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Abstract. Functional diversity (FD) has the potential to address many ecological ques-
tions, from impacts of global change on biodiversity to ecological restoration. There are sev-
eral methods estimating the different components of FD. However, most of these methods can
only be computed at limited spatial scales and cannot account for intraspecific trait variability
(ITV), despite its significant contribution to FD. Trait probability density (TPD) functions
(which explicitly account for ITV) reflect the probabilistic nature of niches. By doing so, the
TPD approach reconciles existing methods for estimating FD within a unifying framework,
allowing FD to be partitioned seamlessly across multiple scales (from individuals to species,
and from local to global scales), and accounting for ITV. We present methods to estimate TPD
functions at different spatial scales and probabilistic implementations of several FD concepts,
including the primary components of FD (functional richness, evenness, and divergence), func-
tional redundancy, functional rarity, and solutions to decompose beta FD into nested and
unique components. The TPD framework has the potential to unify and expand analyses of
functional ecology across scales, capturing the probabilistic and multidimensional nature of
FD. The R package TPD (https://CRAN.R-project.org/package=TPD) will allow users to
achieve more comparative results across regions and case studies.

Key words: functional diversity; functional trait; niche; probability density function; redundancy;
uniqueness.

INTRODUCTION

Functional diversity (FD; the variation of traits in

functional space, Carmona et al. 2016a) encompasses

several components that can be considered at different

scales, from individuals to the global scale. The multi-

tude of existing methods to quantify its different aspects

reflects this conceptual complexity (Schleuter et al.

2010, Pavoine and Bonsall 2011). Recently, we proposed

a unified framework integrating these different compo-

nents at any scale (Carmona et al. 2016a, b, 2017). This

framework implements the Hutchinsonian (Hutchinson

1957) concept of the niche as a probabilistic hypervol-

ume (Blonder 2018).

The Hutchinsonian niche (the multidimensional

hypervolume in which a species can maintain a popula-

tion) was originally conceived as a uniform part of the

environmental space characterized mainly by its bound-

aries. However, the performance of the individuals of a

species usually varies within niche boundaries; this can

be captured by using probability density functions to

represent niches. The same concept can be applied to

trait distributions of species, reflecting that some trait

values are more likely than others. Although most FD

methods consider a single value for each species and

trait (Vill�eger et al. 2008, Laliberte et al. 2010, Mouchet

et al. 2010, Violle et al. 2017), the concept of trait prob-

ability density (TPD) reflects the unequal probabilities

of different trait values or combinations of them

(Carmona et al. 2016a). Here, we present TPD, an R
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package implementing this framework. TPD allows

users to estimate several components of FD for single or

multiple traits, and to partition it seamlessly across mul-

tiple scales.

A PROBABILISTIC FRAMEWORK FOR FUNCTIONAL DIVERSITY

Our framework relies on probability density functions,

which reflect the chances of observing some specific

value for a variable. We refer to these functions as trait

probability distributions (TPD). The approach is based

on a series of steps that allow estimation of FD at differ-

ent scales. First, consider a functional space composed

of one or more continuous traits, x. For each species or

population (S) its TPD (TPDS) can be calculated using

different procedures; the TPD package uses kernel

density estimation (KDE). Given a set of n observa-

tions of D traits measured in a population of one species

(X1, X2, . . ., Xn), the KDE of the population (TPDS(x))

is:

TPDSðx;HÞ ¼ n�1
X

n

i¼1

KHðx� XiÞ (1)

where x = (x1, x2, . . ., xD)
T is a D-dimensional trait

space, and Xi = (Xi1, Xi2, . . ., XiD)
T, i = 1, 2 ,. . ., n. K

(x), a symmetric probability function, is the kernel (the

normal distribution in the TPD package). Although

other kernel functions are possible, and implemented

elsewhere (Blonder et al. 2014), Gaussian kernels are

considered to be the most appropriate alternative for

functional diversity applications (Blonder 2018). Finally,

H is the bandwidth matrix, which is symmetrical and

positive definite. The TPD package (TPDS function)

uses the unconstrained bandwidth matrix implemented

in the R package ks (Duong 2014). This implementation

is able to take into account intraspecific trait covaria-

tion, an important aspect in some applications of trait-

based ecology (Laughlin and Messier 2015).

