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abstract: The incorporation of ecological processes into models of

trait evolution is important for understanding past drivers of evolu-

tionary change. Species interactions have long been thought to be key

drivers of trait evolution. However, models for comparative data that

account for interactions between species are lacking. One of the chal-

lenges is that such models are intractable and difficult to express an-

alytically. Here we present phylogenetic models of trait evolution that

include interspecific competition among chosen species. Competition

is modeled as a tendency of sympatric species to evolve toward differ-

ence from one another, producing trait overdispersion and high phy-

logenetic signal. The model predicts elevated trait variance across spe-

cies and a slowdown in evolutionary rate both across the clade and

within each branch. Themodel also predicts a reduction in correlation

between otherwise correlated traits. We use an approximate Bayesian

computation approach to estimate model parameters. We find rea-

sonable power to detect competition in sufficiently large (201 species)

trees compared with Brownian trait evolution and with Ornstein-

Uhlenbeck and early burst models. We apply the model to examine the

evolution of bill morphology of Darwin’s finches and find evidence that

competition affects the evolution of bill length.

Keywords: adaptive radiation, character displacement, phylogenetics,

ecological modeling.

Introduction

There is an increasing drive to combine evolutionary and
ecological perspectives in order to fully capture the long-
term dynamics of ecological communities (Johnson and
Stinchcombe 2007; Cavender-Bares et al. 2009; Schoener
2011; Pennell and Harmon 2013; Hadfield et al. 2014;
Price et al. 2014; Pigot and Etienne 2015). This has led to
insights into the roles of ecological processes—such as
competitive exclusion and character displacement—in shap-

ing trait evolution and today’s distributions of traits (Webb
et al. 2002; Kraft et al. 2007; Emerson and Gillespie 2008;
Vamosi et al. 2009). However, linking such patterns in data
to underlying processes is difficult, since any given pattern
could be the outcome of several processes (Dayan and Sim-
berloff 2005; Mayfield and Levine 2010).
Evidence that competition has shaped trait evolution has

been generated using two main approaches. The first is the
observation of character displacement, that is, a tendency
for species with overlapping ranges to exhibit increased phe-
notypic differences where they coexist (Schluter andMcPhail
1992; Dayan and Simberloff 2005; Pfennig and Pfennig 2010;
Stuart and Losos 2013). The second line of evidence for
competitive effects makes use of a phylogeny to measure the
distribution of species trait values relative to a null model
(Webb et al. 2002; Freckleton and Harvey 2006; Vamosi et al.
2009). This is especially useful for adaptive radiations, where
typically several similar species are confined to the same geo-
graphical area. Distributions that are more even than ex-
pected by chance (Webb et al. 2002; Dayan and Simberloff
2005; Davies et al. 2012) are taken as evidence that past com-
petition caused species to seek unique ecological niches.
Convergent evolution of sets of species in separate clades

has also been observed and interpreted as evidence of inter-
specific competition (Moen and Wiens 2009). With close
niche packing, interspecific competition can reduce evolu-
tionary rates, even with a changing environment (De Ma-
zancourt et al. 2008). Phylogenetic comparative models of
adaptive radiations have slowing rates of phenotypic evolu-
tion, implicitly assuming that competition for finite niche
space is an underpinningmechanism (e.g., early burst model;
Harmon et al. 2010a). Despite much study, however, the im-
portance of competition remains uncertain (Gillespie et al.
2001; Cavender-Bares et al. 2009), and importantly, direct
tests for evidence of past competition in phylogenetic data
are lacking.
One approach could be to explicitly model the evolution

of traits in systems of species in which competition is occur-
ring. In general, evolutionary models use some combination
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of continuous random change through time (Felsenstein 1973),
possibly with changes of rate (Garland et al. 1992; Pagel 1997;
Freckleton et al. 2002; Blomberg et al. 2003; Eastman et al.
2011; Revell et al. 2012; Thomas and Freckleton 2012), dis-
crete random changes at speciation events (Ingram 2010),
or shifts in shared adaptive optima (Uyeda and Harmon
2014). However, phylogenetic models of trait evolution are
ecologically neutral, since they are stochastic models that de-
pend on the independent evolution of each species to be sta-
tistically well behaved (Pennell and Harmon 2013). Processes
such as competition between species are typically not ac-
counted for. In previous models, species interactions have
been assumed to generate phenomenological outcomes. For
example models may assume rate slowdowns associated with
competition among lineages either implicitly by modeling
through time (Harmon et al. 2010a) or explicitly (Mahler
et al. 2010). Several models include clade-wide nonrandom
effects (Hansen 1997; Price 1997; Harvey and Rambaut 2000;
Freckleton and Harvey 2006; Bartoszek et al. 2012), reflect-
ing the interaction of species with their environments, but
none of these models permits trait values to be influenced
by interspecific interactions.

Phylogenetic data sets have been simulated with com-
petitive interactions (Freckleton et al. 2003; Nuismer and
Harmon 2015). However, direct parameterization with data
is difficult because of the complexity of accounting for in-
terspecific interactions. Niche-filling models of trait evo-
lution on trees (Price 1997; Harvey and Rambaut 2000;
Freckleton and Harvey 2006) are models of adaptive ra-
diations where new species move discretely to the nearest
of a random set of points (niches) in trait space. Simula-
tions under these models show that such ecological pro-
cesses affect inferences drawn from comparative analyses.
The most important conclusion from the analysis of such
models is that methods based on Brownian motion are in-
appropriate or even misleading when applied to traits evolv-
ing in such systems. However, the problem of modeling such
data has never been satisfactorily resolved (Freckleton and
Harvey 2006), largely because of the complexity of statisti-
cally describing the traits of a set of interacting species.

