
Traitor-Tracing from LWE Made Simple
and Attribute-Based

Yilei Chen1(B), Vinod Vaikuntanathan2, Brent Waters3, Hoeteck Wee4,
and Daniel Wichs5

1 Visa Research, Palo Alto, USA
yilchen@visa.com

2 MIT, Cambridge, USA
vinodv@csail.mit.edu

3 The University of Texas at Austin, Austin, USA
bwaters@cs.utexas.edu

4 CNRS, ENS, PSL, Paris, France
wee@di.ens.fr

5 Northeastern University, Boston, USA
wichs@ccs.neu.edu

Abstract. A traitor tracing scheme is a public key encryption scheme
for which there are many secret decryption keys. Any of these keys can
decrypt a ciphertext; moreover, even if a coalition of users collude, put
together their decryption keys and attempt to create a new decryption
key, there is an efficient algorithm to trace the new key to at least one
the colluders.

Recently, Goyal, Koppula and Waters (GKW, STOC 18) provided
the first traitor tracing scheme from LWE with ciphertext and secret key
sizes that grow polynomially in log n, where n is the number of users. The
main technical building block in their construction is a strengthening of
(bounded collusion secure) secret-key functional encryption which they
refer to as mixed functional encryption (FE).

In this work, we improve upon and extend the GKW traitor tracing
scheme:

– We provide simpler constructions of mixed FE schemes based on
the LWE assumption. Our constructions improve upon the GKW
construction in terms of expressiveness, modularity, and security.

– We provide a construction of attribute-based traitor tracing for all
circuits based on the LWE assumption.

1 Introduction

A traitor tracing scheme [14] is a public key encryption scheme for which there
are many secret decryption keys, so that any of these keys could decrypt the
ciphertext. In addition, if a coalition of users collude to create a new decryption
key, then there is an efficient algorithm to trace the new key to (at least one of)
its creators.

c© International Association for Cryptologic Research 2018
A. Beimel and S. Dziembowski (Eds.): TCC 2018, LNCS 11240, pp. 341–369, 2018.
https://doi.org/10.1007/978-3-030-03810-6_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-03810-6_13&domain=pdf
https://doi.org/10.1007/978-3-030-03810-6_13

342 Y. Chen et al.

Recently, Goyal, Koppula and Waters (GKW) [20] constructed the first
traitor tracing scheme from standard assumptions with ciphertext and secret
key sizes that grow polynomially in log n, where n is the number of users. The
security of the scheme relies on the polynomial hardness of the LWE assumption
with sub-exponential modulus-to-noise ratio. The main technical building block
in their construction is a strengthening of bounded-collusion-secure secret-key
functional encryption which they refer to as mixed functional encryption (mixed
FE), and the bulk of the paper (over 60 pages) is dedicated to constructing
mixed FE for branching programs.

Mixed FE. A functional encryption (FE) scheme allows us to encrypt a program
f and create secret keys for inputs x, so that given an encryption of f and a key
for x, we learn f(x) and nothing else about f . In this work, we focus on secret-
key FE schemes where encryption requires the master secret key, and security
is guaranteed for an a-priori bounded number of ciphertexts, but an unbounded
number of secret keys. A mixed FE scheme is a secret-key FE scheme with an
additional “restricted” public-key encryption algorithm that enables encrypting
only the “all accept” program; roughly speaking, we can obliviously sample
encryptions of the “all accept” programs without knowing the master secret key.

This Work. In this work, we improve upon and extend the GKW traitor tracing
scheme:

– We provide simpler and more modular constructions of mixed FE schemes
based on the LWE assumption. Our constructions improve upon the GKW
construction in terms of both expressiveness and security. Our first construc-
tion obtains mixed FE for all circuits and with adaptive security, whereas
the prior construction [20] only achieves selective security for branching pro-
grams. Our second construction achieves selective security for all circuits with
tighter overhead growth for the number of secret key ciphertexts generated.

– We provide a construction of attribute-based traitor tracing schemes for all
circuits based on the LWE assumption.

1.1 Technical Overview

In the technical overview, we focus on our simpler constructions of mixed FE
schemes. See Fig. 1 for a brief summary. In addition to the algorithms (Setup,
SKGen, SK-Enc, Dec) in a standard secret-key FE scheme, a mixed FE scheme
has an additional PK-Enc algorithm that is able to encrypt “all-1” program
without knowing the master secret key.

