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Abstract. Comparative analyses that link information on species’ traits, environmental
change, and organism response have rarely identified unambiguous trait correlates of
vulnerability. We tested if species’ traits could predict local-scale changes in dung beetle
population response to three levels of forest conversion intensity within and across two
biogeographic regions (the Neotropics and Afro-Eurasian tropics). We combined biodiversity
surveys, a global molecular phylogeny, and information on three species’ traits hypothesized
to influence vulnerability to forest conversion to examine (1) the consistency of beetle
population response across regions, (2) if species’ traits could predict this response, and (3) the
cross-regional consistency of trait–response relationships. Most beetle populations declined
following any degree of forest conversion; these declines were strongest for Neotropical
species. The relationship between traits and population trend was greatly influenced by local
and biogeographic context. We discuss the ability of species’ traits to explain population
trends and suggest several ways to strengthen trait–response models.
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INTRODUCTION

Contemporary species extinctions are seldom random.

Rather, species with similar phenotypes or high related-

ness tend to exhibit similar responses to environmental

change (Turvey and Fritz 2011). Comparative analyses

that combine information on species phenotype and

phylogeny are important tools in trait-based efforts to

understand and predict the distribution and abundance

of species across environmental gradients and the threat

status of species (Fisher and Owens 2004). However, the

detection of strong and consistent associations between

animal species’ traits and extinction risk or response to

environmental change can be rare (Cardillo and

Meijaard 2012), in part because existing trait–environ-

ment–response relations can be obscured by several

factors.

First, analyses that link traits to population-level

response metrics may be more successful than those

linking traits to species-level metrics (e.g., extinction

risk), as extinction represents the culmination of a

sequence of local population declines, each with

potentially distinct trait–environment dynamics (Collen

et al. 2011, Yackulic et al. 2011). Second, trait–response

relationships may be easier to identify at local spatial

scales, where population-level metrics reflect response to

localized environmental conditions (Fisher and Owens

2004, Collen et al. 2011). Analyses that aggregate

response across broader spatial extents are more likely

to encompass multiple, often interacting environmental

changes (Isaac and Cowlishaw 2004, Yackulic et al.

2011).

Finally, both the magnitude of population response to

localized environmental change and the relationship

between species’ trait and population response are often

highly context dependent (Cardillo et al. 2008, Pocock

2011). For species’ traits to be a useful predictor of

response to anthropogenic environmental change, inter-

actions between traits and observed local conditions

must produce distinct changes in population size that

are neither overly idiosyncratic (i.e., site-specific), nor

overly generalized across sites with clearly different
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environmental conditions. Such context dependency

may occur at regional scales as well (Fritz et al. 2009,

Pocock 2011), driven by geographic differences in

species composition, exposure to historical extinction

filters, or contemporary anthropogenic threats (Lee and

Jetz 2011), all of which can influence relationships

between traits and response to environmental change

(Balmford 1996).

Comparative analyses that target population-level

response to environmental change, and contrast re-

sponses across biogeographic regions are increasingly

powerful tools to determine the context dependency of

trait–environment relationships, at both local and

regional scales. Such approaches are a crucial step in

the determination of the usefulness of existing species’

trait data, both for predicting response to anthropogenic

change and highlighting where the collection of addi-

tional trait data may be necessary (Nylin and Bergstrom

2009, Diamond et al. 2011).

Understanding the ability of existing species’ trait

information to explain population-level responses to

localized environmental change requires addressing

three related topics. First, to what degree are local

population responses context dependent across individ-

ual management practices or biogeographic regions?

Second, of the available information on species’ traits

for a given taxon, which traits are the best predictors of

those local population responses to environmental

change? Finally, can context dependency in observed

trait–population response relationships explain differ-

ence in population response across biogeographic

regions?