The number of points needed to characterize the

underlying probability density function accurately

increases exponentially with the numbers of dimensions

considered (Blonder 2018). Hence, the construction of

TPDS functions using KDE procedures for multiple

traits may require a prohibitively large amount of trait

data. Alternatively, the TPDsMean function allows for

the calculation of TPDS functions when only the mean

trait values of species are known, which is often the case

when working with data from databases. This is done by

estimating the TPDS function of each species as multi-

variate normal distributions, using the average and vari-

ance of the traits of each species. This procedure

requires a previous estimation of the variance assigned

to each species, for which there are different alternatives

that we summarize in Appendix S1. Regardless of the

approach, the resulting TPDS are probability density

functions; hence

Z

1

�1

TPDSðxÞdx ¼ 1: (2)

For practical reasons in the computation, it is prefer-

able to divide the functional space into a D-dimensional

grid composed of many equal-sized cells, with the value

of TPDS being calculated separately for each cell.

Accordingly, Eq. 2 would be expressed as

X

N

i¼1

V � TPDSi
¼ 1 (3)

where V is the size of each of the N cells composing the

grid (hypervolume estimated as the product of the edges

of the cells), and TPDSi
is the value of the TPDS func-

tion estimated in the ith cell. The TPD package performs

calculations based on these cells. We include the option

to define a quantile threshold (Blonder et al. 2014) indi-

cating the proportion of the probability density function

of each species or population that will be included in the

resulting TPDS, thus reducing the effect of outliers. After

thresholding, TPDS functions are finally rescaled so that

the summed probabilities across cells add up to 1.

Once the TPDS functions are estimated, the next stage

involves combining them to obtain TPD estimates at lar-

ger scales (e.g., to estimate the TPD of a community

from its constituent species, or to estimate the TPD of a

species combining different populations). For instance,

the TPDS of the species in a community can be weighted

according to the species’ relative abundance. We can

then sum the abundance-weighted TPDs to obtain the

probability density function of the community (TPDC)

using the TPDC function in the package. In weighting

each TPDS by species relative abundance, we ensure that

the sum of TPDC equals 1. In this way, the value of

TPDC for each combination of trait values integrates

both the probability distributions of species in trait

space and the relative abundances of species in commu-

nities, and is thus directly proportional to the relative

abundance of that trait combination in the community.

We want to underscore that trait values measured in the

specific context of interest can be used. For example,

when estimating the TPDC of a set of communities, it is

possible to use for each species and community the trait

values of the individuals measured in those particular

conditions if that information is available (Carmona

et al. 2015b). This way the TPD approach can be useful

to compare hypotheses regarding the effects of character

displacement (whereby species tend to have other trait

values when co-occurring with certain other species).

This procedure can be repeated indefinitely to define

TPD functions for any spatial scale. For instance, multi-

ple TPDC could be combined to obtain a regional TPD.

The TPD package includes functions to characterize

several aspects of FD at different scales for single or

multiple traits (up to four traits in the current

Article e02876; page 2 CARLOS P. CARMONA ET AL. Ecology, Vol. 100, No. 12



implementation). Here, we have arranged the methods

according to whether they are applied only (1) within

units, regardless of whether these are populations, com-

munities, or regions; or (2) between units, simultaneously

considering more than one unit.

Analyses within units

Some studies focus on describing features related to

the distribution of trait values within the unit of interest,

such as the amount of functional volume occupied, the

evenness in the distribution of abundance in trait space,

or the probability associated with each trait value. We

include in this group the three components of FD

(Mason et al. 2005, Vill�eger et al. 2008), functional

redundancy, and simulations of trait values for predict-

ing species distributions along gradients. Note that

although we use examples based on communities, all

these procedures could be applied at any scale (popula-

tions, communities, regions).

Existing methods to estimate functional richness,

evenness, and divergence (Vill�eger et al. 2008) rely on a

single trait value per species, therefore deviating from

the original probabilistic definition of these concepts

(Mason et al. 2005). The TPD function REND returns

to this probabilistic conception.

Functional richness.—Functional richness (FRic) is the

amount of functional space occupied by a community.