In terms of fitting complex models to data, one potential
approach is approximate Bayesian computation (ABC; see
Beaumont 2010). This provides a simple method for gen-
erating posterior probabilities of models, provided we can
simulate them. It is therefore well suited to fitting complex
models, where it is not possible to compute a likelihood
function. In this way, species interactions could be incor-
porated into evolutionary models, thus permitting better
inference of the ecology underlying trait evolution. Pro-
cesses such as character displacement and mutualism affect
trait values, and ABC is a means of comparing models that
explicitly include these processes. ABC has been explored
for simple phylogenetic trait evolutionary models (Kutsu-

kake and Innan 2013), including birth-death models (Slater
et al. 2012), but its flexibility has not previously been used
for including complex effects like interspecific interactions.
In this article, we introduce a new model for the evol-

ution of interacting species within phylogenetic data. Our
objective is to create a model that includes character-
displacement interactions and makes realistic predictions
but that also may be fitted to real data. We do not assume
that all species are interacting with each other but instead
allow competitive interactions to be turned on and off at
different times and for different pairs of species.We use this
flexibility in two ways. First, interactions can be turned on
for sympatric species and turned off for allopatric species,
so that the model can encompass large groups of species
with variously overlapping or nonoverlapping ranges. Sec-
ond, we can add a delay, after each new species arises, be-
fore it begins interacting with the other species. This corre-
sponds to a scenario where speciation occurs in allopatry
and a subsequent range expansion brings the new species
back into contact after a significant time interval. These
two uses for optional sympatry can of course be combined.
There are two main diffusion models of trait evolution:

Brownian motion (BM; Felsenstein 1973, 1985) and the
Ornstein-Uhlenbeck (OU) model (Hansen 1997). The OU
model is based on BM, with the addition of an overall opti-
mum trait value to which all lineages are attracted. The
strength of attraction adds a further parameter. However,
we chose to build our model on the BM model. The BM
model is a very simple, neutral model, while the OU model
produces, in some respects, results that are the opposite of
those produced by our competition model. The ability to
reject BM in favor of either OU or competition may there-
fore be a useful aid in interpreting data.
The model predictions are compared with those of the

BM and rate change models for sympatric clades. We then
outline how ABC methods may be used to detect compe-
tition effects, and we show that the model is readily fitted
to data. Finally, we apply these methods to a simple case
study, the adaptive radiation of Galapagos finches.

Methods

The Model

Under the BM model of trait evolution (Felsenstein 1973),
for each species i, a trait value xi evolves according to the
differential equation

dxi p jdW i(t), ð1Þ
where W(t) is the integral of the continuous white noise
function, such that over a finite time it has a normal proba-
bility distribution:W(t) ∼ N(0,Dt). The BMmodel has two
free parameters, the evolutionary rate j and the root trait
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value xroot(0). The expected variance between tips is propor-
tional to the branch length separating them.

Many models for comparative data are based on modify-
ing this model by adding additional parameters (Pagel 1997;
Blomberg et al. 2003; Eastman et al. 2011; Revell et al. 2012;
Thomas and Freckleton 2012; Boucher and Démery 2016).
For example, exponential rate change models replace j with
g2tj (Blomberg et al. 2003), so that g ! 1 corresponds to an
increasing rate of trait evolution and g 1 1 means a decreas-
ing rate (an evolutionary slowdown). Notably, these mod-
els typically assume that the evolutionary trajectories of species
traits are independent and assume that there are no inter-
actions between different species.

Our competition model is based on the BM model, with
a term added to account for interspecific interactions. Com-
petition is modeled such that species with similar trait val-
ues tend to evolve away from each other, while species with
dissimilar trait values have little influence on each other.
To achieve this, we assume a flat fitness surface for trait
values in the absence of other species. In effect, we assume
that if the trait in question has a one-to-one correspondence
with some resource (e.g., body size and prey size), then the
distribution of resources is flat. We assume that a species
with a given trait value has a corresponding ideal resource
but also uses up other resources such that the distribution
of resource types used is normal and centred on the ideal
resource type. Therefore, a Gaussian curve is associated
with each species along a single trait axis representing this
resource use and consequently its amount of influence on
other species as a function of the difference in trait value
between the two species (Doebeli and Dieckmann 2003;
Leimar et al. 2008, 2013; Pigolotti et al. 2010).

The repulsion between two species in trait space is as-
sumed to be proportional to the overlap of each of their
associated curves. For the evolution of a single trait x in
a species i, we obtain a deterministic term, scaled by a pa-
rameter a:

dxi p a
X

j
Sij(t)overlap(xi, xj)dt 1 jdW i(t): ð2Þ

The area of overlap of two normal curves is related to the
cumulative normal function F of minus the distance (in
standard deviations) between them, such that the overlap
is equal to 2F(2distance=2) (Inman and Bradley 1989).
The overlap of two curves very far from each other is
2F(2∞)p 0, whereas the overlap of two curves with the
same center is 2F(0)p 1. S is a sympatry matrix, with
elements Sij each equal to either 0 or 1. If species i and j in-
habit the same geographical area and have the opportunity
to interact, then we can set Sij p 1; otherwise, Sij p 0. The
matrix S can be a function of time, permitting any given
pair of species to spend time effectively in allopatry and in
sympatry.

The relative intensity of competition is measured by the
value of the competition parameter a relative to the Brown-
ian rate parameter j. Ideally, we would have chosen tomake
the kernel width an additional parameter of the model. How-
ever, in practical terms, it would not have been possible to
distinguish this effect from that of the competition parame-
ter a. Appendix A shows that to a linear approximation the
effects of the two are the same, and so they are likely to be
statistically indistinguishable.
The instantaneous change of the trait value xi of species

i is given by

dxi p a
X

j
Sij(t)eij2F(2jxi 2 xjj)dt 1 jdW i(t): ð3Þ

Each xj is a vector in trait space; the index j denotes species.
The right-hand side has two terms: the first is a determin-
istic competition term, which pushes apart species that are
nearby in trait space; eij is the unit vector pointing from spe-
cies j to species i in trait space. Thus, aeijF(2jxi 2 xjj) is
a vector in trait space pointing from species i to species j,
proportional to the model parameter a and depending on
the closeness in trait space of species i and j. What distin-
guishes this model from previous ones is that in the com-
petition term of the equation, all traits are linked: the evo-
lution of two species away from each other in trait space
depends on the Euclidian distance between them as well
as their distances to all other species. We largely concentrate
here on single resources and traits. However, more gener-
ally, a multivariate normal curve in trait space may be asso-
ciated with each species in order to model interactions along
several resource axes.
In both the BM and the competition models, trait var-

iance increases without bound as time progresses. In real-
ity, there are limits that will be driven by ecology or by de-
velopmental and physiological constraints. We therefore
adapted the model by imposing hard limits on trait space,
such that species can evolve up to a chosen extreme value but
no further. This model was simulated alongside the limitless
model; hence, we obtain a new model with constrained trait/
niche space. We assume that the limits are symmetric about
the root trait value and equal to the most extreme value L.