We explored these questions with a global data set of

Scarabaeine dung beetle population response to the

anthropogenic conversion of lowland tropical forest. We

combined information on dung beetle response to forest

conversion at three distinct levels of land management

intensity, with species’ trait information and a molecular

phylogeny to explore the possibility of local and regional

context dependency in trait–response relationships. To

our knowledge, this is the first global assessment of local

trait–population response relationships of any taxon.

Dung beetles are a cosmopolitan insect group, highly

sensitive to the direct impacts of tropical forest

conversion (Nichols et al. 2007) and the indirect effects

that conversion has on mammalian fecal resources

(Nichols et al. 2009). Beetle fauna in different biogeo-

graphical regions have experienced strikingly different

climatic and vegetation conditions over evolutionary

time, which may contribute to differential sensitivity to

the altered environmental conditions that accompany

forest conversion. Several studies demonstrate that three

dung beetle species’ traits are associated with response to

tropical forest conversion (i.e., activity period, body

size, and nesting strategy; Appendix A). However these

traits have never been linked with population-level

responses across multiple studies, corrected for phylo-

genetic autocorrelation, nor evaluated across biogeo-

graphic regions with contrasting climatic and ecological

histories. Given their demonstrated sensitivity to forest
conversion (Nichols et al. 2007) and key functional roles

(Nichols et al. 2008), these questions are of broad,
practical importance.

MATERIALS AND METHODS

Dung beetle surveys

We compiled 24 studies that comparatively sampled

dung beetle communities in ‘‘intact’’ moist lowland
(,2000 m) tropical rain forest and neighboring areas of

human-modified forest across the Neotropics (n ¼ 18),
and Afro-Eurasian tropics (n ¼ 6) (Appendix B). As

several biodiversity studies reported multiple, indepen-
dent habitat comparisons, a total of 36 data sets were

incorporated into the analyses (Appendix B). The
converted habitats sampled across these studies can be

categorized along a gradient of canopy openness,
spanning: (1) ‘‘modified’’ forest with a native, closed
canopy (e.g., selective logging or secondary regrowth),

(2) ‘‘forested agriculture’’ with an open native or
nonnative canopy (e.g., agroforestry and tree planta-

tions), and (3) ‘‘non-forested agriculture,’’ or cleared
agricultural habitats (e.g., areas of annual crops, cattle

pasture, and clearcuts). All studies had minimal
elevation differences and used sampled dung beetles

with standardized dung-baited pitfall traps across all
sites. Further study selection details can be found in

Nichols et al. (2007). After removing species with
incomplete trait information, or from genera absent

from the phylogeny, a total of 1119 observations of 265
species in 24 genera were incorporated into subsequent

analyses.

Trait data

Three dung beetle traits are thought to correlate with
sensitivity to forest conversion (Appendix A).

Body size in dung beetles has been positively

correlated with sensitivity to tropical forest modification
(Gardner et al. 2008) and fragmentation (Larsen et al.
2005). In the cooler understories of intact tropical forest,

larger-bodied beetles have an advantage in fecal
resource acquisition (Horgan and Fuentes 2005) and

competitive outcomes (Chown and Klok 2011). Higher
body temperature, however, may become a liability in

modified tropical forests, where higher air and soil
temperatures can push larger beetles toward their

maximum sustained temperature (;428C; Verdu et al.
2006, Chown and Klok 2011). Larger body size is also

associated with a greater capacity for landscape-level
dispersal (Larsen et al. 2008). At low levels of habitat

degradation, greater vagility may translate into greater
survival rates, as large species can more easily locate and

access patchily distributed resources. In severely degrad-
ed habitat however, the combination of lower survival
due to thermointolerance and enhanced emigration rates

may drive a decline in population size and occupancy
rates for larger-bodied species (Larsen et al. 2005, 2008).
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Compounding these effects, larger-bodied beetles may

favor feces deposits from the larger-bodied mammals

most likely to be rare in degraded tropical forests

(Nichols et al. 2009).

