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Trait-like nocturnal sleep behavior identified by combining

wearable, phone-use, and self-report data
Stijn A. A. Massar 1,4, Xin Yu Chua 1,4, Chun Siong Soon 1, Alyssa S. C. Ng1, Ju Lynn Ong 1, Nicholas I. Y. N. Chee1, Tih Shih Lee2,

Arko Ghosh 3 and Michael W. L. Chee 1✉

Using polysomnography over multiple weeks to characterize an individual’s habitual sleep behavior while accurate, is difficult to

upscale. As an alternative, we integrated sleep measurements from a consumer sleep-tracker, smartphone-based ecological

momentary assessment, and user-phone interactions in 198 participants for 2 months. User retention averaged >80% for all three

modalities. Agreement in bed and wake time estimates across modalities was high (rho= 0.81–0.92) and were adrift of one another

for an average of 4 min, providing redundant sleep measurement. On the ~23% of nights where discrepancies between modalities

exceeded 1 h, k-means clustering revealed three patterns, each consistently expressed within a given individual. The three

corresponding groups that emerged differed systematically in age, sleep timing, time in bed, and peri-sleep phone usage. Hence,

contrary to being problematic, discrepant data across measurement modalities facilitated the identification of stable interindividual

differences in sleep behavior, underscoring its utility to characterizing population sleep and peri-sleep behavior.
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INTRODUCTION

Sleep is increasingly recognized as a major modifiable lifestyle risk
factor and this has contributed to a boom in sales of consumer
wearables that track it. In the short term, poor sleep is associated
with impaired cognitive performance, mood, and motivation1–4,
while over extended periods, sleep loss increases the risk of
diabetes mellitus, hypertension, cardiovascular and cerebrovascu-
lar disease, earlier cognitive decline, Alzheimer’s Disease, and
depression5,6. Many epidemiological associations have been
derived using self-report questionnaires which are subject to
recall errors and are inconvenient for the collection of longitudinal
data. Objective measurement of sleep is thus desirable for
longitudinal or long-term assessment of sleep duration, timing,
regularity, and continuity.
Polysomnography (PSG) while accurate is expensive, labor-

intensive, and often limited to short study durations. Research-
grade actigraphy is less expensive, relatively unobtrusive, and can
be conveniently deployed for longer durations. However, most
actigraphs require laboratory sited download from the devices.
The recent proliferation of commercially available consumer
wearable and smartphone technologies opened up an opportu-
nity to collect remote sleep and health data, with a highly reduced
need for participant contact and intervention. Accordingly, an
increasing number of studies have turned to such methods for
long-term ambulatory tracking of sleep7–11.
Wearable sleep trackers measure body motion, heart rate, and

skin temperature or some combination of these and provide
periodic feedback about user behavior through appealing graphs
and charts. These inexpensive devices hold promise for collecting
large-scale longitudinal sleep data that could dramatically
improve the characterization of longitudinal sleep patterns
compared to cross-sectional estimates of sleep duration or quality
obtained from questionnaire data. While less accurate than PSG,
collecting data from such devices is far more economical,

technically simple, ecologically valid, and can be obtained for
multiple nights of sleep in the participants’ home12–14. Data
collected from such devices have found associations between
poorer sleep and surrogates of cardiovascular and metabolic
health as well as telomere attrition15,16.
A key component of the wearable sleep tracker ecosystem is

the smartphone, which serves both as a portal for gathering and
storing information, and a means for providing feedback on
recorded behavior, tips on improvement, and motivation to act on
these recommendations17. Along with the expansion of indirect
measurement of sleep through wearable trackers, there are novel
means to characterize peri-sleep behaviors by observing the
timing and frequency of smartphone usage and the temporal
features of user-touchscreen interaction (“tappigraphy”)7,18–21.
This methodology unobtrusively informs about activities that
could interfere with sleep while assisting in sleep measure-
ment18,22. Tappigraphy has also uncovered associations between
sleep patterns and mental health21,23,24. Moreover, smartphone
interactions while the user is otherwise lying still in bed may
detect periods of wake where motion is below the threshold set
for identification of wakefulness by wearable devices.
A further advantage of smartphones is that they can serve as a

convenient modality to collect self-reported measures from
participants. Tracking of sleep quality, as well as associated mood
through ecological momentary assessment (EMA), can provide
vital information about mental wellbeing, and serve as modern-
day sleep diaries that cannot so easily be misplaced or forgotten
as compared to conventional diary25–27.
A common approach for garnering acceptance of the use of

