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Abstract
Background Individuals with the 2p15p16.1 microdeletion syndrome share a complex phenotype including neurodevel-
opmental delay, brain malformations, microcephaly, and autistic behavior. The analysis of the shortest region of overlap 
(SRO) between deletions in ~ 40 patients has led to the identification of two critical regions and four strongly candidate genes 
(BCL11A, REL, USP34 and XPO1). However, the delineation of their role in the occurrence of specific traits is hampered 
by their incomplete penetrance.
Objective To better delineate the role of hemizygosity of specific regions in selected traits by leveraging information both 
from penetrant and non − penetrant deletions.
Methods Deletions in patients that do not present a specific trait cannot contribute to delineate the SROs. We recently 
developed a probabilistic model that, by considering also the non − penetrant deletions, allows a more reliable assignment 
of peculiar traits to specific genomic segments. We apply this method adding two new patients to the published cases.
Results Our results delineate an intricate pattern of genotype − phenotype correlation where BCL11A emerges as the main 
gene for autistic behavior while USP34 and/or XPO1 haploinsufficiency are mainly associated with microcephaly, hearing 
loss and IUGR. BCL11A, USP34 and XPO1 genes are broadly related with brain malformations albeit with distinct patterns 
of brain damage.
Conclusions The observed penetrance of deletions encompassing different SROs and that predicted when considering each 
single SRO as acting independently, may reflect a more complex model than the additive one. Our approach may improve 
the genotype/phenotype correlation and may help to identify specific pathogenic mechanisms in contiguous gene syndromes.

Keywords 2p15p16.1 microdeletion syndrome · Epistasis · Additive effect · Penetrance · Neurodevelopmental delay

Introduction

The 2p15p16.1 microdeletion syndrome is a rare contigu-
ous gene syndrome characterized by delayed psychomo-
tor development, intellectual disability (ID), and variable 

but distinctive dysmorphic features, including bitempo-
ral narrowing, smooth and long philtrum, hypertelorism, 
downslanting palpebral fissures, broad nasal root, thin upper 
lip, and high palate. Other less penetrant traits are autism 
spectrum disorder (ASD), structural brain abnormalities, 
microcephaly, hearing loss, intrauterine growth restriction, 
and short stature.

Rajcan − Separovic et al. first reported two unrelated 
patients carrying respectively a 6.1 and 7.9 Mb deletions 
on chromosome 2 at positions 56,919,993 − 63,032,165 
and 55,627,639 − 63,519,476 (hg19). Both patients shared 
several common phenotypic features, including (moderate 
to severe) ID, ASD, microcephaly, structural brain anoma-
lies, optic nerve hypoplasia and dysmorphic features (Raj-
can − Separovic et al. 2007). Two additional articles (De 
Leeuw et al. 2008; Chabchoub et al. 2008) described further 
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individuals with deletions in 2p15p16. These reports con-
firmed the presence of some clinical features common to 
all patients, as ID and dysmorphic features. Interestingly, 
Chaochub et al., describing a smaller deletion (0.583 Mb) in 
a patient lacking some phenotypic traits previously reported 
by Rajcan − Separovic et al., suggested the possible exist-
ence of different candidate genes, each responsible for spe-
cific clinical traits.

More recently, several works have been published (Liang 
et al. 2009; Félix et al. 2010; Piccione et al. 2012; Hucthag-
owder et al. 2012; Florisson et al. 2013; Hancarova et al. 
2013; Fannemel et al. 2014; Jorgez et al. 2014; Balci et al. 
2015; Ronzoni et al. 2015; Shimojima et al. 2015; Basak 
et al. 2015; Ottolini et al. 2015; Bagheri et al. 2016; Lévy 
et al. 2017; Shimbo et al. 2017), reporting additional patients 
with highly variable sized deletions ranging from 0.1 to 
9.5 Mb, however their distribution does not allow to outline 
a single Shortest Region of Overlap (SRO) shared from all 
patients. Indeed, the existence of non − overlapping dele-
tions has made complicated the individuation of a common 
critical region, responsible for the phenotypic traits of the 
syndrome.

In fact, deletions reported by Peter et al. and Balci et al. 
only involved the BCL11A gene, suggesting that haploin-
sufficiency of this gene may be responsible for a subset of 
traits (such as neurodevelopmental delay, language delay 
and attention deficit) (Peter et al. 2014; Balci et al. 2015). 
Interestingly, loss − of − function mutations of this gene have 
been associated (Dias et al. 2016) with the Dias − Logan 
syndrome (OMIM: 617,101) characterized by neurodevel-
opmental delay, facial dysmorphisms and asymptomatic 
persistence of fetal hemoglobin.