Nesting strategy may alter the relative fitness conse-
quences faced by larval and adult dung beetles in

converted forests, as a consequence of both abiotic and

biotic changes. Dung beetles provide nests and a food

supply for their progeny (Halffter and Edmonds 1982).
Tunneler species construct linear or branching burrows

directly beneath the dung deposition site, while roller

species construct shallower tunnels some distance away

from the deposition site. These shallower nests of roller
species are likely to be less buffered against the increased

temperature and decreased humidity characteristic of

converted forest (Larsen 2011). Anecdotal observations

suggest that the nesting activities of rollers are influ-

enced by the physical structure of the forest floor, and
can be negatively impacted by increased leaf litter,

characteristic of arid forested landscapes with slow

decomposition rates.

Activity period may interact with the higher daytime

temperatures and lower humidity of modified tropical
forests to strongly penalize diurnal species (Daily and

Ehrlich 1996, Larsen 2011). Diurnal activity is often

associated with smaller body size (e.g., Feer and

Pincebourde 2005, Slade et al. 2007), which may help

smaller species cope with ambient nighttime tempera-
tures too low to allow for flight initiation (Verdu et al.

2006). Conversely nocturnal species are often larger, and

therefore potentially less constrained by lower night

temperatures (Chown and Klok 2011), which tend to be
more consistent between intact and converted habitats

(Larsen 2011).

Information on species’ body mass, nesting strategy,

and activity period was compiled from published and

unpublished sources (Appendix C). We used mean trait

values collated from the literature when site-specific trait
values were unavailable. For species with unknown

body mass, we estimated body mass (y) from body

length (x) (y ¼ 0.01x3.28, R2 ¼ 0.86) from a set of 79

species in 22 genera for which both body length and
body mass data were available.

Species response

From each data set we extracted the per-trap

abundance for every beetle species, from both intact
forest and each forest conversion class. To quantify the

difference in species before and after forest conversion,

we calculated a log response ratio:

log response ratio ¼ ln
Nconverted forest þ 1

Nintact forest þ 1

� �
: ð1Þ

Species that increased in abundance following the

conversion of intact forest have positive values, species

with identical abundances in intact and converted

habitats have a value of 0, and species that decreased

from their original abundance or went locally extinct

have negative values. As our objectives centered on

understanding the traits associated with the response of

forest-dwelling dung beetle species, we excluded from

the data set species that were not originally detected in

intact forest.

Phylogeny

A single global molecular phylogeny is available for

Scarabaeine dung beetles, based upon 214 species from

six biogeographical regions (Monaghan et al. 2007). As

this phylogeny encompassed most of the genera, but few

of the species present in our data set, we modified the

phylogeny by collapsing the terminal taxa of the

consensus tree into generic-level tips, and representing

species phylogeny below the genus level with the

addition of a single branch length unit (e.g., Bielby et

al. 2008). There were no significant differences in mean

body mass, diel activity, or nesting strategy frequency or

mean log response ratios between the species that

entered the analyses and those excluded due to poor

representation in the available phylogeny.

Analyses

To explore if dung beetle population responses to

forest conversion were consistent across biogeographic

regions, we calculated the response ratio (Eq. 1) of each

dung beetle species to the conversion of tropical forest in

all converted forest classes, and compared the mean

population response between the Neotropical and Afro-

Eurasian tropical regions using a bootstrapped t test.

To investigate which species’ traits were associated

with this population response, we conducted a phyloge-

netic comparative analysis across the pooled data set.

We first tested for significant phylogenetic signal across

the data set with Blomberg’s K for body mass (Blomberg

et al. 2003) and the Maddison and Slatkin (1991)

approach for the discrete traits of nesting strategy and

activity period. Nesting strategy, though not activity

period or body mass, demonstrated significant phyloge-

netic signal (Madison and Slatkin method, nesting

strategy, P ¼ 0.022; activity period P ¼ 0.082; Bloom-

berg’s K, body mass, K¼ 0.85, P ¼ 0.26; Fig. 1).