Both of our new constructions work for any arbitrary polynomial bound t
on the number of ciphertexts. The GKW construction focused on the setting

Traitor-Tracing from LWE Made Simple and Attribute-Based 343

Construction Function class blow-up security
[20 CN] 1 O(t2) selective
Lockable obfuscation + [18] poly-size circuits O(t4) adaptive
Lockable obfuscation + [4] poly-size circuits O(t2) selective
Key-homomorphic PCPRF poly-size circuits O(t) selective

Fig. 1. Summary of our t-CT mixed FE schemes. PCPRF refers to private constrained
PRF. Here, selective means that all t ciphertexts queries come before the (unbounded)
secret key queries, whereas adaptive allows arbitrary interweaving of these queries. Note
that “FULL-SIM security” in [4] correspond to selective security here (in Definition 2.2
for FULL-SIM in the paper, secret keys in the security game correspond to ciphertexts
in our setting). As noted earlier, the work of [20] proved security for the case of t = 2
and the more general case with O(t2) blowup was only sketched.

t = 2 which already suffices for traitor-tracing, and provided a brief sketch for
extending the construction to arbitrary t but without any analysis.1

We provide two constructions achieving incomparable guarantees, based on
two natural and complementary approaches:

1. The first construction shows how to generically transform a t-CT secret-key
functional encryption (SKFE) into a t-CT mixed FE using lockable obfusca-
tion (a.k.a. “compute-and-compare obfuscator”) [19,28], which can be based
on LWE. This construction extends the coverage of mixed FE in [20] from
branching programs to all circuits. It also carries over the adaptivity achieved
by the underlying t-CT SKFE schemes (e.g. in [2,4,18]2) to the final mixed
FE scheme. A t-CT SKFE schemes can be constructed from any one-way
function [18,27]; thus, this construction shows how to leverage lockable obfus-
cation to add a “restricted public-key mode” to any t-CT SKFE scheme and
give us a mixed-FE scheme. The construction and proof fit in a little over a
page.

2. The second construction starts from the observation that the LWE-based
private-constrained PRFs in [11–13] already give a 1-CT mixed FE scheme.
Furthermore, we show how to construct a t-CT mixed FE in a natural way
leveraging the key-homomorphic property of the private constrained PRFs.
Therefore we get a construction of t-CT mixed FE for circuits for which
security follows directly from the key-homomorphic PCPRF.

1 In this work we use a simulation based definition of security where t refers to the
(maximum) total number of ciphertexts seen by the attacker. The work of [20] uses an
indistinguishability notion of security where they refer to the number of encryption
oracle queries given to the attacker in addition to the challenge ciphertext. Roughly,
a t ciphertext scheme in our definition corresponds to a t − 1 query scheme in [20].

2 These prior works construct 1-CT t-SK public-key FE scheme, which implies a
many-CT t-SK public-key FE scheme, and therefore a many-CT, t-SK secret-key
FE scheme. By flipping the ciphertexts and secret keys, we obtain a t-CT, many-SK
SKFE.

344 Y. Chen et al.

The blow-up of our t-CT mixed-FE is only O(t). Previously for simulation-
secure secret-key FE with bounded collusion, the blow-up is at least O(t2)
[2,4] (let us remark that these constructions are public-key FE schemes). We
sketch this construction and proof later in the introduction, again in a little
over a page.

1.2 Mixed FE from Lockable Obfuscation

Our first construction adds lockable obfuscation on top of a plain t-CT SKFE
to produce the public-key ciphertext, i.e. let the public-key ciphertext be the
dummy obfuscated programs that always evaluate to “⊥”.

In more detail, we construct the mixed-FE scheme as follows:

– Setup: Choose a master secret key (msk) for the SKFE.
– SKGen(msk, x): use the SKFE msk to generate skx.
– SK-Enc(msk, f): sample a random “lock” α, then run the SKFE secret-key

encryption for a function Hα,f which computes the following multiple-output-
bit functionality

Hα,f (x) =

{
α if f(x) = 0
0 else

.

Then, produce the lockable obfuscation Obf[PFE.ctH , α] as the ciphertext,
where PFE.ctH (Y) parses Y as a SKFE secret key and computes the SKFE
decryption functionality.

– PK-Enc: Use the simulator of lockable obfuscation to get a dummy obfuscated
program of appropriate size. The program outputs “⊥” on every input.

– Dec: Run the obfuscated program, if it outputs “⊥” then output 1, else out-
put 0.

We need mixed-FE to satisfy two security conditions. First, an adversary’s
view given polynomially many secret keys for inputs x, and at most t (secret
key) ciphertexts for functions f1, . . . , ft can be simulated given only the func-
tion evaluations fi(x) for all x. This property, called functional indistinguisha-
bility, follows directly from the security of the SKFE. Indeed, we do not rely
on obfuscation security here. The second security property, called secret/public
mode indistinguishability, says that a public-key encryption and a secret key
encryption of the trivial branching program f (which outputs 1 on all inputs)
are computationally indistinguishable. Furthermore, this should hold even given
polynomially many SKFE keys and t − 1 SKFE ciphertexts for arbitrary func-
tions. This property follows from a combination of symmetric-FE security and
lockable obfuscation, by first changing the symmetric-FE ciphertext from Hα,f

to the “all ⊥” function, then changing real obfuscation to simulated using the
lockable obfuscation security.