Simulation Framework

In diffusion models such as BM or OU, trait evolution
may be modeled readily and quickly because species are as-
sumed to be independent. However, our model requires
that we simulate evolution over interacting branches, which
makes it far more computationally demanding. The ap-
proach we used was to take a discrete approximation to the
continuous differential process in equation (3). A large num-
ber of time steps were used, and trait values were computed
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sequentially for each step using the discrete approximation to
equation (3):

Dxi p a
X

j
Sij(t)eij2F(2jxi 2 xjj)Dt 1 jW(Dt), ð4Þ

whereW(Dt) ∼ N(0,Dt), that is, a normal distribution with
mean 0 and variance Dt. For every time step, pairwise trait
value differences must be computed between all species,
giving jxi 2 xjj for all species i and j. Then, the trait values
are all updated according to equation (4). For a tree with
20 tips divided into 1,000 time steps, a typical modern con-
sumer processor takes about 0.008 seconds to complete a
simulation. The simulation of traits on a single clade is sin-
gle threaded.

Simulations were performed on randomultrametric trees
generated under a Yule process (TESS; Hoehna 2013) with
between two and 100 tips. These tree sizes are large enough
to demonstrate the effects of competition and provide a
range over which our power to detect competition varies
from low to high. Because the competition model is de-
signed for sympatric, interacting sets of species having un-
dergone adaptive radiation, it is unlikely that numbers of
species will be very large. For example, the average clade
size in Harmon et al.’s (2010a, 2010b) survey of adaptive
radiations was 30 tips. We first estimated some summary
statistics for a single 10-tip tree: the fitted Brownian rate j,
phylogenetic signal K (Blomberg et al. 2003), and the rate
change parameters k and d (Pagel 1997). We did this for a
range of competition strengths from ap 0 to ap 5, re-
cording trait values through time to generate figure 1. We
also repeated this with competition and limits and with the
twomain subclades set to be allopatric (noninteracting) with
one another.

To compare tip trait value distributions, we generated a
single 40-tip random tree and collected trait data from many
simulations under each of three evolutionary regimes: BM,
competition, and competition with limits. The distributions
for each regime included all the corresponding data sets. To
assess the accumulation of trait variance, we did the same
again but with two different values of the competition pa-
rameter a.

Tree size has an effect on the variance of tip trait values
in our competition model, unlike BM. To assess this, we
generated trees that had numbers of tips from five to 100.
For each possible number of tips within this interval, we
generated 50 random trees. For each tree, we then simu-
lated a trait data set under BM, competition, and competi-
tion with limits. The mean tip trait value variance was plot-
ted as a function of the number of tips.

Competition also affects correlations between pairs of
coevolving traits. We simulated traits whose Brownian evo-
lution was strongly correlated (80% weighting for a single
Brownian process and a 20% weighting for additional inde-

pendent Brownian processes; under pure BM, this results
in a correlation of tip trait values of approximately r2 p
0:8) under a wide range of competition strengths (ap 0
to ap 5). We did this for a single small tree (10 tips) and
a single larger tree (40 tips). We also repeated these steps
for four fixed values of a (0, 1, 4, 8) while varying the BM
dependence (i.e., the amount of shared change between
traits) and observed the resultant correlation between tip
trait values.
The sympatry matrix S(t) in equations (2) and (3) allows

us to control which lineages interact and when. This means
we can set up simulations where lineages start to have com-
petitive interactions a fixed time after they start. This corre-
sponds to the scenario of speciation in allopatry and sub-
sequent range expansion so that all lineages eventually
come back into contact. We simulated data with a range
of delay periods (0.1, 0.2, 0.5, and 1.0 times the mean time
between speciation events) and generated power estimates
for detecting competition in these cases. We also generated
an example data set—with a delay period of 0.5 times the
mean time between speciation events—on a single 16-tip
tree for comparison with other models (fig. 1E). It is impor-
tant to note that we do not fit our sympatry matrix to data.
The sympatry or allopatry of any given set of species is as-
sumed to be known from independent data on species’
ranges. A delay between speciation and competitive inter-
actions can also be added, but again, this is preset by the user,
not fitted.
The reasons for basing the competition model on BM

rather than the OU model are detailed in the introduction.
However, for the sake of comparison, we did run some sim-
ulations of an OU 1 competition model. The model is de-
tailed in appendix B, and an example simulation is shown
in figure 1D.
Finally, we assessed the effect of competition on phylo-

genetic signal. A single 100-tip tree was generated, and
trait values were simulated for a range of competition pa-
rameter strengths (ap 0 to ap 5). Blomberg’s K (Blom-
berg et al. 2003) was then computed using the Kcalc func-
tion in the R package picante (Kembel et al. 2010).

Model Comparisons and Likelihoods

We fitted the model to data using ABC (reviewed in Beau-
mont 2010; Csilléry et al. 2010; Hartig et al. 2011). ABC can
be used for comparing the probabilities of data sets under
different models when these probabilities are difficult to
compute directly. This is because the only requirement to
perform ABC is that we can simulate new data sets using
the model. The data set probabilities are approximated by
simulating a large number of data sets and accepting only
those simulations that are very similar to the observed data
set. This similarity can be judged either from the data values
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a = 0