To incorporate this lack of independence among

species while accommodating multiple and discrete traits

within a generalized linear modeling framework, we used

the generalized estimating equation (GEE) approach as

described in Paradis and Claude (2002) to model beetle

abundance response as a function of three species’ traits

(i.e., body mass, nesting strategy, activity period), forest

conversion class (i.e., intact forest, modified forest,

forested agricultural habitat, or non-forested agricultural

habitat), and two-way trait–habitat interactions, using a

generalized linear model with Poisson errors. We

accounted for phylogenetic autocorrelation by incorpo-

rating a fixed correlation matrix based on branch lengths

taken from the global molecular phylogeny (Monaghan

et al. 2007), and used the phylogenetic degrees of freedom

to reduce the risk of inflated Type I error rates (Paradis
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2006). To reduce the risk of correlation in species–

environment–response relationships from multiple data

sets reported from a single study, we also incorporated

study identity as a factor within the model. We included

intact forest as the reference condition for forest

conversion class, enabling the coefficients for forest

conversion class to be interpreted as the average change

in population response from the intact forest level. Body

mass was logged and centered to the mean to facilitate

interpretation. All GEE analyses were conducted using

the APE package (Paradis et al. 2004) in R (R

Development Core Team 2011).

Finally, we examined whether differences in trait–

environment relationships between the Neotropics (NT)

and Afro-Eurasian tropics (AET) could explain regional

differences in response to forest conversion. As we could

not build separate models for the two regions given

insufficient sample size for one trait–habitat type

combination in the Afro-Eurasian data set, we used

bootstrapped t tests to compare the mean population

response for each trait–habitat type across regions, and a

Bonferroni correction to adjust the P values for multiple

comparisons within each trait–habitat type combination.

RESULTS

The final pooled data set was heavily dominated by

Neotropical species (NT, n ¼ 206; AET, n ¼ 57). Most

species were nocturnal (61%) and used a tunneling

nesting strategy (74%) (Fig. 1). Beetle body mass ranged

widely (110 6 14 mg, mean 6 SE, n¼ 265, range 1.10–

1920.75 mg) and was significantly higher for nocturnal

(nocturnal, 171.48 6 260 mg, n¼ 103; diurnal, 71.19 6

185 mg, n ¼ 165; t272 ¼ 3.64, P , 0.0001, bootstrapped

95% CI ¼ �1.92 to �1.72) as well as tunneler species

(tunneler, 116.51 6 244 mg, n¼ 198; roller, 91.67 6 142

mg, n¼70; t272¼3.64, P , 0.0001, bootstrapped 95% CI

¼�1.82 to �1.78). Activity period and nesting strategy

were independent (v2 ¼ 1.252, df ¼ 1, P ¼ 0.26).

Across the pooled data set, dung beetle abundance

was sharply affected by the conversion of intact tropical

forest. Nearly half of all species (47%) went locally

extinct in at least one converted forest class. Over 73% of

species captured in the least severe conversion class

declined from their original abundance in intact forest

(Fig. 2A), while 74% of species found in forested

agriculture areas declined (Fig. 2B). In the most severe

forest conversion class, ;97% of all species declined in

abundance (Fig. 2C).

Activity period and nesting strategy frequencies were

distributed evenly across the fauna of the Neotropical

data set, while the Afro-Eurasian tropical data set was

heavily dominated by diurnal and tunneling species.

Body mass was similar between regions (NT, 109.86 6

205 mg, mean 6 SE; AET, 110.91 6 279 mg; t73¼�0.03,
P . 0.9, bootstrapped 95% CI ¼ 0.983 to �2.21).

Are species responses to forest conversion context

dependent across biogeographic regions?