FRic is simply the sum of the hypervolumes of cells in

which TPD is greater than 0 (after applying the selected

threshold; see the foregoing), and is therefore indepen-

dent of species abundances. FRic is conceptually similar

to the volume yielded by the hypervolume method

(Blonder et al. 2014, Carmona et al. 2016b).

Functional evenness.—Functional evenness (FEve) is an

indicator of evenness in the distribution of abundance

within occupied trait space. We propose an index based

on Bulla’s (1994) O index for species evenness, later

adapted for traits by Mouillot et al. (2005a) and Vill�eger

et al. (2008). We define functional evenness (FEve) as

the overlap between the TPDC of the considered com-

munity and a hypothetical trait distribution occupying

the same functional volume with uniform probabilities

throughout:

FEve ¼
X

N

i¼1

minðV � TPDðx ¼ iÞ;V �N�1Þ (4)

where V represents the size of each cell, and N represents

the number of cells occupied by the TPDC in question.

FEve is close to 1 when all trait values (cells) have simi-

lar probabilities, and close to 0 when the majority of

total density is concentrated within a few cells.

Functional divergence.—Functional divergence (FDiv)

reflects the distribution of abundances within the

functional trait volume. Specifically, it measures to what

extent trait values near the center of the functional trait

volume are more or less dense than trait values at the

extremes. We propose a method analogous to (Vill�eger

et al. 2008), but with calculations based on the relative

abundance of individual cells within the TPD. Thus,

FDiv can be calculated for populations, species and

regions, in addition to communities. First, traits are stan-

dardized to a 0–1 scale, making FDiv scale independent.

Then the coordinates of the center of gravity—

GV = (GV1, GV2, . . ., GVD)—of the functional volume

occupied by the community are calculated, followed by

calculation of the distance of each cell to GV:

dGi ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

XD

k¼1
ðxik � gkÞ

2

r

(5)

and the mean distance of all the N cells of the grid in

which TPDC is greater than 0:

dG ¼
1

R

X

N

i¼1

dGi (6)

The next step consists of determining the sum of rela-

tive abundance–weighted deviances (Dd) and absolute

abundance–weighted deviances (D|d|) for distances from

the center of gravity for the N cells:

Dd ¼
X

N

i¼1

V � TPDCi
� ðdGi � dGÞ (7)

Djdj ¼
X

N

i¼1

V � TPDCi
� jdGi � dGj (8)

where TPDCi
is analogous to the relative abundances of

species in the original method. The absolute deviances

represent an upper limit for relative deviances so that an

index of functional divergence bound between 0 and 1

(FDiv) can be obtained:

FDiv ¼
Dd þ dG

Djdj þ dG
(9)

FDiv approaches 0 when the most abundant trait val-

ues are close to GV, (i.e., Dd approaches 0) and

approaches 1 when the most abundant trait values are

those furthest away from GV (i.e., Dd approaches D|d|).

Functional redundancy.—Two species can be deemed as

functionally redundant if they have the same trait values

(i.e., if they occupy a similar portion of functional

space). Accordingly, removing a highly functionally

redundant species from a community should not sub-

stantially reduce the community’s functional richness.

The R function redundancy yields the average functional

redundancy of a community (Carmona et al. 2016a).
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The rationale is simple: for each of the N cells of the

grid, count the number of species (M) whose TPDS

value is greater than zero. Functional redundancy is

defined as

FRed ¼
X

N

i¼1

Mi � V � TPDCi

 !

� 1: (10)

Basically, the method counts how many species dis-

play each trait value, and calculates a weighted average

of that number, using the probability of that trait in the

community—the value of TPDC in the cell—as a weight-

ing factor. In this way, redundancy decreases when the

most abundant species are more functionally unique

(i.e., the most abundant trait values are held by a single

species), or when all species become increasingly func-

tionally unique (i.e., all trait values are only held by a

single species). After subtracting 1, FRed expresses the

abundance-weighted average number of species that

could be removed from the community without reducing

its functional volume. FRed will approach 0 as species

become increasingly functionally unique (or as the most

abundant species become functionally unique), and to S

� 1 as the S species become increasingly functionally

identical. Redundancy defined this way is trivially linked

to species richness because its upper bound is S � 1 (in

the case that all species are functionally identical, all but

one species could go extinct from a community without

altering its functional structure). A simple solution to

break this relationship is to divide redundancy values by

S � 1, so that redundancy is expressed in relative terms

and bounded between 0 and 1. This allows comparisons

of communities with different numbers of species (see

Appendix S2 for more details on this correction).