Other articles pinpointed another region of critical impor-
tance containing the USP34 and XPO1 genes. Indeed, some 
reported patients (Fannemel et  al. 2014; Ronzoni et  al. 
2015; Shimojima et al. 2015 (patient 1); Bagheri et al. 2016 
(patient 6); Lévy et al. 2017 (patient 2)) presented deletions 
overlapping only these two genes, corroborating the hypoth-
esis of their direct involvement in the disease.

Levy et al. in 2017 classified patients carrying deletions 
in chromosome 2p15p16.1 in two different groups, accord-
ing to their exclusive inclusion either of the BCL11A gene 
or the USP34 and XPO1 genes. The authors reported that 
in both groups the most common abnormalities including 
neurodevelopmental delay, dysmorphic features and brain 
anomalies were present, although with slightly different fre-
quencies between the two groups (Lévy et al. 2017).

However, incomplete penetrance for several clinical fea-
tures such as autistic behavior, structural brain anomalies, 
microcephaly, hearing loss, and IUGR, does not allow to 
draw a precise genotype/phenotype correlation in different 
sized deletions, suggesting that other factors, including com-
plex interaction between genes or regulatory elements within 

deletions, and different individual genetic background, may 
modulate the final clinical outcome of deletions in that 
region.

In this work we focus our investigation on selected 
2p15p16.1 phenotypes assessed in 36 previously reported 
patients and in two additional individuals, with the aim of 
providing more insight into the role of candidate regions in 
producing a specific phenotype. Since mapping candidate 
regions for low − penetrant traits is hampered by the fewer 
number of overlapping penetrant deletions, we used in this 
study a probabilistic model described in our previous work 
(Fichera et al. 2020) which tries to gather information also 
from non − penetrant deletions.

Materials and methods

Patients

In addition to our two novel patients, we collected 36 
patients carrying 2p15p16.1 deletions from an extensive 
review of the literature (Rajcan − Separovic et al. 2007; De 
Leeuw et al. 2008; Chabchoub et al. 2008; Liang et al. 2009; 
Félix et al. 2010; Piccione et al. 2012; Hucthagowder et al. 
2012; Florisson et al. 2013; Fannemel et al. 2014; Jorgez 
et al. 2014; Peter et al. 2014; Balci et al. 2015; Ronzoni et al. 
2015; Shimojima et al. 2015; Basak et al. 2015; Ottolini 
et al. 2015; Bagheri et al. 2016; Lévy et al. 2017; Shimbo 
et al. 2017).

Some of the previously reported cases were excluded 
from our study for several reasons.

The patient described by Prontera et al. was not included 
because she presented two additional genomic rearrange-
ments, whose contribution to the phenotype was unknown. 
In particular, the paracentric inversion of chromosome 7 and 
an apparently balanced translocation between chromosome 1 
and 7, involving the same inverted chromosome 7 (Prontera 
et al. 2011); Bagheri et al. patient 2 was omitted because 
Array − CGH highlighted a complex rearrangement in the 
2p15p16.1 region that would have complicated our analysis. 
Indeed, he presented two additional smaller CNVs, detected 
by high resolution array, one mapping in the intronic region 
of BCL11A and another one in the intragenic region proxi-
mal to BCL11A (Bagheri et al. 2016); Shimojima et al. 
patient 2, Lévy et al. patient 1, and Jorgez et al. patient 1 
were excluded because the inheritance of their deletions was 
unknown (Jorgez et al. 2014; Shimojima et al. 2015; Lévy 
et al. 2017).

Jorgez et al. patients 2 and 7 were excluded because their 
deletions span between the end of the 2p15 and the 2p14 
(Jorgez et al. 2014), outside the region of our study.

In all the other patients considered for our study the dele-
tions are reported as de novo.
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Estimation of the probability for a given genomic 
location to overlap the disease locus associated 
with the selected clinical feature

We used a recently developed bayesian probabilistic model 
to estimate for each non − overlapping sliding window (Δ) 
of 1 kb, the posterior probability to intersect the DL, con-
ditioned by the experimental data (i.e., the set of deletions 
overlapping the specific window inside the SRO).

Briefly, patients were binary classified as showing or not 
a specific trait and then grouped and analyzed independently 
for each of the selected traits. Clearly, the number of individ-
uals in each group varied as not all patients were evaluated 
for each specific trait. In the first step the software identifies 
the SRO regions, considering overlaps between deletions 
associated with the trait. By definition, these SROs have 
probability 1 to contain the DL associated with the selected 
clinical feature. In the next phase the procedure estimates the 
probability distribution inside SRO(s) taking into account 
both penetrant and non − penetrant deletions for the trait.