wearable and smartphone-based technologies for research is to
compare their sleep measurement performance to PSG and
research actigraphy. Such comparisons are important for bench-
marking the accuracy of each device, but they do not highlight
the merits of using less accurate but more convenient and
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economical methods to assay sleep regularity, timing, or the
factors influencing these objectively on a large scale. As such, a
different approach for assessing sleep behavior is to collect data
on the same individual using multiple sensing techniques. The
fusion of information thus obtained can provide redundant
information whose concordance as well as discordance might
inform about sleep behavior. In the current study, we tested the
utility of this approach in two related ways. First, we assessed the
level of agreement between sleep estimated from different
modalities. Second, we examined patterns of discrepancies where
different modalities provide diverging information. Concordant
information is useful when one source of information is missing
(e.g., when the participant did not wear the device, or the device
ran out of battery). Discordant information as demonstrated here
proved to be informative as well, as it carries information on
specific sleep-related behaviors. We combined data from three
sleep tracking systems: (1) wearable sleep tracker (Oura ring), (2)
background logging of human–smartphone interactions (Tappi-
graphy), and (3) self-report via phone-based daily questionnaires
(EMA) to characterize sleep and perisleep behavior28. A sample of
young to middle-aged adults was tracked over a period of
2 months.

RESULTS

High rates of user acceptability and retention

Wearable, phone-based, and self-report sleep data were obtained
from 198 university students and staff (age= 26.20 ± 5.83 years,
61 males, 78 staff), over a period of 8 weeks. Of 11,088 potential
nights (summed across all 198 subjects over the 8-week protocol),
sleep was recorded from the Oura wearable device on 9825 nights
(89%), via smartphone interaction tracking (Tappigraphy) on 9740
nights (88%), and from self-reported EMA on 9166 nights (83%;
refer to Table 1 for information about sleep variables obtained
from each modality). On 7581 nights (68.4%) concurrent data from
all three modalities was available. Retention over time was

consistently high for wearable and smartphone-based tracking
(Fig. 1), while EMA-based daily self-reports showed a gradual
decline over time from the third week of subjects’ participation
(EMA: F(7,1379)= 27.72, p < .001, ηp

2
= 0.123). Also, higher com-

pletion rates were observed on weekdays vs. weekends for Oura
and EMA (Oura: F(1,197)= 7.47, p= 0.007, ηp

2
= 0.037; EMA: F

(1,197)= 60.22, p < 0.001, ηp
2
= 0.234). Completion rates were

consistently high for tappigraphy (no decline over time, F(7,1379)
= 1.077, p= 0.38, ηp

2
= 0.005). Overall compliance rates remained

above 70% even during the last week of monitoring.

Agreement in sleep estimation across modalities

To determine how well sleep measures agreed across the different
modalities, we ran pairwise correlation analyses for each
modality’s sleep estimates and the averaged estimates of the
remaining two. There was good agreement across the three
methods of sleep assessment (Fig. 2) with correlations highest for
wearable and EMA modalities (Spearman’s rho= 0.89–0.92, p’s <
0.001), and slightly lower for Tappigraphy (Spearman’s rho=
0.82–0.83, p < 0.001). Scatter plots in Fig. 2 show that on most of
the nights, observed bed and wake time estimates were
concentrated around the line of identity (i.e., showing highly
similar estimates between modalities).

Inter-modality discrepancies

To examine whether there were systematic discrepancies between
sleep estimation methods, sleep estimates from the Oura ring and
Tappigraphy tracking app were referenced against EMA self-
reported sleep times. This approach was taken as most
epidemiological data on the association between sleep duration
and health has been derived from self-reported sleep durations.
Oura bedtime estimates were later by 3.5 min (z= 27.17, p <
0.001) and wake time estimates were later by 4.3 min (z= 44.43, p
< 0.001) on the median. Tappigraphy showed a slightly earlier
bedtime of 1.9 min (z=−12.41, p < 0.001) and a later wake time of
1.4 min (z= 8.57, p < 0.001) relative to self-reports. In sum, high
agreement among modalities can be seen on a majority of the
nights with average discrepancies being around 5min (see
Table 2).