Neotropical dung beetles were more sensitive to forest

conversion than Afro-Eurasian tropical species across

FIG. 1. Phylogenetic relationships for 24 Scarabaeine dung beetle genera, and trait information taken from a subset of 265
species. See Materials and methods for details on trait values and tree simplification, and Monaghan et al. (2007) for tree
construction. The plot to the right represents the generic body mass (mean 6 SE) of the species incorporated into all analyses (see
Materials and methods). Symbol shape and fill reflect the dominant species trait value across all species that entered the analysis for
nesting strategy (circles, tunnelers; squares, rollers) and activity period (white, nocturnal; solid, diurnal).
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the pooled data set (NT, �0.42 6 0.65, mean 6 SE;

AET, �0.21 6 0.51; t234 ¼ �3.23, P ¼ 0.001, boot-

strapped 95% CI ¼�0.43 to �0.32). This overall effect

was primarily driven by stronger declines by Neotropical

beetles in non-forested agriculture (t38¼�2.06, P¼ 0.09,

bootstrapped 95% CI¼�0.65 to�0.42; Fig. 2C), though

this result should be interpreted with caution as these

habitats were represented within the Afro-Eurasian

tropical data set by a single study. Mean species

responses to modified forest and forested agriculture

were similar between regions (modified forest, t135 ¼
�1.66, P¼0.116, bootstrapped 95% CI¼�0.36 to�0.29;
forested agriculture, t77¼�0.79, P¼0.438, bootstrapped

95% CI ¼�0.41 to �0.21).

Which functional traits are associated with local

population response to forest conversion?

The final model explaining abundance response of

dung beetles to tropical forest conversion included all

the original predictor variables (Table 1, Fig. 3). Not

surprisingly, population response to forest conversion

was significantly affected by the severity of forest

conversion (Fig. 3). The average difference in popula-

tion response from the intact forest level baseline was

strongest for non-forested agriculture habitats and

intermediate in modified forest habitats. Species cap-

tured in forested agricultural habitats also declined in

abundance from intact forest levels, although this

reduction was not significant (Fig. 3).

We found significant interactions with forest conver-

sion class for all three traits (body mass, F3, 1118¼9.13, P

, 0.0001; activity period, F3, 1118¼ 9.24, P¼ 0.0001; and

nesting strategy, F3, 1118 ¼ 17.54, P , 0.0001). The

abundance of larger-bodied beetles increased with

increasing intensity of tropical forest conversion. The

population responses of species with rolling or tunneling

nesting strategies were highly dependent upon habitat

type. Roller species suffered greater declines in abun-

dance in forested agricultural areas but had moderately

higher abundances in non-forested agricultural areas.

Nocturnal species declined more severely across all

FIG. 2. Standard box and whisker plots indicating the abundance response to the conversion of lowland tropical forest to (A)
modified forest, (B) forested agriculture, and (C) non-forested agriculture for 24 Scarabaeine dung beetle genera across three
continents. Positive values indicate an increase in abundance following the conversion of intact forest; negative values indicate a
decline in abundance following the conversion of intact forest. The dashed lines separate genera from the Afro-Eurasian tropics
(above) and Neotropics (below); the dotted lines separate two genera found globally (Copris and Onthophagus). Plot whiskers
indicate one standard deviation above and below mean abundance response; box outlines indicate the 25th and 75th percentile of
abundance response; the heavy line in the box is the median; and the small open circles are outliers.
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conversion classes, and significantly so in forested

agricultural habitats (Table 1).

Do differences in trait–response relationships among

biogeographical regions explain differences in population

response to forest conversion?