Finally, for each selected trait the software automatically 
builds custom bed and bed − graph files to visualize in their 
genomic context the set of deletions, the probability pro-
files, and the cumulative probability for each gene inside 
the SROs. These files were then uploaded and graphically 
displayed using the genome browser at UCSC (https:// 
genome. ucsc. edu). Accessory files containing the observed 
penetrance (op) of each genomic windows inside the SROs, 
and the cumulative probability (cp) for each gene to contain 
the DL were also created.

In cases of phenotypic traits depicting more than one 
SRO with incomplete penetrance, we decided to investigate 
whether penetrances of the DLs inside the SROs might have 
suggested epistasis or, on the contrary, each single DL was 
more likely to contribute independently to the trait. At this 
aim, for deletions encompassing two SROs, we compared 
the observed penetrances and those expected according to 
the heterogeneity model (Risch 1990).

where Phm represents the probability that an individual with 
a deletion overlapping both SRO1 and SRO2 is affected 
through either locus mechanism acting independently.

For our analysis we considered 6 traits (developmental 
delay, brain abnormalities, IUGR, microcephaly, hearing 
loss, and autistic behavior).

Array − CGH investigation

Array − CGH analysis on both patients and their parents was 
carried out using the SurePrint G3 Custom CGH Microarray, 

P
hm

= P
SRO1

+ P
SRO2

− P
SRO1

⋅ P
SRO2

8 × 60 K 4 × 180 K (Agilent Technologies, Santa Clara, CA, 
USA) according to the manufacturer’s protocol version 7.1, 
using appropriate Agilent Reference DNAs (Euro male and 
Euro female). The arrays were analyzed with the Agilent 
Microarray Scanner, Feature Extraction Software version 
11.5, and Agilent Genomic Workbench 7.0.

Results

New patients

Patient 1 (id_723_Troina) is a 25 years old male, born after 
a normal intrauterine growth. He showed moderate ID, lan-
guage skills delay and attention deficit. The patient had pas-
sive and oppositive behavior. Clinical examination showed 
hypotonia, scoliosis, coloboma of the retina and dysmorphic 
features, such as long face and thick lips.

Patient 2 (id_7180_Troina) is a 36 years old female, with 
normal intrauterine growth and microcephaly. She had mod-
erate ID, global neurodevelopmental delay, language skills 
delay and attention deficit. The patient showed passive and 
oppositive behavior. The clinical examination showed hypo-
tonia, scoliosis, pectus excavatum, dental agenesis and dys-
morphic features, such as down slanting palpebral fissures, 
hypertelorism, broad nose, bifid uvula and camptodactyly.

Genetic characterization

In both patients apparently de novo microdeletions span-
ning the 2p15p16.1 chromosomic region were found. 
Patient 1 showed a ~ 140  Kb deletion (arr[GRCh37] 
2p15(63058141_63198230) × 1 dn), encompassing the 
gene EHBP1. Patient 2 presented a 1.325  Mb deletion 
(arr[GRCh37] 2p16.1 p15 (60294104_61618758) × 1 
dn) overlapping the 2p16.1 and 2p15 genomic bands and 
involving the following genes: MIR4432, BCL11A, MIR562, 
PAPOLG, FLJ16341, REL, PUS10, PEX13, KIAA1841, 
LOC339803, AHSA2 and USP34.

Short region of overlaps and probability profiling

Molecular findings and clinical assessment for the 6 selected 
traits in the 38 patients having deletions (mean 2.70 Mb; 
median 2.39 Mb) in the 2p15p16.1 region are summarized 
in Table 1. The rearrangements taken into account extend 
over a region of 10 Mb (55.61 to 66.37 Mb) including 41 
coding genes, ten of which (EFEMP1, BCL11A, PAPOLG, 
REL, USP34, XPO1, CCT4, VPS54, AFTPH, ACTR2) are 
predicted to be intolerant to loss − of − function mutation 
(pLI score > 0.95). The region also contains 14 OMIM dis-
ease genes, two of which EFEMP1 (OMIM: 601,548) and 
BCL11A (OMIM: 606,557) are dominant and associated 

https://genome.ucsc.edu
https://genome.ucsc.edu
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with the Doyne honeycomb degeneration of retina (OMIM: 
126,600) and with the Dias − Logan syndrome (OMIM: 
617,101), respectively.