Highly discrepant patterns

While average inter-modality discrepancies were small, inter-
modality discrepancies of >1 h were observed on 1755 nights
(23% of recorded nights). To gain insight into the sources of these
discrepancies, we performed k-means clustering on the basis of
13 sleep features taken from the different modalities (Fig. 3). We
included four features for each of the three modalities (bedtime,
wake time, midsleep time, and time in bed (TIB)), as well as one
feature that was only available from Oura (wake after sleep onset
[WASO]). Three distinct clusters were identified, each with a
specific profile of discrepancy across modalities (Fig. 3b). These

Table 1. Sleep estimates obtained from each modality.

Summary variable Oura Tappigraphy EMA

Nights completed 9825 9740 9166

Completion rate (%) 88.6 87.8 82.7

Mean (SD) Mean (SD) Mean (SD)

Bedtime (hh:mm) 01:40 (01:53) 01:23 (01:57) 01:31 (01:53)

Wake time (hh:mm) 09:22 (02:01) 09:06 (01:54) 09:05 (01:48)

Midsleep time (hh:mm) 05:31 (01:48) 05:14 (01:43) 05:18 (01:42)

Time in bed (TIB) (hh:mm) 07:43 (01:27) 07:43 (01:43) 07:34 (01:27)

Wake after sleep
onset (min)

44.8 (32.8) – –

Sleep estimates - Daily compliance rate

88.2% Tap

83.7% Oura

73.5% EMA

Final week compliance: 
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Fig. 1 Data completion over time. Daily compliance rate for tappigraphy (Tap; pink curve), Oura (green curve), and self-reported EMA (blue
curve). Weekends are delineated as grey-shaded regions. Average daily compliance rates for each modality during the final week of subjects’
participation are also indicated.
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cluster solutions remained stable when a range of different
discrepancy thresholds was used (1.5, 2, and 2.5 h; see Supple-
mentary Fig. 1 and Supplementary Table 1).
Cluster 1 (n= 467) consisted of nights with delayed sleep

timings across all modalities and later Oura wake times relative to
the other clusters. From the corresponding discrepancy data, we
observed that Oura’s wake time estimates for this cluster were
later in comparison to the other modalities (Fig. 3b). On a Cluster 1
night, EMA wake time coincided with Tap-based wake time (Fig.

3c), while the Oura identified wake time was delayed. A possible
explanation for this is that subjects were using their phones in bed
after awakening, but lying relatively still.
Nights in Cluster 2 (n= 651) generally had relatively longer

tappigraphy estimated TIB associated with earlier bedtimes and
later wake times. On such nights, there was good agreement in
bed and wake times determined by EMA and Oura, while
tappigraphy-based sleep duration was longer (Fig. 3b, c). This
may possibly reflect early cessation of phone use before going to
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Fig. 2 Agreement of sleep estimates between modalities. Density scatters plot of the bed (left panel) and wake time (right panel) estimates
from each modality (x-axis) against estimates obtained from the average of the other two modalities (y-axis). Correlation coefficients are stated
for each of the subplots (nights with all three modalities, n= 7581). The dashed line indicates the identity line where there is complete
agreement between modalities.
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sleep and later commencement of phone use post-awakening
than with participants of the other two clusters.
On Cluster 3 nights (n= 637), Oura and EMA determined TIB

was longer in comparison to Tappigraphy. On the other hand,
Tappigraphy assessed relatively later bedtimes and earlier wake
times compared to the other two modalities. Tappigraphy-
determined wake time was earlier relative to EMA and Oura (Fig.
3b). In the example, a short period of tap activity was flanked by
periods of inactivity (Fig. 3c). This likely corresponds to brief
awakening(s) accompanied by short phone use (potentially to
snooze an alarm or to check for messages), after which sleep was
resumed.

Individual phenotyping based on discrepancy clusters

When examining the distribution of discrepancy patterns across
individuals, a high within-individual consistency was observed
(see Fig. 4). Most participants expressed a dominant type of
discrepancy over the other two (median percentage of dominant
cluster per subject= 84.41%, IQR= 33.33%; see Supplementary
Fig. 2 and Supplementary Table 2). Fourteen participants had an

Table 2. Comparison of sleep estimates with self-reported EMA as

reference.