Several regional differences in dung beetle trait–

environment relationships may explain the observed

regional context dependency in population response

(Fig. 4). Diurnal Neotropical species declined more

sharply than diurnal Afro-Eurasian tropical species in

modified forests (NT,�0.32 6 0.57; AET,�0.13 6 0.28,

mean 6 SE; t137¼�2.12, bootstrapped 95% CI¼�0.34
to �0.17, P ¼ 0.07; Fig. 4), and nocturnal Neotropical

species declined significantly more sharply in non-

forested agricultural areas (NT, �0.63 6 0.73; AET,

�0.02 6 0.0, t65¼�1.16, bootstrapped 95% CI¼�0.65
to�0.57, P , 0.0001; Fig. 4). Tunneling species from the

Neotropics were more sensitive than Afro-Eurasian

tunneling species to conversion to all forest classes,

though significantly so only in non-forested agricultural

areas (modified forest, NT,�0.34 6 0.49; AET,�0.19 6

0.40, t112 ¼ �1.91, bootstrapped 95% CI ¼ �0.36 to

�0.22, P . 0.05) (forested agriculture, NT, �0.33 6

0.53; AET,�0.11 6 0.58, t73¼�2.06, bootstrapped 95%
CI¼�0.35 to�0.15, P¼ 0.06) (non-forested agriculture,

NT, �0.65 6 0.72; AET, �0.16 6 0.27, t35 ¼ �2.35,
bootstrapped 95% CI¼�0.66 to�0.50, P , 0.0001). In

contrast, rolling species from the Afro-Eurasian tropics

performed significantly worse than Neotropical rollers

in forested agricultural areas (NT, �0.35 6 0.65; AET,

�1.05 6 0.59, t11 ¼ 2.59, bootstrapped 95% CI ¼�0.70
to �0.30, P , 0.0001; Fig. 4).

DISCUSSION

We found species’ trait differences did explain

variation in population response to forest conversion,

and that the relationship between traits and population

trends was greatly influenced by local and biogeo-

graphic context. In tropical land uses that retained

some forest canopy there were few regional differences

in the magnitude of dung beetle response. Neotropical

species fared significantly worse than Afro-Eurasian

tropical species in land uses that completely removed

TABLE 1. Predictors of dung beetle response to tropical forest conversion, from a phylogenetically
corrected multiple linear model.

Model predictors Estimate SE t P

(Intercept) �0.24 0.20 �1.19 0.235
Modified forest �0.11 0.11 �0.96 0.335
Forested agriculture 0.00 0.15 �0.02 0.988
Non-forested agriculture �0.52 0.14 �3.67 0.000*
Body mass 0.00 0.02 0.11 0.913
Activity period 0.02 0.04 0.49 0.627
Nesting strategy 0.00 0.04 0.07 0.947
Modified forest 3 body mass 0.08 0.04 2.06 0.039*
Forested agriculture 3 body mass 0.09 0.04 2.09 0.037*
Non-forested agriculture 3 body mass 0.12 0.05 2.44 0.015*
Modified forest 3 activity period �0.10 0.06 �1.73 0.084
Forested agriculture 3 activity period �0.19 0.07 �2.92 0.004*
Non-forested agriculture 3 activity period �0.09 0.07 �1.28 0.199
Modified forest 3 nesting strategy �0.10 0.06 �1.62 0.105
Forested agriculture 3 nesting strategy �0.24 0.07 �3.38 0.001*
Non-forested agriculture 3 nesting strategy 0.10 0.08 1.26 0.209

Notes: The model related dung beetle population response to forest conversion class, three
species’ traits (i.e., body mass, diel activity, and nesting strategy), and the identity of the study from
which response data were taken (coefficients not shown). Significant regression coefficients are
marked with an asterisk. Phylogenetic df (dfP)¼ 1118. Baseline values for human-modified habitat
type, activity period, and nesting strategy were intact forest, diurnal, and tunneler, respectively.

* P , 0.05.