A variable number (1–4) of SROs for each specific 
phenotypic feature were identified (see Figs.  1, 2, 3, 
4). For almost all traits, except IUGR and hearing loss, 

Fig. 1  Visualization of SROs linked to Neurodevelopmental delay 
and autistic behavior. Regions included in the SROs are alternatively 
highlighted in blue and orange. The black and the gray bars indicate 
respectively deletions from patients with or without the selected clin-
ical feature, among those assessed for the trait. The name of genes 
located into the SROs are written in red (pLI >  = 0.95) or in green 
(pLI < 0.95), along with the cumulative probability (cp) of the corre-
sponding gene region to contain the disease locus. A graph display-
ing the estimated probability distribution in log scale of the genomic 
location of the disease loci inside each SRO is shown. a Neurode-
velopmental disorders. All deletions are penetrant and outline three 
SROs containing 5 genes intolerant to loss − of − function variation 
(BCL11A in SRO1, USP34 and XPO1 in SRO2, XPO1, CCT4 and 
B3GNT2 in SRO3) while SRO4 only includes the EHBP1 gene with a 

pLI score of 0.3. b Magnified view of the distribution of the probabil-
ity of SRO2 and SRO3 in (A), both in log ratio and in absolute scale. 
In both SROs the probabilities corresponding to the genomic region 
of XPO1 are approximately one order of magnitude greater than else-
where inside SROs, indicating XPO1 as the most likely contributor to 
the trait within SRO2 and SRO3. c Autistic behavior. Two SROs are 
depicted for this trait, SRO1 containing the BCL11A and PAPOLG 
genes, and SRO2 including the USP34 and XPO1 genes. d This trait 
shows an overall penetrance of 0.42, resulting from penetrance of 
deletions (blue boxes) involving solely SRO1 (0.38), or SRO2 (0.20), 
or both (0.8). The expected penetrance (box with blue diagonal lines) 
calculated according to the heterogeneity model of interaction  (Phm) 
for deletions encompassing both SRO1 and SRO2 is 0.5, suggesting 
epistasis between genetic loci in SRO1 and SRO2
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our analysis pinpointed at least two SROs including the 
BCL11A, and the USP34 and XPO1 genes, respectively. 
Since these latter two genes are very close each other, they 
either mapped in a single sharp SRO or in two different 

larger SROs, depending on the set of overlapping penetrant 
deletions of the trait.

As anticipated by previous studies, this data confirmed 
that these three genes play a major role in most clinical 
features of the syndrome but also that many traits may be 
related to distinct genes. Considering each clinical feature 

Fig. 2  Visualization of SROs and penetrances associated with micro-
cephaly (a, b) and brain malformations (c, d). a, c Regions included 
in the SROs are alternatively highlighted in blue and orange. The 
black and the gray bars indicate respectively deletions from patients 
with or without the selected clinical feature, among those assessed 
for the trait. The name of genes located into the SROs are written in 
red (pLI >  = 0.95) or in green (pLI < 0.95), along with the cumulative 
probability (cp) of the corresponding gene region to contain the dis-
ease locus. A graph displaying the estimated probability distribution 
in log scale of the genomic location of the disease loci inside each 
SRO is shown. b, d observed penetrances for deletions overlapping 
only a unique SRO or both SROs are represented by blue boxes, 

while the calculated penetrance  phm is indicated by a dashed box. b 
The higher penetrance of SRO2 (0.55) in respect to SRO1 (0.25) may 
give evidence of a major role of USP34 and XPO1 genes in micro-
cephaly whereas the observed penetrance of deletions encompassing 
both SROs (0.88) is higher than the expected  phm (0.66), suggesting 
epistatic interaction between genes in both SROs. d Four penetrant 
deletions include exclusively SRO1 or SRO2, with different pen-
etrances of 0.50 and 0.67 respectively. The expected  phm (0.83) is 
slightly greater than the observed penetrance for deletions including 
both SROs (0.73), evoking an additive effect rather than epistasis for 
disease genes inside the SROs
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Fig. 3  Visualization of the SROs linked to different brain anomalies 
a cortical dysplasia, b corpus callosum anomalies, and c cerebel-
lar anomalies. Regions included in the SROs are alternatively high-
lighted in blue and orange. The black and the gray bars indicate 
respectively deletions from patients with or without the selected clin-
ical feature, among those assessed for the trait. The name of genes 
located into the SROs are written in red (pLI >  = 0.95) or in green 
(pLI < 0.95), along with the cumulative probability (cp) of the corre-
sponding gene region to contain the disease locus. A graph display-
ing the estimated probability distribution in log scale of the genomic 
location of the disease loci inside each SRO is shown. a A unique 
SRO containing the BCL11A gene is defined by 7 penetrant deletions 
resulting in a penetrance for cortical dysplasia of 0.37 (7/19). b Two 

SRO containing, respectively, the BCL11A and the USP34 and XPO1 
genes are depicted for corpus callosum anomalies. SRO1 derives 
from a unique penetrant deletion of ~ 0.8  Mb and has a probability 
distribution profile showing a slight increase in the BCL11A corre-
sponding region. The penetrance for deletions encompassing exclu-
sively SRO1 is 0.12 (1/8) while that for deletions related to SRO2 is 
0.4 (2/5). Four penetrant and seven non penetrant deletions overlap 
both SRO1 and SRO2, resulting in a penetrance for hemizygosity of 
both these regions of 0.36. c The unique SRO for cerebellar anoma-
lies contains the BCL11A gene and arises from 8 penetrant deletions 
among a totality of 18 deletions overlapping this SRO, resulting in a 
penetrance of 0.44