Modality Statistics Bedtime (hh:
mm)

Wake-time
(hh:mm)

Oura (n= 8459) Mean 01:37 09:19

Median 01:28 09:04

IQR 02:16 02:26

EMA (on corresponding
nights)

Mean 01:28 09:04

Median 01:15 09:00

IQR 02:15 02:05

Tap (n= 8146) Mean 01:19 09:04

Median 01:10 08:54

IQR 02:20 02:25

EMA (on corresponding
nights)

Mean 01:28 09:04

Median 01:15 09:00

IQR 02:15 02:05
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Fig. 3 Identifying patterns of modality discrepancy through clustering. a Clustering of discrepant nights based on bedtime, wake time,
midsleep time and time in bed (TIB) obtained from each modality along with WASO from Oura (n= 1755, discrepancy >1 h). Warm colors
indicate later sleep timings (bedtime, wake-time, and midsleep) and longer durations (TIB, WASO) normalized per sleep metric, and cool colors
indicate earlier sleep timings and shorter durations. b Plots show the discrepancy patterns for the resulting clusters for bed and wake time
metrics. Estimates from each modality were compared to the overall average of the three modalities. Each boxplot displays the mean (black
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equal contribution of two or three discrepancy patterns, and eight
participants did not have any nights with discrepancies greater
than 1 h. These individuals were excluded from the following
analysis. The remaining individuals were classified according to
their dominant discrepancy cluster pattern and resulting groups
were compared (Table 3), in order to identify demographic and
behavioral factors associated with these discrepancy patterns.
For comparing sleep variables among groups, we excluded the

n= 1755 high-discrepancy nights that were used for the original
high-discrepancy profiling. This left a total of n= 5826 (low-
discrepancy) nights. Sleep estimates for those nights were
averaged across all three modalities. This analysis showed that
individuals from Group 1 (N= 47), mostly slept in accordance to
Cluster 1 nights (76.6% of high-discrepancy nights, characterized
by delayed in Oura-determined wake time), had later bedtimes
(compared to Group 2: 134min, Group 3: 141min, both p’s <
0.001) and wake times (Group 2: 102 min, Group 3: 133 min, both
p’s < 0.001) on nights with less than 1 h discrepancy in cross-
modality sleep timing estimates. In comparison to Group 2, Group
1 had shorter TIB on these nights (Group 2: −32min, p= 0.001).
Individuals in Group 1 tended to be younger compared to the
other two groups and were predominantly students (see Table 3).
Members of Group 2 (N= 66) had mostly Cluster 2 nights

(82.7% of high-discrepancy nights; characterized by longer
tappigraphy assessed TIB). This group had less daily smartphone
use (Group 1: −163min, Group 3: −137min, both p’s < 0.001) and
lower daily tap count (Group 1: −5605, Group 3: −3331, both p’s <
0.001). Furthermore, a greater proportion of Group 2 individuals
reported that they did not usually sleep with their phones near
them (see Table 3). This group had the longest TIB, even for low-
discrepancy nights (7.91 h).
Group 3 individuals (N= 63) had most of their discrepant nights

belonging to Cluster 3 (86.4%), where morning sleep seemed to
be interrupted with a brief period of phone use before getting
back to sleep. This group was over-represented by staff (49.2%).
They had bedtimes resembling that of Group 2 (p= 0.83) but
earlier wake times (Group 2: −31min, p= 0.02), and shorter TIB
(Group 2: −24min, p= 0.01). In terms of smartphone habits,

Group 3 matched Group 1 (tap count: p= 0.31, device use: p=
0.79), and had longer daily device use and higher daily tap count
as compared to Group 2. Group 3 individuals reported better
mood in the morning as compared to those in Group 1.

DISCUSSION

We combined sleep measurement using wearable sleep tracking
with smartphone based tappigraphy and EMA to provide
redundant as well as complementary information about sleep
behavior. There was a high level of data provision (>80% average)
over 8 weeks which bodes well for large-scale longitudinal studies.
The high compliance rates could be due to participants being
incentivized incrementally for regular data logging (see Methods),
combined with a relatively low burden of data collection through
wearable and phone tracking. Overall, agreement between the
three modalities was good, supporting the utility of gathering
redundant data in long-term studies where participants will
occasionally fail to provide information from one modality. On the
minority of nights where significant discrepancy across modalities
did occur, the patterns of these, cross-referenced with demo-
graphic, questionnaire, and phone use intensity data, provided
interesting insights into stable differences in sleep behavior across
individuals.
The high completion rates underline the feasibility of a multi-