σ
2
 = 1.556

κ = 1.004

δ = 1.33

K = 0.924

A

a = 1

σ
2
 = 3.373

κ = 1.059

δ = 0.507

K = 1.899

B

a = 3

σ
2
 = 5.805

κ = 1.212

δ = 0.451

K = 2.562

C

a = 3

σ
2
 = 1.975

κ = 0.091

δ = 1.354

K = 1.201

D

a = 3

σ
2
 = 3.15

κ = 1.735

δ = 0.391

K = 1.872

E

a = 3

σ
2
 = 6.174

κ = 1.153

δ = 1.223

K = 1.099

F

Figure 1: Examples of a single trait evolving under the competition model with different strengths of the competition effect parameter a.
A single random 16-tip tree is used throughout. The Brownian motion (BM) parameter jp 1 is used for all the simulations. The parameter
values listed by each plot are the estimates obtained using the data shown; these are subject to substantial stochastic variation between simula-
tions.A, When ap 0, we recover the BMmodel. B, Simulated using ap 1. C, Simulated using ap 3.D, Competition plus Ornstein-Uhlenbeck
(OU) model, with the OU parameter a set to 5. Strong competition and OU effects cancel each other out in some respects. E, Delayed com-
petition, where each new lineage starts to experience competitive interactions a fixed time after it appears. This corresponds to a scenario of
allopatric speciation and subsequent range expansion. F, Here the two main subclades of the tree do not interact with each other, though there
is strong competition within the subclades. This corresponds to a mixture of sympatric and allopatric species, for example, a radiation on two
different islands.
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themselves or using summary statistics. The proportion of
simulations that are accepted is then assumed to be propor-
tional to the data set probability. When the model contains
continuous parameters, we sample across these parameters
and obtain an approximate probability density for the ob-
served data under any point in a range of parameter val-
ues. This can be used to estimate the likelihood curves of
fitted models. ABC relies on the likelihood being a fairly
smooth function of the model parameters (Hartig et al.
2011). Since our model progressively changes the trait dis-
tribution and phylogenetic signal smoothly (with respect
to the competition strength a), we expect the likelihood to
be a smooth function.

To apply ABC to phylogenies (e.g., Beaumont 2010), we
sample the parameters of the evolutionary model randomly
many times from a prior parameter distribution. Here we
choose the prior distribution to be uniform, with the model
necessitating a hard limit at 0 for both the Brownian rate
and the competition strength. For each set of parameters,
trait data sets are then simulated for the known phylogeny.
Summary statistics are generated for the simulated data,
and only those simulations for which the summary statis-
tics are within a small value ε of the observed data’s sum-
mary statistics are accepted. Thus, for observed data D and
tolerance ε, we accept some simulated data D 0 if

r(D0,D) ! ε, ð5Þ

where r is the discrepancy—or distance in summary statis-
tic space—between D0 and D. In practice, we chose the tol-
erance ε on the basis of the size of the posterior sample that
we wanted to obtain, so we might simulate a million data
sets and choose ε such that we accept the best 500 simula-
tions. By plotting acceptance rate against parameter values,
we obtain an estimated likelihood surface.

To compare simulated and observed data sets, it is nec-
essary to compare summary statistics. We chose to use
three summary statistics: the mean and the variance of
the differences between each species and its closest neigh-
bor in trait space, and the overall phylogenetic signal as
measured by Blomberg’s K (Blomberg et al. 2003). The ra-
tionale for using these three statistics was to capture the
overall amount of evolution, the overdispersion of trait val-
ues, and the phylogenetic structuring of the trait values.
There is no well-established procedure for choosing sum-
mary statistics for ABC. High sufficiency is needed to com-
pare models, but the ABC method quickly loses accuracy
and stability with large numbers of summary statistics (Csi-
lléry et al. 2010). Our summary statistics were chosen on a
pragmatic basis, since they capture the important aspects
of the model’s behavior, namely, increased divergence be-
tween sibling species and an even overall distribution of traits
across the phylogeny.

We chose to compare the competition model with the
BM model using maximum approximated likelihood, be-
cause the BM model is embedded in the competition model.
The null and alternative ABC acceptance rates A give an
estimate of the likelihood L(HFD) of the observed data set
under the various model parameters. This assumes a smooth
probability distribution with an overall peak and a separate
peak on the ap 0 (Brownian motion) plane. Since small
changes to the model parameters should create small changes
in average trait distributions, the assumption of smoothness
should be met, provided that many simulations are used.
The two peaks define the null and alternative model param-
eters. When there is no prior difference in model likelihood
expectation, the log-likelihood ratio statistic for the compar-
ison of two models H0 and H1 is given by

22log  
L(H1jD)
L(H0jD)

p22log
A1

A0

: ð6Þ

When the models are nested, this test statistic approximates
a x2 distribution, given certain assumptions: large samples
and normally distributed parameters. However, these as-
sumptions may be significantly violated by phylogenetic
methods (Freckleton 2009). For instance, in the BM model,
j is bounded at 0, and in our competition model, a is also
bounded at 0. To correctly interpret the test statistic, there-
fore, the null distribution of the log-likelihood ratio test sta-
tistic was assessed with a parametric bootstrap.
The bootstrap was undertaken by performing the model

comparison analysis on data sets generated under BM to
create a null distribution of likelihood ratios. Then, if, for
example, we want to know the likelihood ratio correspond-
ing to a P value of .05, we simply look at the ninety-fifth per-
centile of the null distribution. The resulting type I error
rate is therefore chosen by design: if a significant likeli-
hood ratio is one that corresponds to a P value of 5%, then
the type I error rate is 5%. To estimate typical significance
thresholds, we performed this procedure for random trees,
using 1,000 random data sets.
The power to reject BM in favor of the competition model

was assessed by using random ultrametric Yule trees (20, 40,
60, and 80 tips). The bootstrap process was performed to
determine the significance threshold for that tree. Then,
for a given value of the competition parameter a, we simu-
lated a large number of data sets and determined the like-
lihood ratio (between the BM and competition models) for
each one. The proportion of these data sets that showed sig-
nificant support for competition effects defines the power
of the model for that value of a. We repeated this process
for a range of competition strengths from ap 0 to ap 5.
This range covers evolution from a Brownian process with
no interspecific interaction (ap 0) to a largely determinis-
tic regime with high phylogenetic structuring of trait values
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(ap 5). We also assessed power as a function of the delay
period before new species start interacting.

To evaluate the simulated data produced by the compe-
tition model, other comparative models were fitted to the
data: the Brownian model itself; the d model, which mea-
sures temporal acceleration and deceleration in rate; the k

model, which measures the degree to which evolution is spe-
ciational rather than gradual (Pagel 1997); and K, a measure
of phylogenetic signal (Blomberg et al. 2003). Parameter esti-
mates were generated using the R packages geiger (Harmon
et al. 2008) and picante (Kembel et al. 2010).

We compared two further common models to the com-
petition model. Trait distributions and phylogenetic signal
were computed for a single 25-tip tree, using the competi-
tion model as well as the OU model (Hansen 1997) and
the early burst (EB) model (Blomberg et al. 2003; Harmon
et al. 2010a). Traits were simulated for the OU and EB
models using the function rTraitCont in the R package
ape (Paradis et al. 2004). For the EB simulations, however,
the tree is first time-transformed according to

t →
egt 2 1

g
, ð7Þ

where t is time and g parameterizes the model. When g
is negative, this represents a slowdown over time. As g ap-
proaches 0, the transformation approaches the identity,
and we recover the Brownian model. We applied this trans-
formation using the function transfBranchLengths in the R
package phylolm (Ho and Ané 2014).