Trait simulations.—Some functional trait-based applica-

tions require drawing trait values from TPD distribu-

tions (e.g., the Traitspace model; Laughlin et al. 2012,

2015). The R function tSamp uses TPD functions to

draw these trait values randomly at any scale.

Analyses between units

The following methods help in understanding the

mechanisms driving differences in functional structure

between populations, communities, and regions (b func-

tional diversity).

Overlap-based functional dissimilarity (bO).—As with

classic dissimilarity metrics for turnover in species com-

position (i.e., Jaccard and Sorensen-Dice), functional

dissimilarity between two communities can be calculated

by comparing the proportion of joint density distribu-

tions (A) to the proportion unique to either community

(B and C). For two communities, i and j, we estimate A

(overlap) in a way that is analogous to that proposed by

(Mouillot et al. 2005b) for a single trait dimension:

A ¼
X

N

i¼1

minðV � TPDCi
;V � TPDCj

Þ (11)

and because both TPDC functions sum to 1:

B ¼ C ¼ 1� A: (12)

The dissimilarity between the two communities (bO)

can then be estimated as 1 minus the overlap (Lep�s et al.

2006), or, equivalently:

bO ¼
Bþ C

2Aþ Bþ C
: (13)

bO (function dissim) is bounded between 0, when two

units are functionally identical (A = 1, B = C = 0), and

1, when there is no functional overlap between them

(A = 0, B = C = 1).

Functional rarity.—One of the most interesting features

of TPD functions is that they are conceptually scale

independent. Effectively, this means that the TPD of a

given ecological unit (e.g., a population) can be com-

pared with the TPD of units from disparate scales (e.g.,

with communities or regions). This allows estimation of

bO also between units at different hierarchical levels.

This way, by comparing the TPDS functions of individ-

ual species to those of the local or regional pool of spe-

cies, we can obtain a measure of the functional

distinctiveness of each species within the community or

region, or of each community within a region (function

uniqueness; Carmona et al. 2017).

Decomposition of functional dissimilarity.—Taxonomic

dissimilarity between communities can be decomposed

into two components: turnover (because of species

replacement) and nestedness (because of differences in

species richness; Baselga 2010). This decomposition was

extended to functional dissimilarity, using the commu-

nities’ convex hull-based hypervolumes (Vill�eger et al.

2013). However, convex hulls are sensitive to outliers

and are not able to detect gaps (or “holes”) in the occu-

pation of functional space (Podani 2009, Blonder 2016,

Carmona et al. 2016a). We present a method to decom-

pose functional dissimilarity into two complementary

components while avoiding the shortcomings of convex

hulls (function dissim). One of the components results

from the difference in density values between TPDCi

and TPDCj
within the shared functional volume (PN);

the remainder is the functional volume unique to each

community (PU). Calculating these components is rela-

tively simple. Using the same nomenclature as above, B

(and also C) can be further decomposed into two com-

ponents: “BN” is the proportion of B within cells occu-

pied by both communities (i.e., the part of B that is

“above” A), and “BU” is the proportion of B con-

tributed by cells uniquely occupied by community i
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(Carmona et al. 2016a). Following Vill�eger et al.

(2013),

PU ¼
2 minðBU;CUÞ

BN þ CN þ 2 minðBU;CUÞ
(14)

PN ¼
BN þ CN

BN þ CN þ 2 minðBU;CUÞ
: (15)

High levels of functional dissimilarity (bO) between

units of the same hierarchical level can be the result of

different processes. For example, two communities can

be very dissimilar because the species of each one occupy

different parts of functional space; in this case PU will

account for the greatest proportion of dissimilarity. On

the other hand, if the high dissimilarity is mostly because

the functional volume of one is completely nested within

the functional volume of the other, PN will approach 1.

Thus, PU and PN are broadly analogous to the turnover

and nestedness components of beta diversity, respec-

tively.