sensor approach for long-term sleep tracking, particularly when
participant effort required to provide data is lower as in the case
with wearable and tappigraphy based monitoring. Importantly,
sleep estimates from the three modalities showed high correlation
(ranging from rho= 0.82 to rho= 0.92, with median discrepancies
in sleep duration estimation around 4min). Given these findings,
there seems to be considerable promise in the current approach
of combined deployment of wearable, and mobile phone-based
sleep tracking. The possibility for regular cloud-based data transfer
and remote monitoring facilitates data collection with a minimal
need for lab visits or interruption of daily routines. This may allow
for the extension of sleep tracking for several months or even
years. Furthermore, the relatively lower cost of consumer-grade
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wearable devices compared to research-grade actigraphy (or PSG)
enhances the scalability of this approach. Recent validation
studies have reported that the performance of the Oura ring for
measurement of sleep timing and duration was comparable to
that of research actigraphy29–31 (see “Methods”), while Tappigra-
phy shows a high correlation with actigraphy18.
Consumer wearables carry some disadvantages. At the present

time, researchers do not have recourse to re-analyze raw data and
scoring algorithms are trade secrets. Failure to synchronize the
updating of sleep measurement algorithms can impair the
collection of long-term longitudinal data although this issue is
being addressed by some manufacturers. Data confidentiality
differs across manufacturers.
The most novel aspect of the current multi-modal approach lies

in the insights one can derive from examining discrepancies
between measurements from each of the three modalities.
Normally, such discrepancies relate to undesirable, modality-
specific deficits in sleep or wake detection. However, in our data
this turned out to be informative in that clustering of high-
discrepancy nights revealed three distinct patterns of sleep and
peri-sleep behavior. Moreover, each of these patterns consistently
mapped onto individual participants, resulting in three corre-
sponding groups.

The first group comprised younger individuals (mostly students)
with late bedtimes, short time in bed, and active phone use in the
morning after waking. Morning phone use, as detected through
tappigraphy, preceded wearable-detected wake time on high
discrepant nights. It therefore may potentially reflect in-bed
phone usage with low levels of body movement (below a
threshold level of physical activity)18. The very late bedtimes
observed here are likely related to data being collected during the
lockdown period of the 2020 COVID-19 pandemic. Robust shifts to
later sleep timing have been reported during such lock-
downs14,32,33. In addition, the pattern of later sleep and morning
phone use (presumably in-bed), could be related to online study
activities (e.g., attending online lectures) as learning was
completely shifted online, and commuting to campus was not
allowed34. A previous study that concurrently measured sleep and
phone use7, has suggested that a pattern of e-device use in bed
might be related to higher sleep inertia due to sleep restric-
tion35,36. Interestingly, this group reported the worst morning
mood, and highest sleepiness, making this a potential target
group for sleep improvement intervention.
A second group was characterized by lighter phone use than

other individuals, logging about 4.5 h of active phone use a day
(versus 6.5 to 7 h for the other groups). In addition, these individuals
showed lower phone use before bedtime (17min in the hour before

Table 3. Comparing groups on sleep, sociodemographic, smartphone usage, and daily well-being.

Variable of interest Group 1
N= 47a

Group 2
N= 66a

Group 3
N= 63a

Test statistics p

Mean (SD) Mean (SD) Mean (SD)

Number of discrepant nights 10.7 (8.3) 9.6 (8.3) 8.8 (8.3) F(2,173)= 0.66 0.52

Sleep parametersb

Bedtime (hh:mm) 03:18 (01:08)c,d 01:04 (01:11)e 00:57 (00:58)e F(2,173)= 75.20 <0.001

Wake time (hh:mm) 10:41 (01:08)c,d 08:58 (01:09)e,d 08:28 (00:59)e,c F(2,173)= 58.85 <0.001

TIB (hh:mm) 07:23 (00:52)c 07:55 (00:46)e,d 07:31 (00:45)c F(2,173)= 7.37 <0.001

WASO (min) 44.0 (23.2) 38.8 (18.2) 45.1 (25.0) H(2)= 1.47 0.48

Sleep efficiency (%) 85.9 (5.1) 87.6 (3.9) 85.8 (5.7) H(2)= 3.39 0.18

Sociodemographics

Age in years 23.8 (3.7)c,d 26.6 (6.3)e 27.7 (6.3)e F(2,173) = 6.48 0.002

Sex—% Females 63.8 72.7 66.7 χ
2(2)= 1.11 0.58

Occupation (% staff ) 17.0f 43.9 49.2g χ
2(2)= 13.01 0.001

Smartphone usage

Median daily tap count 12,735 (7056)c 7130 (4625)e,d 10,461 (5324)c H(2)= 26.33 <0.001