The simulations were written in C11. Scripts for using
these data sets for likelihood estimation were written in R
(R Development Core Team 2015), using ape (Paradis et al.
2004) and TESS (Hoehna 2013) for tree generation (code
is available online and also in GitHub [https://github.com
/mcshef/treecomp/]).

Case Study: Darwin’s Finches

The phylogeny of Galapagos finches was taken from La-
michhaney et al. (2015). We used a data set from Harmon
et al. (2010b), using individual data originally from Lack
(1947), with species values for five traits: wing length, tar-
sus length, bill length (culmen), bill depth, and bill width
(gonys). We computed likelihood ratios for each trait in-
dividually as well as for combined pairs of beak traits.
The final data sets used are deposited in the Dryad Digital
Repository: http://dx.doi.org/10.5061/dryad.3sk15 (Clarke
et al. 2017).

After simulating data on the phylogeny to determine
likelihood cutoffs for rejecting BM, a likelihood comparison
between the competition model and the nested BM model
was run for each of the five traits separately. We performed
the tests twice—once including and once excluding the

phylogenetic summary statistic K—to judge the importance
of signal in favoring the competition model.

Results

Example of Clade Evolution under the Competition Model

Illustrative examples of evolution under the competition
model are shown in figure 1. Estimates of phylogenetic sig-
nal K and phenotypic rate change transformation param-
eters d and k (Pagel 1997) are also shown for the simulated
data. The evolution of each species is tracked through time
from left to right. It can be seen that competition increases
phylogenetic signal while giving the appearance of an overall
slowdown in rates of trait evolution.
Competition tends to increase the overall variance in

traits among the species in a phylogeny, as is clear from
the increase in range and variation of traits moving from
figure 1A to figure 1C. This is because species experiencing
competition from other species are more likely to evolve
extreme trait values to become more different and escape
competition.
As the strength of competition is increased, the differ-

ences between species become more clearly defined, with
them occupying distinct positions in niche space. There
are fewer intersections of traits’ evolutionary paths over time
between species, and the phylogenetic signal K exceeds the
neutral BM prediction of K p 1. Competition thus in-
creases phylogenetic signal above that expected under the
BM model while presenting the appearance of a consider-
able tree-wide evolutionary slowdown. This slowdown can
be seen in figure 1, where the rate change model d is fitted
to data sets simulated under competitive effects. This means
that a species’ trait values map more directly onto its posi-
tion in the tree. For sympatric clades, there is thus a predic-
tion of traits being more phylogenetically conserved than
under BM.
Estimates for commonly used branch transformation pa-

rameter k from these data sets are also shown in figure 1. k
measures the rate change along branches and overall mea-
sures the degree to which change is speciational (Pagel 1997).
A transformation parameter d models the overall changes
in evolutionary rate across the tree, with lower values cor-
responding to evolutionary slowdowns (Pagel 1997). We find
that the d parameter diminishes very rapidly as competi-
tion is increased. It should be noted here that the d parame-
ter is biased such that the expectation values for BM are 11
(Freckleton et al. 2002). Nevertheless, this reflects an appar-
ent slowdown of evolutionary rate, which becomesmore pro-
nounced as the value of a increases. Species competing for
unoccupied niche space thus evolve more rapidly early on
in their development, when they are more similar to one an-
other and the effects of competition are stronger, as one
would expect in an adaptive radiation (Yoder et al. 2010).
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Figure 1D shows a simulation using a combined compe-
tition and OU model (for details, see app. B). It can be seen
that the repulsive effect of competition and the central at-
traction of the OU process have somewhat opposite effects,
with competition tending to increase phylogenetic signal
and rates of trait evolution, while the OU process reduces
signal and the overall rate of trait change. This is part of
the reason why we chose to base the competition model
on the BM rather than the OU process. Even in real cases
where both processes are present, the dominant process
can likely be judged by the relative support for the compe-
tition and OU models considered separately. It seems un-
likely that both components could be accurately fitted si-
multaneously, since their effects are so confounded.

Finally, we considered two cases of partial sympatry. In
the first (fig. 1E), new lineages come into interaction with
preexisting lineages only after a fixed delay period. This
reduces phylogenetic signal relative to complete sympatry.
The distribution of tip trait values is less affected, unless a
substantial number of lineages remain in allopatry at the tree
tips, that is, at the present time. The second case is analogous
to two parallel adaptive radiations on isolated islands: all the
descendants of one ancestral species interact with each other
but not with the descendants of the second ancestral spe-
cies. This removes the raised phylogenetic signal effect and
most of the change in trait distribution. However, we can still
detect competition, provided that we have a priori knowledge
of the sympatry or allopatry of each species pair.

Trait Distributions across Tree Tips

The distribution of trait values of the phylogeny tips is flat-
tened in the competitionmodel compared with BMmodels,
which predict normal distributions for large trees (fig. 2A).
This outcome is expected when competition shapes trait
values (Davies et al. 2012). The impact of competition on
trait distributions is even more pronounced where hard
limits are placed on the available range of trait values (also
fig. 2A).

In addition to creating a more even trait distribution, com-
petition increases the overall amount of trait divergence, given
equal BM rates (fig. 2B). This is consistent with the expec-
tation that equivalent species sets should be more diverged
in sympatry than in allopatry when there is competition
(Schluter 2000). From a biological perspective, there is thus a
prediction that competition leads to a wider range of mor-
phological variation in a clade, reflecting the increased ten-
dency toward extreme traits when there is lots of competition.

Effects of Tree Size

We used trees normalized to the same total length, regard-
less of the number of tips. Given this normalization, under

BM and rate change models, the variance of tip trait values
shows no change with increasing the number of tips (in
agreement with Ricklefs [2004]). In the competition model,
larger trees have greater variance, since a greater number of
species are pushing each other away; this is shown in fig-
ure 2C. This relationship seems to be approximately linear
for the unbounded competition model. When hard limits
are imposed, the variance reaches a maximum correspond-
ing to the positions of the extremes.

