability of presence, respectively. (c) TV plot of 880 

the agreement between Δmw values from the climate-based SDM and observed 881 

changes for the Firecrest. Shown are the model temporal validation curve (thick black) – 882 

the sum of the plotted gain function (blue curve) and loss function (red curve) – and 883 

confidence intervals of ± 2 standard errors of the mean (orange). The dashed black line 884 

represents the ideal expectation for a perfect temporal validation curve. The rug plots 885 

show model values at observed sites; colours shown correspond to colours in panel (a). 886 

 887 

Figure 2: Measuring climatic niche tracking using temporal validation accuracy (AccTV). 888 

Shown is a plot of observed range changes as a function of weighted changes in 889 

modelled probability of presence (Δmw) for the Firecrest (analogous to Fig. 1c). AccTV is 890 

the mean absolute distance between the modelled y values (points) and the ideal y 891 

values (dashed black line), weighted by the corresponding absolute Δmw values at each 892 

observed site (tick marks), subtracted from 1. Data points from the Firecrest model were 893 

rarefied for ease of visualisation. 894 
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 895 

Figure 3: Distribution of AccTV values across 94 species of British breeding birds. AccTV 896 

is a measure of climatic niche tracking; values of 1 indicate perfect niche tracking. The 897 

dashed line indicates the median AccTV across all species (0.583). AccTV values for 898 

species with high errors during model calibration were excluded from this analyses (see 899 

Methods section). 900 
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FIGURES 918 

 919 

Figure 1 920 
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Figure 2 922 
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Figure 3 936 
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