Median daily device use (min) 418.3 (165.9)c 255.4 (121.5)e,d 392.2 (145.0)c H(2)= 35.79 <0.001

Daily device usage 1 h before Oura bedtime (min) 35.5 (13.9)c 17.1 (11.7)e,d 33.5 (10.9)c F(2,173)= 42.34 <0.001

Sleep without phone (%)h 17.2 45.5g 22.2 χ
2(2)= 8.60 0.014

Daily self-reported well-being

Sleep quality (1–5) 3.6 (0.5) 3.6 (0.5) 3.6 (0.6) F(2,173)= 0.15 0.86

Morning sleepiness (0–100) 51.4 (15.2)c,d 40.3 (18.0)e 42.6 (16.2)e F(2,173)= 6.51 0.002

Morning mood (0–100) 50.4 (9.7)d 55.7 (15.6) 57.3 (12.5)e H(2)= 11.96 0.003

Evening mood (0–100) 54.9 (9.1) 56.4 (14.8) 57.3 (11.4) F(2,173)= 0.51 0.60

Morning stress (0–100) 41.1 (19.7) 41.9 (20.4) 44.7 (19.0) F(2,173)= 0.54 0.58

Evening stress (0–100) 42.2 (18.9) 40.0 (19.3) 43.4 (18.5) F(2,173)= 0.54 0.59

aN= 22 participants had no dominant cluster pattern, or had no nights with discrepancies >1 h, and were excluded from group analysis.
bValues based on nights with <1 h discrepancy averaged across modalities.
cMeasure significantly different from Group 2.
dMeasure significantly different from Group 3.
eMeasure significantly different from Group 1.
fObserved proportion for cell significantly lower than its expected proportion.
gObserved proportion for cell significantly higher than its expected proportion.
hThis item was completed by N= 118 participants.
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bedtime), and a lower proportion of these individuals reported
bringing their phones to bed, compared to the other two groups.
This pattern is interesting because restricting peri-sleep electronic
device screen time is often seen as a means to improve sleep37,38.
Heavy phone use before bedtime is associated with poorer sleep
quality and quantity and with increased risk of mental health issues
(e.g., depression)37,39–41. Although we tracked only smartphone
usage and cannot exclude the usage of other e-devices in bed, the
observation that this group had the longest TIB suggests that not
using one’s phone before bed can lengthen nocturnal sleep
duration42,43. As such restricting phone use before bedtime could
form part of an effective program to improve sleep, wellbeing, and
next-day performance38,44–46.
A third group comprising older participants had the highest

proportion of working adults, with time in bed that was
intermediate between that of Groups 1 and 2. These participants
had sleep records showing a brief period of phone activity
followed by resumption of sleep in the morning. This is suggestive
of checking the time or looking at incoming messages or e-mail.
While isolated episodes might be inconsequential, when occurring
more frequently or repeated over multiple nights such behavior
could disturb and shorten nocturnal sleep43,47 and may reflect the
inadequate setting of rest/non-rest time management
boundaries48.
The trait-like nature of membership in each of the discrepancy-

identified groups speaks to the possibility of using such
information to classify sleep and perisleep behavior beyond using
the information provided by any modality alone. Fusion of sleep
measures taken over extended periods when enriched with other
data relevant to sleep (e.g., timing, intensity, and reason for e-
device use, timing, and intensity of physical activity) opens the
door to crafting individualized interventions/advice for sleep and
24 h activity patterns.
In sum, our report signals the potential of remote multi-sensor

sleep tracking. The relatively high compliance rates and good
levels of agreement between the different sensors indicate the
utility of having redundant sleep measurement. On a minority of
nights, inter-modality discrepancy patterns facilitated the char-
acterization of different behavioral phenotypes associated with
sleep and peri-sleep behaviors that could be targeted for
customized sleep behavior interventions.

METHODS

Ethics declaration

All procedures were approved by the Institutional Review Board of the
National University of Singapore (NUS-IRB Ref Code: N-20-039), and all
participants signed written informed consent before commencing
the study.