Traitor-Tracing from LWE Made Simple and Attribute-Based 345

1.3 Mixed FE from Private Constrained PRFs

A constrained PRF is a standard PRF with the additional property that given
a program M and a PRF key K, we can create a constrained key that allows
someone to evaluate the PRF at inputs x where M(x) = 0 while randomizing
the outputs of all other inputs. A private constrained PRF (PCPRF) satisfies
the additional requirement that the constrained key hides M (in the appropriate
sense). We will work with a strengthening of this requirement, which says that
given M along with a sequence of inputs {xi} such that M(xi) = 1, the joint
distribution of the constrained key for M along with the PRF evaluations at
{xi} are pseudorandom.

We show how to construct a 1-CT mixed-FE scheme starting from any
PCPRF. We then show how to “boost” this basic construction to a t-CT
mixed-FE, assuming that the underlying PCPRF is also key-homomorphic [5],
namely for all K,K ′, x, we have PRFK+K′(x) ≈ PRFK(x) + PRFK′(x). Our
schemes achieve simulation-based security, and support functions computable
by polynomial-size circuits.

1-CT Scheme. We observe that a PCPRF scheme already gives a 1-CT mixed
FE scheme:

– Setup: Choose a master secret key msk for the PCPRF.
– SKGen(msk, x): A secret key for x is a PRF evaluation at x;
– SK-Enc(msk,M): An encryption of a program M is a constrained key for M ;
– PK-Enc: Use the simulator of the PCPRF to produce a simulated constrained

key.
– Dec: To decrypt, we compare the constrained evaluation at x with the PRF

evaluation at x; if they are equal, we output 0, and otherwise, we output 1.

The existing security proofs show that, if for all xi we have M(xi) = 1, then
the constrained key for the program is computationally indistinguishable from a
random key that is independent of the PRF evaluations. This means that we can
obliviously sample encryptions of the “always-1” program by sampling a random
ciphertext.

From 1-CT to 2-CT. We provide an almost generic transformation from a 1-CT
to a 2-CT scheme, assuming that the underlying scheme is key-homomorphic,
and also satisfies a natural distribution requirement. Namely, we require that for
msk1,msk2,msk′ that are correctly generated from the 1-CT mixed FE scheme,
the distributions of msk1+msk2, msk1−msk2, and msk′ are identical. In addition,
for all x, we have

skGen(msk1, x) + skGen(msk2, x) = skGen(msk1 + msk2, x)

When the 1-CT mixed FE schemes are instantiated by the PCPRFs in [11–
13], they satisfy an approximate notion of key-homomorphism, which suffices
for the purpose of constructing collusion resistant mixed FE. In the rest of the

346 Y. Chen et al.

introduction we assume the underlying PCPRFs are exact key-homomorphic for
simplicity, and leave the instantiations from the approximate ones in the main
body.

Our 2-CT mixed FE scheme works as follows:

– Setup: choose λ pairs of mski,b as the master secret keys for the 1-CT scheme;
– SKGen(msk, x): The secret key for x runs the secret-key generation algo-

rithm for the 1-CT scheme over all the λ pairs of mski,b, outputs
{skGen(mski,b, x)}i∈[λ],b∈{0,1};

– SK-Enc(msk,M): To encrypt a program M , we pick a random z ∈ {0, 1}λ,
output z and the 1-CT encryption SK-Enc(mskz,M) as the ciphertext, where
mskz := msk1,z1 + · · · + mskλ,zλ

;
– PK-Enc: pick a random z ∈ {0, 1}λ, then run the PK-Enc mode of the 1-CT

scheme.
– Dec: To decrypt, first derive skGen(mskz, x) =

∑λ
i=1 skGen(mski,zi

, x) and
then run the 1-CT decryption algorithm.

Next, we sketch a proof of security by constructing a simulator for the 2-CT
scheme, starting from that for the 1-CT scheme. Suppose we want to simulate
encryptions of two programs M1,M2 under tags z1, z2. The only property we
need from z1, z2 is that they differ in one bit position, which happens with
probability 1 − 2−λ. For notational simplicity, assume that

z1 = 00 · · · 0, z2 = 10 · · · 0

Now, using the simulator for the 1-CT scheme (and a hybrid argument),
we can simulate the 1-CT encryptions SK-Enc(m̃sk1,M

1),SK-Enc(m̃sk2,M
2)

for two random m̃sk1, m̃sk2, along with skGen(m̃sk1, x) and skGen(m̃sk2, x) for
arbitrarily many x’s.