Fig. 4  Visualization of SROs linked to intrauterine growth restric-
tion (a), and hearing loss (b). Regions included in the SROs are 
highlighted in blue. The black and the gray bars indicate respectively 
deletions from patients with or without the selected clinical feature, 
among those assessed for the trait. The name of genes located into the 

SROs are written in red (pLI >  = 0.95) or in green (pLI < 0.95), along 
with the cumulative probability (cp) of the corresponding gene region 
to contain the disease locus. A graph displaying the estimated prob-
ability distribution in log scale of the genomic location of the disease 
loci inside each SRO is shown
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separately (Figs. 1, 2, 3, 4, 5), it clearly emerges that dele-
tions involving only a specific SRO often have different 
penetrances and that, besides showing epistasis or not, 
concurrent hemizygosity for genes inside different SROs 
led to the highest penetrance of the trait.

In the following sections, results for each clinical fea-
ture will be analyzed separately.

Neurodevelopmental delay

This clinical feature was present in all patients whose 
deletions delineated 4 SROs (Fig. 1), three of which com-
prised 5 genes having pLI scores > 0.95, namely SRO1 
(BCL11A), SRO2 (USP34, XPO1), SRO3 (XPO1, CCT4, 
B3GNT2) while SRO4 uniquely contained the EHBP1 
gene with a pLI score of 0.3. Of notice, XPO1 region 
was splitted into two SROs (SRO2 and SRO3), due to the 
deletion of Bagheri et al. patient 8 having a distal margin 
inside the XPO1 gene; however, we cannot exclude that 
a more precise definition of the breakpoint would have 
delineated a single narrow SRO involving XPO1 only. 
While these two SROs include other haploinsufficiency 
intolerant genes, their probability distributions (Fig. 1 
a, b) clearly demonstrated a remarkable increase in the 
regions corresponding to the XPO1 gene suggesting that 

XPO1 (SRO2 − SRO3) and BCL11A (SRO1) are the main 
responsible for that trait.

Autistic behavior

Two SROs emerged for this trait (Fig. 1 c). The first one 
(SRO1; p: 3/8, 0.38) included the BCL11A (cp: 0.24) and the 
PAPOLG (cp: 0.18) genes while the second (SRO2; p: 1/5, 
0.20) involved the USP34 (cp: 0.24) and XPO1 (cp: 0.579) 
genes. Interestingly, deletions involving both SROs showed 
a penetrance of 0.8 (4/5) greater than expected penetrance 
of 0.5 according to the heterogeneity model of interaction.

Microcephaly

Penetrant deletions for microcephaly outlined two SROs 
(Fig. 2 a); SRO1 (p: 0.25, 2/8) including the BCL11A (cp: 
0.23) and PAPOLG (cp: 0.13) genes, and SRO2 (p: 0.55, 
6/11) overlapping the USP34 (cp: 0.77) and XPO1 (cp: 0.18) 
genes. Fifteen penetrant and two non − penetrant deletions 
completely or partially intersected both SROs, leading to 
an observed penetrance of 0.88 (15/17), while the expected 
penetrance  phm was 0.66 (Fig. 2 b).

Fig. 5  Penetrance of single or concurrent hemizygosity for the main 
driver genes in the 2p15p16.1 microdeletion syndrome. Black circled 
lines represent the estimated penetrance of deletions affecting the cor-

responding gene(s). Upper and lower boundaries of the colored boxes 
indicate the upper and lower limits of the 95% confidence intervals of 
the estimated penetrance
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Brain abnormalities

This clinical feature showed an overall penetrance of 0.64 
(16/25) with penetrant deletions defining two SROs, respec-
tively SRO1 (p: 0.5, 4/8) only including the BCL11A gene 
(cp:0.48), and SRO2 (p: 0.67, 4/6) containing the USP34 
(cp: 0.42) and XPO1 (cp: 0.47) genes (Fig. 2 c). Rearrange-
ments overlapping both SROs showed a penetrance of 0.73 
(8/11) to be compared to a slightly greater  phm of 0.83, sug-
gesting an independent effect rather than epistasis of the two 
genomic regions (Fig. 2 d). To investigate whether single 
genes haploinsufficiency gave rise to different neuroradio-
logical findings, we repeated the analysis after having intro-
duced as additional characterizing traits cortical dysplasia, 
corpus callosum anomalies, and cerebellar hypoplasia. Our 
results are in accordance with the hypothesis reported by 
Shimbo et al. that BCL11A was related to cerebellar abnor-
malities, corroborating its pivotal role in neuronal devel-
opment (Shimbo et al. 2017). The analysis clearly showed 
(Fig. 3) that BCL11A is involved with cortical and cerebellar 
anomalies whereas deletions of USP34 − XPO1 genes are 
more likely to result in hypoplasia or agenesis of the corpus 
callosum.