Participants and procedures

Two hundred university staff and students were recruited in four, weekly
batches to take part in an 8-week sleep and well-being tracking study
during the COVID-19 lockdown. Data reported here were collected from 27
April till 12 July 2020 (start of batch 1 till the end of batch 4), overlapping
with the lockdown (7 April–1 June). Two subjects withdrew mid-study,
resulting in a remaining sample of 198 (age= 26.20 ± 5.83 years, 61 males,
78 staff). Sleep was tracked using three separate modalities: (1) a sleep and
activity tracking wearable device (Oura Ring Heritage; Oura Health Oy,
Oulu, Finland), (2) a smartphone app tracking touchscreen interactions
(Tappigraphy), and (3) self-reports through EMA (see Supplementary Table
3 for details).
Participants were incentivized to log their sleep and well-being data

based on weekly completion of at least (1) 4 days of Oura tracking, (2) one
day of smartphone recording (more than 1000 detected taps in a day or
greater than 75% of subjects’ average daily tap count, whichever was
lower), and (3) eight sessions of EMA. Subjects were given $10
reimbursements weekly based on their compliance, and a $20 study
bonus upon completion of the entire study. This incentive structure was

designed to encourage regular data logging across all modalities since the

only completion of all three criteria resulted in weekly reimbursement.

Participants were updated weekly by email on their completion rates in the

preceding week. Further email assistance was offered in case of technical

problems or late data syncing after completion calculation (to update

completion and reimbursement rates). The use of incentivization and

regular check-ins has been recommended to sustain compliance in

intensive longitudinal testing studies49. Depending on study duration,

testing intensity, and population, different incentive schemes may be

effective (e.g., fixed-rate incentive and lottery-based incentive50,51).
Subjects were also requested to complete periodic questionnaires every

4 weeks that asked about their smartphone usage habits, stress levels, and

routine. Only selected data from questions regarding smartphone usage

(i.e., sleeping with the phone next to them) are included here.

Sleep and activity tracking ring (Oura)

The Oura ring tracks heart rate, temperature changes, and movement

through photoplethysmography sensors, temperature sensors, and an

accelerometer to infer sleep and daytime activity. Participants were

instructed to wear the ring at all times (both during day and night) and

sync the data to the Oura phone app daily. Furthermore, they were

instructed to charge the ring every 4–5 days. Sleep and wake periods were

classified by the Oura Health algorithm based on activity and physiological

data. A minimum of 3 h was required for Oura Health’s algorithm to

consider a rest period as a possible sleep episode. Daily estimates for

bedtime, wake time, time-in-bed (TIB), WASO, and sleep efficiency were

extracted from Oura Health’s cloud API. To ensure consistency across

modalities, sleep episodes exceeding 13 h were removed from the analysis.
Several recent validation studies have evaluated the performance of the

Oura ring in comparison to PSG and/or actigraphy. Overall, the accuracy of

sleep–wake detection was good. Two studies found no systematic error in

TST estimates, with only a small absolute error as compared to PSG (87.8%

of nights within 30min error)30 and ambulatory EEG (7.39% mean absolute

percentage error31). Two other studies reported modest but significant

overestimation of Oura-derived TST by about 15min, compared to PSG52,

and actigraphy29 in adults, while another study reported substantial

underestimation of TST compared to PSG, in an adolescent population

(32–47min)53. Importantly, epoch-by-epoch analysis has demonstrated

high sleep-wake detection accuracy (accuracy= 0.89; sensitivity=

0.89–0.93; specificity= 0.41–0.89)30,52,53, comparable to actigraphy in most

cases52,53. While Oura additionally provides sleep staging estimates (REM,

deep sleep, and light sleep), these estimates are generally found to be less

accurate (0.51–0.83)30,53. We, therefore, did not include sleep staging

metrics into our analyses.

Smartphone touchscreen interactions

Mobile phone use was recorded via a smartphone app, TapCounter54, to

track touchscreen interactions (“tappigraphy”) and screen on/off events.

Each touchscreen interaction was recorded as a timestamped event along

with the active app. TapCounter operates in the background and requires

minimal user intervention to function once relevant permissions were

granted. From the resulting data, estimates of total daily phone use,

screen-interaction count (tap count), and sleep timing were extracted

following an algorithm outlined in Borger18. Touchscreen interaction time

series were converted to 1-min epochs of binary active and inactive states

based on the presence or absence of detected taps. Subsequently, a

cosinor analysis55 was performed to capture users’ daily smartphone usage

rhythm for the identification of potential rest periods; 6 h of lowest

estimated tap activity in a 24 h window. Next, potential sleep episodes

were identified based on gaps in actual tap activity; defined as more than

two hours of near absent tap activity (less than 2min of taps detected in a

60min period centered around individual epochs). Lastly, periods of tap

inactivity which overlapped (by more than 25%) with the identified rest

periods were classified as a sleep episode. Inactivity that lies outside of the

potential rest periods were filtered out. Sleep periods exceeding 13 h were

excluded to avoid misclassification of sleep from app disconnection which

would have resulted in long periods of inactivity exceeding half a day.