FIG. 3. Standardized regression coefficients
(b; the log response ratios) for a phylogenetic
multiple linear model relating dung beetle
population response to tropical forest conver-
sion to beetle traits and modified forest type.
Responses less than zero indicate a decline in
relative abundance moving from intact forest to
a human-modified habitat; values above zero
indicate an increase. Plot error bars represent
6SE of the coefficient.
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forest canopy, though this result must be interpreted

with caution given the paucity of available Afro-

Eurasian studies in open agricultural habitats. Across

the pooled data set, the influence of nesting strategy on

population response depended on the severity of forest

conversion. Roller and tunneler species responded

similarly to conversion to modified forests (e.g.,

selectively logged areas) and complete removal of the

forest canopy (e.g., permanent agricultural areas). Yet

in forested agriculture areas (e.g., timber plantations

and agroforestry sites), only roller species demonstrat-

ed significant population declines. This cross-regional

pattern was driven by the significantly stronger

response of roller species from Afro-Eurasian tropical

sites. The higher air and soil temperatures of degraded

habitats may disproportionately influence rollers due to

their shallower burial depth (Halffter and Edmonds

1982), as dung beetle larval survival rates can be

strongly reduced at low soil moisture levels (Sowig

1995). Anedoctal evidence also suggests that increased

leaf litter in forested agriculture areas may dispropor-

tionately impact the reproductive success of rollers by

impeding brood ball relocation (T. Larsen, personal

communication).

The influence of activity period on beetle population

response demonstrated similar context dependency.

Across the pooled data set, diurnal species were less

sensitive than nocturnal species to all degrees of forest

conversion, though the magnitude of this difference was

only significant in forested agriculture habitats. Diurnal

Neotropical species demonstrated a significantly more

negative response than nocturnal species to the conver-

sion of intact forest into modified forests and non-

forested agriculture. In the most severe class of forest

conversion, the observed population decline of Neo-

tropical species was independent of activity period,

suggesting that the abiotic conditions in these areas may

exceed the thermoregulatory tolerances of most species

regardless of diel activity (Chown and Klok 2011).

Finally, beetle body mass was positively related to

population response across all habitats, although the

magnitude of this relationship was dependent upon

habitat type. This finding was surprising, given that

large body size is associated with a range of species’

traits (e.g., lower fecundity, longer generation time;

Halffter and Edmonds 1982, Chown and Gaston 2010)

that theoretically reduce a population’s ability to

compensate for increased rates of mortality arising from

unfavorable abiotic conditions (Chown and Klok 2011)

and decreased food availability (Nichols et al. 2009) in

modified forests. Comparable positive body mass–

abundance relationships have been reported from

comparative analyses of bird (Laurance et al. 2011,

Pocock 2011) and primate (Cowlishaw et al. 2009)

response to forest conversion. A potential explanation

for this positive relationship maybe a size bias in capture

rates in areas of resource scarcity (E. Nichols, M.

Uriarte, C. Peres, J. Louzada, R. Fagundes-Braga, G.

Schiffler, W. Endo, and S. Spector, unpublished manu-

script). Dung beetle capture rates often increase in areas

FIG. 4. Interactions between dung beetle
population decline (as measured by the log
response ratio), species’ traits, and degree of
forest conversion severity in two biogeographic
regions. Three degrees of tropical forest conver-
sion severity are represented by modified forest
(open), forested agriculture (light gray), and non-
forested agriculture (dark gray). Both species’
traits, including (A) activity period and (B) food
relocation strategy, and biogeographic region
(Neotropical and Afro-Eurasian tropical) modu-
late beetle abundance response to tropical forest
conversion.
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of reduced food availability (Burger and Petersen 1991,

Horgan 2005). As highly vagile larger-bodied species

beetles are able to both detect and access food from long

distances, fecal resource scarcity in converted habitats

may increase the representation of larger-bodied species

in baited pitfall trap data. Disentangling the potential

role of this sampling artifact from a true body mass–

abundance relationship will be necessary to determine

the implications of body size on dung beetle population

response.

While we have emphasized the role of species’ traits in

governing response to abiotic environmental change,

shifting biotic interactions are also likely to strongly

influence beetle response to tropical forest conversion.