IUGR 

A single SRO, comprising the USP34 (cp: 0.84) and XPO1 
(cp: 0.12) genes, results from the overlap of 10 penetrant 
deletions associated with this clinical feature (Fig. 4 a). 
Deletions of this SRO display a penetrance of 0.55 (10/18) 
while the overall penetrance for this trait is 0.38 (10/26).

Hearing loss

The trait has an overall penetrance of 0.28 (8/29). The unique 
SRO outlined for this feature involves the genes USP34 (cp: 
0.42) and XPO1 (cp: 0.47) (Fig. 4 b) whose hemizygosity 
has a penetrance of 0.42 (8/19).

Evaluation of the role of combined 
haploinsufficiency of the main driver genes 
on specific clinical features

Since our results clearly demonstrate that BCL11A, USP34 
and XPO1 genes are involved in almost all clinical traits 
we studied, we decided to further analyze the penetrance of 
single or concurrent hemizygosity for these genes in clini-
cal traits showing incomplete penetrance. While hampered 
by large and overlapping confidence intervals owing to the 
rarity of the microdeletion syndrome, the analysis showed 
that deletions simultaneously affecting all three genes are 
generally more penetrant than rearrangements involving 
only BCL11A or USP34 and XPO1 genes (Fig. 5). This is 

especially evident for the clinical features autistic behav-
ior and microcephaly, further in agreement with a possi-
ble epistatic effect of the combined haploinsufficiency of 
these genes. Deletions affecting only the BCL11A gene are 
not penetrant for hearing loss and IUGR traits, while those 
uniquely involving the USP34 and XPO1 genes are neither 
penetrant for cortical dysplasia nor for cerebellar anomalies. 
However, in case of IUGR, deletions involving the three 
genes are remarkably more penetrant in respect of deletions 
which do not include the BCL11A gene, suggesting that this 
latter gene or other loci included in larger deletions may 
modulate this trait.

Discussion

The most intuitive pathogenic mechanism in contiguous 
gene syndrome (CGS) concerns the involvement of dos-
age sensitive genes, leading to haploinsufficiency and con-
sequently to an altered phenotype. Clearly, in a context of 
different sized deletions spanning a large genomic region, it 
often remains challenging to understand the precise role of 
specific loci among multiple genes (and genetic elements) 
in the onset of the observed phenotypes. A straightforward 
approach to the identification of candidate genes in CGS 
usually relies on focusing on known functional role, con-
sidering genes located in the genomic regions of minimal 
overlap between deletions in affected patients. Eventually, 
the identification of loss of function variants by sequencing 
studies and results coming from targeted functional assays, 
may further sustain the role of candidate genes. This simple 
approach is however challenged by several factors. Indeed, 
the delimitation of these genomic areas is less informative 
for traits showing incomplete penetrance both because fewer 
data are available for SRO mapping and because one cannot 
refine the critical region by excluding genomic segments 
corresponding to non − penetrant deletions interstitial to the 
SRO. Moreover, rather than haploinsufficiency of specific 
genes, the phenotype may either result from a long − range 
genomic dysregulation (Spielmann et al. 2018) or from com-
plex interplays between hemizygous genes sharing biologi-
cal pathways (Jensen and Girirajan 2019). At this regard, 
Andrews and colleagues have interestingly highlighted a 
higher functional similarity between genes in pathogenic 
CNVs in respect to genes in benign CNVs, further support-
ing that complex pathogenic mechanisms may underlie the 
clinical outcome in CGS (Andrews et al. 2015). In a similar 
scenario, reduced support from sequencing studies should be 
expected, as the more complex the pathogenic mechanism, 
the less likely becomes the identification of inactivating 
mutations in candidate genes for cardinal features of CGS. 
Moreover, functional analysis that suppress single candi-
date genes in animal model may not recapitulate the human 
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phenotype. To complicate this picture, the phenotype may 
be further modulated by the individual genetic background 
(Pizzo et al. 2018).

The 2p15p16.1 microdeletion syndrome is a genetic dis-
order characterized by several different clinical features, 
most of them displaying incomplete penetrance and that fre-
quently occur in patients carrying non overlapping deletions, 
indicating that different genomic segments are individually 
involved in the same clinical trait. To improve the genotype/
phenotype correlation in this complex syndrome, we have 
investigated the cohort of 2p15p16.1 patients by parallel, 
trait − driven analyses to delineate genomic regions associ-
ated with six selected clinical features using a bayesian prob-
abilistic method, which also takes into account information 
derived from non − penetrant deletions (Fichera et al. 2020).