Sleep episodes recorded within the same day were concatenated to form a

single sleep period if the total duration does not exceed 13 h. Otherwise,

only the longest sleep episode was retained.
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Self-report through EMA

Subjects provided self-report data through an EMA app. EMA sessions were

conducted twice daily, with each session taking a maximum of 5min to

complete. The window for completing Session 1 was from 08:00 AM till

12:00 PM (Session 1’s window was adjusted to 08:00 AM till 05:00 PM

starting from 8th of June), and Session 2 from 08:00 PM till 12:00 AM.

Subjects were prompted to provide their bed and wake times and

subjective sleep quality (poor [1]–good [5]) from the previous night in

Session 1 daily (and repeated in Session 2 if no response was recorded in

Session 1). Self-reported sleep timings below 3 h or exceeding 13 h were

removed as potential misreports and to ensure consistency across

modalities. Furthermore, questions regarding users’ well-being (current

mood: negative [0]–positive [100] and stress levels: not at all [0]–very

stressed [100]) were included in both sessions. Short cognitive tasks26 were

completed in Session 1 (data not presented here).

Statistical analyses

From the wearable, phone, and self-report modalities, daily estimates of

bedtime, wake time, midsleep time, and time in bed (TIB) were extracted.

Furthermore, the Oura algorithm provides a daily estimate of WASO. These

modalities were then compared for compliance rates, agreement, and

discrepancies.

Compliance

For each modality, the number of nights on which sleep data was recorded

was counted. Overall compliance rates were calculated as well as their

development over the 8-week monitoring period. To examine the effects

of sleep modalities, week of participation, and weekday/weekend on

compliance rate, a three-way repeated-measures analysis of variance

(ANOVA) was conducted. Post-hoc analyses using Bonferroni correction

were performed where significant interactions were observed.

Agreement

To assess the agreement among sleep estimates obtained from the

different modalities, pairwise Spearman’s rank correlation tests were

conducted between the estimates from each modality with the mean of

the other two modalities. Analyses were performed on the 7581 nights that

had usable data from all three modalities. As the sleep estimates violated

the normality assumption (see Supplementary Table 4), two-sided

Wilcoxon signed-rank tests were then used to compare estimates obtained

from Oura and tappigraphy against self-reported EMA to assess systematic

discrepancies among modalities.

Identification of high-discrepancy patterns based on sleep
features

For nights with high discrepancy between modalities (>1 h; n= 1755; see
Fig. 5), clustering analysis was performed with 13 sleep metrics used as
features (4 features for each of the 3 modalities: [bedtime, wake time,
midsleep time, and TIB], along with one feature only available from Oura
[WASO]). To ensure that the features were weighted equally in the
clustering process, all features were rescaled to vary from 0 to 1 using
min–max normalization. Clustering was conducted using the k-means ++
algorithm on Matlab version R2017b (Mathworks, Natick, MA) for cluster
center initialization paired with the squared Euclidean distance metric. To
identify the optimal number of clusters appropriate for our dataset, we
varied the number of clusters (k= 2–10) and assessed their associated
within-cluster sums of squared distance. An optimal number of clusters
was selected (k= 3) based on an assessment of the elbow plot while
ensuring that the clusters obtained provided meaningful information for
interpretation.

Comparing individuals grouped by dominant discrepancy
cluster

Individuals were grouped based on their dominant discrepancy pattern.
Fourteen subjects did not have a clear dominant pattern (i.e., had an equal
number of nights in their top two clusters) and were excluded from this
analysis. Eight more subjects were excluded as they had no discrepancies
larger than 1 h on any of the observed nights. To identify any
characterizing features, the resulting groups were compared based on
sleep metrics (on low-discrepancy nights), demographics, smartphone
usage, and daily well-being, using one-way ANOVA and Pearson’s chi-
squared test of independence. Kruskal–Wallis tests were used for cases
where homogeneity of variance was violated. Statistical analyses were
performed in Matlab version R2017b and R version 4.0.1 (R Core
Team, 2020).

Reporting summary

Further information on research design is available in the Nature Research
Reporting Summary linked to this article.

DATA AVAILABILITY
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