CASE STUDY: FUNCTIONAL DIVERSITY PATTERNS ALONG AN

ENVIRONMENTAL GRADIENT IN A MEDITERRANEAN

GRASSLAND

We illustrate the TPD framework using data from a

Mediterranean annual grassland located 20 km north of

Madrid, in central Spain (40°360 N, 3°450 W; elevation

~700 m). We selected a topographical gradient encom-

passing substantial differences in productivity within a

limited spatial scale (described in more detail in

Carmona et al. 2015b). The gradient runs from the

upper slope downhill with an inclination of 15°. Previous

studies on similar slopes in the same area have described

substantial differences in soil water availability, clay per-

centage, total nitrogen, and soil organic matter content

associated with the position on the slope (Peco et al.

2006), which are finally reflected in a much higher pro-

ductivity of lower-slope areas (Carmona et al. 2013). In

spring 2013, we placed 40 20 9 20 cm quadrats in a line,

at distances of 2 m from each other. In each quadrat, we

recorded species cover, and collected 10 individuals of

the most abundant species, and in doing so we

accounted for at least 90% of the cover of the quadrat.

For these selected individuals, we measured two widely

used functional traits: plant height (cm) and specific leaf

area (SLA; mm2/mg). This sampling strategy gave us

data at the population level (species within quadrats, for

a total of 254 populations of 51 species). Measurements

of soil water content in the studied quadrats revealed

that soil water content increased downhill in a linear

fashion (Appendix S3: Fig. S1). Further information on

the sampling site and methods can be found in Carmona

et al. (2015b). With the traits measured at the individual

level, we calculated the different indices outlined above

for single and multiple traits. We used the kernel density

estimator approach to calculate a separate TPDS

function for each population of each species (as repre-

sented by 10 individuals within a quadrat). In this sec-

tion we present a small selection of results, considering

two different scales: the community scale, using the

TPDC functions of the different quadrats, and the spe-

cies scale, using the TPDS functions of populations of

Plantago lagopus, the species that occurred most fre-

quently in the quadrats.

We studied changes in FRic in relation to soil water

content, both at the population and community levels.

FRic was lowest at the driest end of the gradient (i.e.,

uphill), both for individual and multiple traits, and both

for communities and P. lagopus populations. Interest-

ingly, communities and populations with smaller func-

tional volumes of SLA tended to have smaller functional

volumes of height too (Fig. 1a). This suggests that envi-

ronmental filtering processes reducing the range of trait

values operate simultaneously on both traits (Cornwell

et al. 2006; Fig. 1a), and at both the community and

species level. For populations, FRic increased linearly

along with soil water content for height and both height

and SLA together, but reached its maximum at interme-

diate water contents for SLA (Fig. 1a). This shows that

the predominant processes along environmental gradi-

ents can differ between traits, emphasizing that it is often

necessary to analyze functional diversity patterns con-

sidering individual traits separately (Mason et al. 2012,

Spasojevic and Suding 2012, Carmona et al. 2015a).

Next we analyzed the decay of functional similarity with

distance (Lamanna et al. 2014) in populations and com-

munities, and its decomposition. We calculated bO and

PN for each pair of populations or communities, and

plotted them against the distance between the quadrats

in the gradient. We performed Mantel tests (999 repeti-

tions) between the respective distance matrices to see if

the relationships were significant. The relationship

between functional dissimilarity and spatial distance

clearly showed that using bO allowed us to detect func-

tional differences between populations and communities.

Communities and populations at the opposite extremes

of the gradient showed high functional differentiation,

especially when considering height and SLA simultane-

ously (Fig. 1b). In this sense, the populations of P. lago-

pus displayed a remarkable level of ITV across a very

short spatial gradient, with almost no functional overlap

between the populations of the highest and lowest parts

of the slope. These results emphasize that disregarding

ITV—by considering only average trait values of species

—may result in inadequate characterizations of the func-

tional structure of communities (Carmona et al. 2015b).

In general, the proportion of dissimilarity due to differ-

ences in the abundance of shared traits (PN) decreased

with spatial distance as dissimilarity increased (Fig. 1b).

This suggests that spatially distant communities and

populations occupy increasingly different regions of

functional space. However, regarding SLA of communi-

ties, PN was very high regardless of spatial distance

between communities. This suggests that the range of
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SLA values of those communities occupying a smaller

functional volume was a subset of that of communities

with greater values of FRic (Fig. 1b).