Effects of Competition on Correlated
Traits and Phylogenetic Signal

For pairs of traits, in which the evolutionary changes in trait
values are correlated, the correlation between the traits de-
cays rapidly with increasing competition strength. This is
even more pronounced when there are limits on extreme
trait values. Figure 2D and figure 2E show how the correla-
tion decays. By decorrelating traits, competition forces the
trait space to be occupied more evenly.
Phylogenetic signal is increased by competition because

species tend to remain adjacent in trait space to their close
relatives (fig. 2F), and so their trait values are unlikely to
cross over with time. Plots of traits through time therefore
become more defined and tree-like. This can be seen, for
example, in the sample simulations of figure 1. Correlation
between traits has little effect on the phylogenetic signal ex-
hibited by the individual traits under either the BM model
or the competition model. Limits reduce the phylogenetic
signal, since there is less trait space for distantly related spe-
cies to diverge. Indeed, without competition driving the
signal up (i.e., when ap 0), the model with limits predicts
reduced signal compared with the BM model, with K esti-
mated to be !1.
Price’s (1997) model of adaptive radiations makes the

unique prediction that when two traits have correlated evo-
lution, the correlation between phylogenetically indepen-
dent contrasts is potentially different in form than that
between the traits themselves (Price 1997; Harvey and Ram-
baut 2000; Freckleton and Harvey 2006). In contrast, a
Brownian model predicts equal correlation for both traits
and contrasts.
We compared trait and contrast correlations under the

competition model presented here. Competition tends to
reduce correlation between traits, as discussed above, but
we set the Brownian evolution of the traits to have very high
correlation (fig. 3). We found that contrasts had higher
correlations than traits. This probably reflects the fact that
competition tends to have a greater effect earlier in the evo-
lutionary history of any particular species. However, the
general principle seems to hold, namely, that when species
interact, the correlations between traits and trait changes
(i.e., contrasts) are not expected to be equal.
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Comparisons with Alternative Models

We generated trait distributions and computed phyloge-
netic signal for a single 25-tip tree, using the competition
model as well as the OU model (Hansen 1997) and the
EB model (Blomberg et al. 2003; Harmon et al. 2010a).
(We in fact simulated on a range of trees, with sizes up to
100 tips, but report on a single tree here for the sake of com-

parison. Tree size makes no qualitative difference to the ob-
served patterns.) The expected distributions for OU and
EB trait values remain normal, although the OU model re-
duces the variance relative to BM. The actual trait distribu-
tion for a typically sized tree, however, was often multi-
modal for the EB model. In contrast, the competition
model predicts a flattened, regular distribution of trait val-
ues. In this respect, the competition and EB predictions

T
ra

it
 C

o
rr

e
la

ti
o
n

a=0 (BM)
a=1
a=4
a=8

A
a=0 (BM)
a=1
a=4
a=8

B

Trait Correlation

a=0 (BM)
a=1
a=4
a=8

C

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Trait Correlation

a=0 (BM)
a=1
a=4
a=8

D

C
o

n
tr

a
s
t 
C

o
rr

e
la

ti
o

n
C

o
n

tr
a

s
t 
C

o
rr

e
la

ti
o

n

C
o

n
tr

a
s
t 
C

o
rr

e
la

ti
o

n

BM dependence between traits BM dependence between traits

Figure 3: Traits and contrasts for two traits, where one trait has a dependence on the other. For each step in time, the dependent trait has an
evolutionary change that depends on the change to the other trait. If the dependence is 1, then these changes are equal; if the dependence is
0.5, then the change in the dependent trait is 0.5 of the change in the other trait, and the remaining change is random. A, Trait correlation as
a function of the intrinsic trait dependence. B, Contrast correlation as a function of the intrinsic trait dependence. C, Correlation between
contrasts is slightly greater than correlation between traits for competitive evolution. D, Contrast and trait correlations for a model of com-
petition with trait space limits.

000 The American Naturalist

This content downloaded from 143.167.030.213 on January 17, 2017 04:14:20 AM

All use subject to University of Chicago Press Terms and Conditions (http://www.journals.uchicago.edu/t-and-c).



differ. Phylogenetic signal, on the other hand, is raised by
both the competition model and the EB model, although
more strongly by competition. The OUmodel reduces phy-
logenetic signal to lower values than expected under BM
and to very low values when strong. These results are tab-
ulated in appendix C (apps. C, D are available online).

Power

The power to detect competition effects against a background
of BMevolution is shown in figure 4A–4D for trees of various
sizes. We define the power as the frequency with which sim-
ulated data sets show significant support for competition ef-
fects as opposed to the (nested) BM null model. Power is
greatest for large trees with high competition strength relative
to BM rate. This can be interpreted as the relative contribu-
tion to overall evolutionary change of competitive effects ver-
sus other—effectively random—effects.

We also computed the power to distinguish data gener-
ated under a competition model from OU and EB models.
This is shown in figure 4F. There is excellent power to de-
tect even weak competition compared with these other
models. This is not surprising, since a large amount of var-
iation in trait distributions and phylogenetic signal can be
generated under BM, and both the EB and the OU models
represent deviations from BM that differ from the devia-
tions caused by competition. Competition raises signal and
reduces the variance in differences between neighboring tip
trait values, whereas EB increases tip value difference vari-
ance, and OU reduces signal.

Figure 4E shows power as a function of delay. Delay here
means the time froma lineage originating to the time atwhich
it starts interacting with all the preexisting lineages, measured
as a proportion of the mean time between speciation events.
While this delay reduces power, substantial power to detect
strong competition remains even for delay periods of simi-
lar length to the time between speciation events.

In this context, a significant data set is one for which the
type I error rate is estimated to be≤0.05. This is the frequency
with which data from null model simulations display model
likelihood ratios that equal or exceed the ratio for the ob-
served data set. This is determined via a parametric bootstrap.