In agreement with previous studies, our analysis con-
firmed that the main driver genes for most clinical traits 
of the syndrome are BCL11A, and USP34/XPO1, the latter 
two genes being too close to each other to be included in 
different SROs. However, our probabilistic analysis greatly 
favors XPO1 over USP34 as candidate gene, at least for neu-
rodevelopmental delay (Fig. 1B). This finding is in keeping 
with functional assay on zebrafish model where the knock-
down of the ortholog of USP34 did not show any obvious 
developmental defects (Bagheri et al. 2016). In agreement 
with previous reports (Shimbo et al. 2017), our investigation 
showed that BCL11A is particularly involved in cortical and 
cerebellar anomalies, and autistic behavior whereas USP34/
XPO1 deletions are more associated with corpus callosum 
anomalies, microcephaly, IUGR, and hearing loss (Fig. 6). 
Furthermore, our analysis also suggests that the final clini-
cal outcome is largely modulated by a complex interaction 
between candidate genes.

BCL11A is a subunit of the mammalian BAF SWI/SNF 
ATP − dependent chromatin remodeling complex (Kadoch 
et al. 2013; Simon et al. 2020) and a transcriptional repres-
sor of fetal hemoglobin (Sankaran et al. 2008). Causative 
variants in genes coding for BAF − associated subunits have 

been found in subjects with different forms of neurodevel-
opmental disorders (Ciernia et al. 2017; Bögershausen and 
Wollnik 2018). Wiegreffe and colleagues demonstrated that 
bcl11a controls cell polarity and radial migration of upper 
layer cortical neurons and that deletion of bcl11a in mice 
results in hypoplasia of superficial neocortex (Wiegreffe 
et al. 2015).

Dias et al. recently showed that loss of function muta-
tions of BCL11A cause a clinical syndrome (Dias − Logan 
syndrome) characterized by ID, dysmorphic features and 
persistence of fetal hemoglobin. Other less frequent phe-
notypic traits of the syndrome are microcephaly, autistic 
behavior, and cerebellar and corpus callosum anomalies 
(Dias et al. 2016). These findings further support the direct 
role of the hemizygosity of BCL11A in the 2p15p16.1 dele-
tion syndrome.

USP34 encodes for a deubiquitinase that acts as a posi-
tive regulator of Wnt signaling by promoting nuclear stabi-
lization and accumulation of AXIN1 and AXIN2 (Lui et al. 
2011); it also plays a role in genome stability by promoting 
ubiquitin signaling at DNA double − strand breaks (Sy et al. 
2013), and is required for osteogenesis and bone formation 
(Guo et al. 2018) and inhibits osteoclastogenesis by regulat-
ing NF − κB signaling (Li et al. 2020).

XPO1 (also known as CRM1) is a member of the nuclear 
export family of proteins and mediates the transport of 
large macromolecules across the nuclear membrane to the 
cytoplasm (Fornerod et al. 1997). XPO1 has been linked to 
the occurrence of axonal damage (Kim et al. 2010; Li et al. 
2013) and has been found upregulated in multiple sclerosis 
(Haines et al. 2015). It has also been shown that suppression 
of Xpo1 induces apoptosis of the cortical neural progenitors 
in mouse (Li et al. 2020).

On the contrary to BCL11A, albeit thousands of 
whole − exome or whole − genome sequencing studies on 
patients with neurodevelopmental disorders, no inactivat-
ing mutations in USP34 or in XPO1 genes have yet been 
reported in the literature. While the rarity of deleterious 

Fig. 6  Radar plot showing SROs penetrances for different clinical signs. The penetrances are calculated for deletions encompassing the SROs 
including the genes a BCL11A alone, b USP34/XPO1 alone, and c both BCL11A and USP34/XPO1 
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alleles may account for these findings, other hypotheses 
should also to be considered. (1) Since among deletions 
which do not involve BCL11A only one (Bagheri patient 
8) affects exclusively XPO1 and not USP34, one cannot 
exclude that concurrent deletion of both genes may be gen-
erally required to trigger the disease. (2) The pathogenic 
mechanism may be linked to the disruption of a regula-
tory element in the genomic regions of USP34 and XPO1 
genes, rather than to haploinsufficiency for one or both 
of them. The first hypothesis greatly depends on a possi-
ble functional convergence of USP34 and XPO1 that may 
justify a possible complex effect of haploinsufficiency of 
these genes. Interestingly, it has been shown (Bagheri et al. 
2016) that pairs of orthologs of human USP34/XPO1 and 
BCL11A/REL colocalize in zebrafish, suggesting a pos-
sible functional relationship between some genes within 
the 2p15p16.1 region. While this may support the fact that 
deletions disrupting both USP34 and XPO1 could have 
a higher penetrance than deletions or small inactivating 
mutations on one of them, making less likely to find sin-
gle gene defects in sequencing analyses, further data are 
needed to clarify this point.