We also examined the relationship between functional

redundancy—considering single and multiple traits—

and species richness in communities. We checked

whether this relationship was linear or nonlinear by fit-

ting gam models, setting an upper limit of three degrees

of freedom associated with the smooth estimation. We

found no evidence of nonlinear relationships between

redundancy and species richness in our dataset. Consis-

tent with the notion that redundancy should decrease as

more traits are considered (Rosenfeld 2002), redundancy

was lower in the multidimensional case (Fig. 1c). In

addition, the interpretation of the relationship between

species richness and redundancy is straightforward with

our method; redundancy increased with species richness,

reflecting the idea that species-rich communities have a

higher degree of functional overlap between species

(Fig. 1c).

We also analyzed how relative redundancy varied

along the water content gradient by applying the S-1

correction. Our results revealed that redundancy in

height was greater at the driest end of the gradient, and

decreased in a nonlinear fashion as water availability

increased (Fig. 1d). This result is most likely due to the

overabundance of small individuals when water avail-

ability is low. When water availability increases, the coex-

istence of short and tall individuals is possible, resulting

in decreased redundancy (as also indicated by higher

FRic levels).

CONCLUSIONS

In the context of rapid environmental change and

associated losses of species, it is essential to predict

changes in species composition and ecosystem function-

ing from local through to global levels. This requires the

development of standardized tools to characterize these

impacts. The TPD framework (with its future exten-

sions) has emerged as an alternative with great potential

to tackle several questions in ecology; for example, iden-

tifying changes in the functional divergence and even-

ness within communities (Botta-Duk�at and Cz�ucz 2016),
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(d) Relative redundancy

2 4 6 8 10 12

0.0

0.2

0.4

0.6

0.8

1.0

●

●

Height; P = 0.016

SLA; P = 0.631

Height + SLA; P = 0.27

(a)  

FIG. 1. Application of the framework in a Mediterranean annual grassland. (a) Relationship between the FRic values of commu-
nities, calculated using single (specific leaf area [SLA] or Height) or multiple (SLA and Height) traits, and soil water content. (b) Rela-
tionship between functional dissimilarity (bO) and the proportion of dissimilarity due to differences in shared trait volume (PN) with
topographical distance for populations of Plantago lagopus and communities, for single and multiple traits. Each plot includes the cor-
relation between the two distances (q), the significance of Mantel test, and a lowess regression to illustrate the relationship. (c) Rela-
tionship between species richness and functional redundancy in each quadrat, calculated for single and multiple traits.
(d) Changes in functional redundancy (expressed in relative terms) for single and multiple traits along the soil water content gradient.
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indicating reductions in the relative abundance of species

or individuals with trait values sensitive to disturbances,

can help to anticipate local extinctions—and their asso-

ciated reductions in functional richness—before these

extinctions take place (Mason et al. 2013). The precise

quantification of redundancy that we present here may

help to answer questions regarding what levels of func-

tional redundancy are needed to ensure the capacity of

ecosystems to recover after perturbations (Walker 1995).

Redundancy can also be used in combination with

nested subset analyses to estimate the vulnerability of

ecosystem function to species loss (Zavaleta and Hulvey

2004, Sasaki et al. 2014, Carmona et al. 2017). Combin-

ing information on redundancy and overlap-based dis-

similarity between species and communities appears to

be a promising approach in aiding the design of ecologi-

cal restoration projects, including those intended to

exclude invasive species (Laughlin 2014), or for the pro-

tection of species supporting specific ecosystem func-

tions (Mouillot et al. 2013). Indeed, although the TPD

framework, as presented here, is primarily explained in

terms of functional niche, similar concepts could be

applied to other types of data, such as isotope ratios

(Swanson et al. 2015), climatic data (Blonder et al.

2014), or habitat preferences (Traba et al. 2015, 2017),

as well as to traits of other taxonomic groups (Martello

et al. 2018); these are only some examples, but the num-

ber of potential applications of the framework is consid-

erable. With this in mind, we want to emphasize that we

do not consider the TPD framework to be a definitive

and closed collection of methods, but rather the first step

towards a unified framework that accommodates the

probabilistic and multidimensional nature of the func-

tional facet of diversity. We hope that the inclusion of

these methods in the toolbox of ecologists will help

improve our ability to predict and understand the conse-

quences of environmental changes on ecosystems.
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