Case Study: Darwin’s Finches

The simulations described above demonstrate two things:
first, that the model we describe successfully captures be-
havior that we would expect to be observed in systems of
interacting species; and second, that it may be applied to
data and used to infer the presence of competitive interac-
tions. In order to use the model in a real-world example,
we applied the competition model to an example data set,
using trait measurements collected by Harmon et al. (2010a;
originally Grant and Grant 2002; Lack 1947; repository in

Harmon et al. 2010b) and a recent molecular phylogeny
(Lamichhaney et al. 2015). We used the Galapagos finches
(Geospiza spp.) because they are a well-studied adaptive radi-
ation, and ecological effects were anticipated to be of impor-
tance. The effect of character displacement on intraspecific
variation among these finches is well documented (e.g., Grant
and Grant 2006). Here we are looking to see whether evi-
dence for this mechanism can be detected in the overall dis-
tribution of traits across the clade.
The parameter estimates and model likelihood ratios

are shown in table 1. The beak traits showed greater sup-
port for competition compared with Brownian evolution
than the other traits. This appears to point to an ecological
effect: the competition model implies a tendency toward
well-differentiated niches that do not cross, and the beak
shape is an ecological trait, in the sense that it corresponds
strongly to feeding habits (Grant and Grant 2011). Multitrait
analyses for pairs of beak traits are also shown in table 1.
Competition tends to reduce correlation between traits in
our model, however (see fig. 1). Since beak measurements
are likely to be correlated (because of overall size), the model
may have a poor fit without adding correlated Brownian evo-
lution as a further fitted parameter, which we have not done.
The model as it stands may be better suited to principle com-
ponent data, where correlations have already been accounted
for and removed before the analysis. Figure 4 shows illustra-
tive plots of simulated trait evolution, using themodel param-
eters that were estimated for the culmen length. Compared
with BM, shown in figure 4A, the tree becomes very well de-
fined, with strong phylogenetic signal.
One of the beak traits (culmen length) favored the com-

petition model when signal was not used but less so when
it was included. Brownian rate parameter estimates under
the model with limits are higher than those for the non-
limited competition model. This higher rate does not result
in a greater total amount of evolutionary change because of
the hard limits that are reached either way. This result does,
however, suggest that the niche landscape may be the lim-
iting factor in the finches’ evolution: the finch traits are ca-
pable of evolving rapidly, but their values are constrained
by the combination of interactions between species and
environmental limits on niche space.
It is worth noting that none of these results takes into

account intraspecific variation or uncertainty in the finch
phylogeny. Species interactions will be somewhat indepen-
dent on different islands, as illustrated by the character dis-
placement seen in intraspecific trait variation (Grant and
Grant 2006).

Discussion

There have been several recent approaches to integrating
ecological processes into phylogenetic models of evolution
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(Cavender-Bares et al. 2009; Pennell and Harmon 2013;
Hadfield et al. 2014). As a step in this direction, we have
created a model of interspecific competition on phyloge-
nies of coexisting species. The model provides a process-
based picture of competitive evolution, linking statistical
patterns directly to the underlying ecology. It generates the
patterns we expect to see in situations where interspecific
competition is important.

Competition and niche overlap have a complex rela-
tionship. According to one scenario, niches form a con-
tinuum, with similar fitnesses along a niche axis. Species
compete for empty regions of the niche axis and evolve
minimally overlapping, evenly spaced trait values, consis-
tent with the ecological idea of character displacement (Grant
1972; Strong et al. 1979; Dayan and Simberloff 2005). Our
model accommodates this process in a phylogenetic context.
However, according to a second scenario, there is an opti-
mum position on a niche axis, and species will compete with
each other to occupy it. Consequently, they will evolve sim-
ilar trait values tailored to that optimum (Colwell and Fu-
tuyma 1971), a form of convergent evolution. Traits that have
evolved like this are likely to be poorly represented by our
competition model, and we would be unlikely to find evi-
dence supporting the model. Instead, such a process would
be better modeled by a process such as an OU model (Han-
sen 1997; Butler and King 2004). The model we have intro-
duced here corresponds better to a process of occupancy of
distinct niches distributed across trait space.

One prediction of the competition model is a flattened
distribution of trait values among contemporary species of
a single sympatric clade. Indeed, competition is often in-
ferred from such evenness (Dayan and Simberloff 2005;
Davies et al. 2012). The same pattern can, however, be caused
by competition at the community assembly level rather than
in situ trait evolution (Cavender-Bares et al. 2009; Stuart and
Losos 2013) or by geographical structure in speciation and

extinction (Pigot and Etienne 2015). For this reason, the
model presented here is best applied to complete clades rather
than local paraphyletic communities. Since complete clades
are rarely entirely sympatric, we have included the ability to
turn competitive interactions on and off on a pairwise basis,
depending on sympatry. The model can similarly include a
delay between speciation events and the start of competitive
interactions involving the new species, corresponding to al-
lopatric speciation and subsequent range expansion. This
is important since there is a wealth of variation between
clades in species’ geographic structure and opportunity to
interact (Fitzpatrick et al. 2008). Strong niche conservatism
is, nevertheless, predicted for largely sympatric clades. De-
veloping summary statistics for testing our model on data
with substantial allopatry—for example, multiple island ra-
diations—will be an important future development.
The pattern of non-Brownian trait distributions and

high phylogenetic signal is also generated by an alternative
but related mechanism, where—instead of there being a con-
tinuum of possible niches—the niches are discrete and new
species arise by jumping to a nearby niche (Price 1997; Harvey
and Rambaut 2000; Freckleton and Harvey 2006). In these
models, niches appear at random, and existing species that
are nearby in niche space can speciate to occupy a new niche.
Determining a method to distinguish this type of model from
diffusion models will be a useful future development. Spe-
cifically, this approach differs from the other models dis-
cussed here in that the tree topology is not fixed but interacts
with species’ trait values as the clade evolves.
There are numerous speciation/extinctionmodels for phy-

logenies (Nee et al. 1994; Pybus and Harvey 2000; Rabosky
2006; Freckleton et al. 2008; FitzJohn 2010), including some
that are expected to correspond to clades with interspecific
competition (Harmon et al. 2010a; Etienne et al. 2012). Our
model is concerned only with trait evolution. Trait evolution
and diversification rates may be coupled in nature, however,
and both may vary with factors such as interspecific compe-
tition. Building models of adaptive radiations that simulta-
neously predict trait evolution and diversification will be key
in the future.
Most phylogenetic models of trait evolution are modifi-

cations of the random BMmodel. As noted above, adaptive
radiations are generally consistent with a tree-wide gradual
slowdown in rates of phenotypic evolution (d model: Pagel
1997;ACDCmodel: Blomberg et al. 2003). Speciational evo-
lution can be modeled as a gradual branch-wise slowdown
(kmodel: Pagel 1997) or by partitioning evolution into grad-
ual and speciational parts (Bokma 2008; Ingram 2010). Dis-
crete shifts in evolutionary rate can be modeled to detect,
for example, adaptive radiations embedded in a larger tree
(O’Meara et al. 2006; Thomas et al. 2006). Slowdowns in evo-
lutionary rate have also been observed as a function not of
time but directly of a clade’s size (Mahler et al. 2010). The