For example, tropical land use change impacts verte-

brate communities through its combined impacts on

food resource availability (Parry et al. 2007) and human

hunting (Parry et al. 2009), presumably with severe

consequences on beetle reproductive success in convert-

ed habitats (Nichols et al. 2009). The limited data on

dung beetle predation suggests that predation rates by

avifauna (Horgan and Berrow 2004) and rodents

(Larsen et al. 2008) may be high, though how these

interactions are influenced by changing tropical land

cover remains unstudied. Examination of how biotic

interactions are influenced by forest conversion and

which species’ traits leverage these effects is an

important challenge for animal comparative analyses.

In particular diet breadth and plasticity consistently

emerge as important predictors of response across many

animal taxa, e.g., butterflies (Diamond et al. 2011),

Passeriforme birds (Angert et al. 2011), and bees

(Bommarco et al. 2010), yet remain poorly characterized

for dung beetles (Nichols et al. 2009).

The regional differences in both population response

to forest conversion and trait–population trend rela-

tionships observed here are also consistent with the

extinction filter hypothesis, where contemporary biotic

responses to environmental change are conditioned by

historical processes (Turvey and Fritz 2011). Late

Pleistocene shifts in the areal extent of forest and

savanna areas across the Afrotropics have been pro-

posed as a mechanism for the limited number of

Afrotropical forest-obligate genera and comparatively

low diversity within those genera (Scholtz et al. 2009). In

Southeast Asia, similar forest–savanna dynamics arose

due to interactions between climate and sea levels

(Heaney 1991). In contrast, these same glacial cycles

acted to largely maintain Neotropical lowland forest

under continuous forest cover (Colinvaux et al. 2000),

exposing fewer American dung beetle genera to open-

formation vegetation across their evolutionary history

(Scholtz et al. 2009). These changes may have increased

the sensitivity of modern forest-dwelling Neotropical

dung beetle fauna to contemporary forest conversion,

relative to Afrotropical or Southeast Asian taxa.

Predicting species vulnerability to anthropogenic

environmental change is essential for avoiding or

mitigating future species loss. This will depend equally

on our ability to distinguish between uninformative

species’ traits and unsuccessful associations between

traits, environmental change, and response. Ultimately,

this will require quantifying relevant functional trait

information across large numbers of species and sites

(Angert et al. 2011). As for many animal taxa,

community-wide morphological, physiological, and

phenological (M-P-P) traits of dung beetles are nearly

nonexistent. In this study we used a set of ‘‘proxy’’

species’ traits selected for their availability rather than

their explicit relationship to fitness. When such proxy

traits represent such a ‘‘one-to-many’’ relationship with

functional traits more explicitly related to fitness,

unambiguous trait–environment–response associations

could be expected to be rare.

This study contributes to mounting evidence suggest-

ing that intrinsic species’ traits do not influence the

response of organisms to environmental change in

isolation, but rather when coupled with habitat charac-

teristics and biogeographic history (Isaac and Cow-

lishaw 2004, Cowlishaw et al. 2009, Angert et al. 2011,

Collen et al. 2011, Pocock 2011, Ernst et al. 2012). The

identification of such context dependency is particularly

crucial if the results of comparative studies are to be

incorporated into conservation decision-making and

policy (Cardillo and Meijaard 2012). Further effort is

needed to develop a robust framework to refine our

understanding of the roles of context dependency and

trait quality on observed species’ response to environ-

mental change.
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SUPPLEMENTAL MATERIAL

Appendix A

Results of previous investigations of dung beetle species’ trait correlates of response to the fragmentation or modification of
moist tropical forests, using non-phylogenetically corrected analyses (Ecological Archives E094-015-A1).

Appendix B

Description of the original data used in phylogenetically corrected comparative analyses to quantify the trait correlates of beetle
population response to tropical forest degradation (Ecological Archives E094-015-A2).

Appendix C

Table of trait values for 265 species of Scarabaeine dung beetles incorporated into phylogenetically corrected comparative
analyses to understand the trait correlates of population response to tropical forest degradation (Ecological Archives E094-015-A3).
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