Many clinical traits characteristic of the syndrome have 
incomplete penetrance. We showed that deletions both 
involving BCL11A and USP34/XPO1 are generally more 
penetrant than those affecting only BCL11A or USP34/XPO1 
genes (Fig. 5 and Fig. 6). Clearly, deletions that concurrently 
involve genes associated on their own with a specific trait 
are more likely to produce the phenotypic feature whatever 
the nature of their interaction. Nevertheless, the comparison 
between the observed penetrance and that predicted when 
considering concurrent haploinsufficiencies acting indepen-
dently on a specific trait, may reflect a more complex model 
than the additive one. Although more cases would have been 
needed to obtain better estimates of penetrances (Fig. 5), 
our investigation supports an epistatic effect between can-
didate genes, especially for traits such as autistic behavior 
and microcephaly where the observed penetrance of dele-
tions encompassing both SROs is remarkably greater than 
that expected for genes acting independently (Fig. 1 d and 
Fig. 2 d).

Functional convergence on shared biological pathways 
is a prerequisite for genes to interact. Interestingly, BCL11A 
and USP34/XPO1 are all related to the Wnt signaling path-
way which plays a crucial role throughout all stages of brain 
development (Noelanders and Vleminckx 2017; Bem et al. 
2019). BCL11A, involved in dendritic cells differentiation, 
is downregulated by non − canonical Wnt signaling path-
way that inhibits dendritic cells differentiation (Xiao et al. 
2016). BCL11A orthologous in mice has as a downstream 
target frizzled related protein 3, a modulator of Wnt sign-
aling, whose dysregulation impacts on dorsal spinal neu-
rons development (Yin et al. 2019). XPO1 is involved in 

the nucleus − cytoplasmic shuttling of APC, regulating 
β − catenin availability (Turner and Sullivan 2008; Li et al. 
2010). USP34 through its deubiquitinase activity stabilizes 
AXIN1 and AXIN2, regulating positively β − catenin tran-
scriptional activity (Lui et al. 2011).

We should also point out that for larger deletions encom-
passing different SROs, hemizygosity for other genes or 
regulatory elements between or close to SROs may poten-
tially contribute to selected phenotypic features. At this 
regard, it has been demonstrated in zebrafish embryos that 
the suppression of the expression of the ortholog of REL, a 
gene mapping between both main SROs, results in micro-
cephaly (Bagheri et al. 2016). While functionally validated 
in zebrafish, the role of REL in the 2p15p16.1 syndrome 
remains unclear because biallelic mutations of REL inherited 
from healthy parents have recently been identified in patients 
suffering from a severe form of immunodeficiency, however 
with no cognitive disability nor brain anomalies (Beaus-
sant − Cohen et al. 2019; Lévy et al. 2021). Two de novo 
missense variants in the CCT4 gene, coding for a molecular 
chaperone known to play a role in the folding of actin and 
tubulin, were identified in ASD probands from the Simons 
Simplex Collection (Iossifov et al. 2014). Interestingly, this 
gene is included in the four penetrant deletions encompass-
ing SRO1 and SRO2 (Fig. 1 c) and could be considered as 
a potential risk factor for autistic behavior in the syndrome.

The SRO containing the gene EHBP1 (EH domain − bind-
ing protein 1) is defined uniquely by the small deletion in 
our patient 2 (Id_723). EHBP1 encodes for a protein known 
to be involved in endocytic trafficking. It colocalizes with 
the actin cytoskeleton and its overexpression leads to actin 
reorganization (Guilherme et al. 2004). This protein is impli-
cated in prostate cancer and in early development, especially 
in Drosophila, where it plays an essential role in eye devel-
opment (Rai et al. 2020). Considering that EHBP1 is not 
predicted to be intolerant to loss − of − function mutation 
(pLI = 0.35) and that no other deletions encompass exclu-
sively this gene, we cannot exclude that the deletion is coin-
cidental to the phenotype of the patient. Clearly, the role of 
this gene, if any, should be confirmed by additional cases.

In conclusion, the 2p15p16.1 microdeletion syndrome, 
as probably the majority of the CGS, should be regarded as 
complex genetic disorder where the fully penetrant clinical 
traits are driven by few major genes while the constella-
tion of other, less penetrant, phenotypic signs are due to a 
complex cooperation between genetic loci with functional 
convergence. Variable size of deletions interesting different 
set of genes, together with variants in the individual genetic 
background, probably dictates the final clinical outcomes. 
In this context, dissecting the penetrance for single clini-
cal traits, may improve the genotype/phenotype correlation 
and may help to identify specific pathogenic mechanisms 
in CGSs.
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