Table 1: Traits and likelihood ratio test statistics (LRTS) formodel

comparisons for Galapagos finches

Trait j a LRTS

Wing length 1.48 .28 1.01

Tarsus length 1.64 .48 1.04

Culmen length 1.24 .96 4.34*

Beak depth 1.40 1.92 2.73

Gonys width 1.48 1.32 1.87

Culmen 1 beak depth 1.12 3.76 3.11

Culmen 1 gonys width 1.12 4.20 3.24

Note: The finch trait data set is that given by Harmon et al. (2010b). The com-

petition model is compared with the nested Brownian motion (BM) model. The

competition model has one extra parameter compared with the BM model.
* Significance based on simulated parameter distributions.
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results for our competition model suggest that it reproduces
the appearance of a strong tree-wide slowdown. During a ra-
diation, though, competition is predicted to cause overall trait
variance to increase much more rapidly. Our results for the
competition model also demonstrate raised phylogenetic
signal when most species are sympatric and have opportu-
nity to interact, in agreement with similar results fromNuis-
mer and Harmon (2015).

In all analyses, we used a fixed competition kernel width.
The fact that this width is not distinguishable from the
competition strength itself suggests that the amount of var-
iation possible within a single niche is not readily ascer-
tained from a phylogeny and trait data. Measurements of
intraspecific variation will be more suited to this question.
In fact, the competition kernel widths could be set empiri-
cally before analysis, if data on intraspecific variation were
available.

Our results for the Galapagos finches support the well-
known presence of character displacement in that clade
(Grant and Grant 2006) and further suggest that interspecific
competition is a significant force comparable with other—
effectively random—sources of evolutionary change for the
Galapagos finches. For some beak measurements, the Gala-
pagos finches exhibit the elevated phylogenetic signal pre-
dicted by the competitionmodel, and for beak length, we find
strong support for the model.

As phylogenetic methods continue to be used to infer
evolutionary processes, it will be important to include spe-
cific ecological mechanisms (Vamosi et al. 2009). Competi-
tion for ecologically distinct roles is often implicitly or ex-
plicitly assumed in adaptive radiations, but its prevalence
and importance remain uncertain (Schluter 2000; Stuart
and Losos 2013). We have developed an explicit model of
competition on phylogenies to detect competitive effects
in sympatric adaptive radiations and to enable measure-
ment of competition strength. The predictions of this model
may help in understanding the roles ecological processes play
in shaping trait evolution.
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APPENDIX A

Estimating Competition Strength and

Effect Width Simultaneously

The overlap between species i and j is proportional to
F(2DX ij=2j), where F is the cumulative normal distribu-

tion. Integrating by parts yields the following approximate
function for the overlap between two species:

F
2jDX ijj

2j

� �

p 0:52
1
ffiffiffiffiffiffi

2p
p e(2jDX ijj2)=(8j2)

jDX ijj
2j

1
jDX ijj3
24j3

1⋯

� �

:
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To obtain the evolutionary rate, we multiply this by a,
giving

aF
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2j
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p 0:5a2
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2p
p e(2jDXijj2)=(8j2)

jDX ijj
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� �

:
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At first glance, it might appear that changing a and j would
have different effects because the former changes evolution-
ary rates in a linear manner, while the effect of the latter is
nonlinear. However, if there are a large number of species
within a limited niche space, then distances between spe-
cies will be low; that is, jDX ijj is small. Consequently, we
can use the following approximation by the Maclaurin se-
ries expansion of ex:

e(2jDXijj2)=(8j2)
≈ 12

1

8j2
jDX ijj2:

Substituting into equation (A2) and ignoring higher than
squared terms, we obtain
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Overall, the rate of evolution is given by the overlap,
2F(2DX ij=2j), multiplied by a, yielding

2aF
2jDX ijj

2j

� �

≈ a 12
jDX ijj
j

ffiffiffiffiffiffi

2p
p

� �

:

This equation is linear in both a and j21. Thus, from a sta-
tistical perspective, a and jwill be nonidentifiable if the spe-
cies are interacting strongly. If species are not interacting
strongly—that is, DXij is large—then the data will contain
no information on interactions between species; hence, it
will not be possible to fit the model, and we cannot estimate
either a or j.

APPENDIX B

Ornstein-Urhlenbeck Model with Competition

We based our competition model on BM for reasons de-
tailed in the introduction. However, for the sake of com-

ðA1Þ

ðA2Þ

ðA3Þ

000 The American Naturalist

This content downloaded from 143.167.030.213 on January 17, 2017 04:14:20 AM

All use subject to University of Chicago Press Terms and Conditions (http://www.journals.uchicago.edu/t-and-c).



parison, we also simulated under a model that included
both OU and character displacement processes. The result
is random diffusion with attraction of all lineages to a cen-
tral optimum but repulsion between lineages.

The instantaneous change in the OU model of the trait
value x for any given lineage is given in differential form by

dx(t)p 2a(x(t)2 w)1 jdW i(t), ðB1Þ

where w represents the optimum trait value to which line-
ages are attracted. The OU1 competition model combines
equation (3) and equation (B1), giving

dxi p 2a(x(t)2 w)

1 a
X

j
Sij(t)eij2F(2jxi 2 xjj)dt 1 jdW i(t):

ðB2Þ
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“In old times the bittern was held in high esteem for the sport it afforded when pursued by trained falcons. Both birds would mount in spirals,
oftentimes out of sight; the bittern straining every nerve to keep above the hawk, the hawk doing his best to rise above the bittern so as to make the
fatal pounce. The bittern, being of weaker flight, rarely escaped, but often in his death involved his enemy’s; for as the cruel falcon came downwith
rushing wings, exulting in his fierce soul, the bittern, in his dire extremity, thrusting up his sharp beak, empaled the triumphant savage, and both
came tumbling from the clouds together, striking the earth with a thump which drove the last breath from both. A lesson to tyrants not to push the
weak to despair.” From “Bitterns” by William E. Endicott (The American Naturalist 1869, 3:169–179).
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