To construct a simulator for the 2-CT scheme, we follow the natural simula-
tion strategy where we pick mski,b and program

mskz1 = m̃sk1,mskz2 = m̃sk2

as follows:

– We sample (mski,0,mski,1), i = 2, . . . , λ ourselves;
– We implicitly program

msk1,0 = m̃sk1 −
λ∑

i=2

mski,0,msk1,1 = m̃sk2 −
λ∑

i=2

mski,0

Simulating the ciphertexts is straight-forward. To simulate a key
{skGen(mski,b, x)} for x,

– We can compute skGen(mski,0, x), skGen(mski,1, x), i = 2, . . . , λ ourselves
since we know mski,0,mski,1;

Traitor-Tracing from LWE Made Simple and Attribute-Based 347

– We can compute skGen(msk1,0, x) using the key-homomorphic property via

skGen(msk1,0, x) = skGen(m̃sk1, x) −
λ∑

i=2

skGen(mski,0, x)

We can similarly compute skGen(msk1,1, x).

From 2-CT to t-CT. To obtain a scheme that is secure for t ciphertexts, we
follow [20, Remark 8.1] and sample each entry of the tag z from a larger alpha-
bet. The natural extension of the previous argument is to require that with
high probability over z(1), . . . , z(t), there exists j∗ ∈ [λ] such that z

(1)
j∗ , . . . , z

(t)
j∗

are all distinct. This would require an alphabet of size Ω(t2). Instead, we
observe that it suffices that there exists j∗

1 , . . . , j∗
t ∈ [λ] such that the t pairs

(j∗
1 , z

(1)
j∗
1

), . . . , (j∗
t , z

(t)
j∗
t

) are distinct (the natural extension corresponds to the
special case j∗

1 = · · · = j∗
t = j∗); this relaxation allows us to work with an alpha-

bet of size O(t). In the security proof, we will receive ciphertexts and secret
keys corresponding to t independent m̃sk1, . . . , m̃skt, which we “embed” into
msk

j∗
1 ,z

(1)
j∗
1

, . . . ,msk
j∗
t ,z

(t)
j∗
t

.

We proceed to describe our construction in a bit more detail. We replace
λ pairs of master secret keys {mskj,d}j∈[λ],d∈{0,1} (in the 2-CT scheme) with λ

many (2t − 2)-tuples of {mskj,d}j∈[λ],d∈[2t−2], and sample the tag z from [2t −
2]λ. For each tag z(i), i ∈ [t], the probability that the jth coordinate of z(i)

does not show up in the other t − 1 tags is ≥ (2t−2)−(t−1)
2t−2 = 1

2 , therefore the
probability that one of the coordinate of z(i) is unique is at least 1 − 2−λ (this
unique coordinate corresponds to j∗

i). By a union bound, with probability at
least 1 − t · 2−λ, all the tags has one unique coordinate.

1.4 Attribute-Based Traitor Tracing

Finally, we very briefly describe our results on attribute-based traitor tracing.
An attribute-based traitor-tracing (AB-TT) scheme is like an ABE with tracing
capabilities. The key generation algorithm gives out secret keys skf,i for functions
f with respect to some identity i. The encryption procedure encrypts a message
m with respect to an attribute x and the resulting ciphertext can be correctly
decrypted by skf,i if f(x) = 1. The identity i is completely irrelevant from
the point of view of ABE correctness/security. The tracing algorithm is given
a decoder D which is able to distinguish between the encryptions of some two
messages m0,m1 with respect to some attribute x. The goal is to recover some
traitor i whose key skf,i was used in the creation of the decoder and who is
qualified to decrypt meaning that f(x) = 1. Note that there may be many other
traitors that participate in the creation of the decoder and who are not qualified
to decrypt (e.g., have keys skg,j for some g such that g(x) = 0) but the tracing
algorithm must find a traitor who is qualified to decrypt.

348 Y. Chen et al.

We argue that catching a qualified user is the correct definition for tracing.
For example, imagine that a system is setup such that for a certain attribute
x corresponds to extremely sensitive information that only highly positioned
individuals can access. By the ABE security properties, if a decoder D were
discovered that could decrypt such ciphertexts it must be the case that such a
highly positioned user contributed to it. It would be rather unsatisfying if a trac-
ing algorithm were only able to finger a lower level individual that contributed to
it. We note that such tracing definitions were considered in prior works [1,21–23],
however, any black box tracing in such works required a

√
n factor of ciphertext

blowup for n users which was inherited from [7,8]. We improve this to polylog(n),
by constructing AB-TT from attribute-based mixed FE, which can be obtained
from ABE and mixed-FE for all polynomial-time computations. For more details,
we refer the reader to Sect. 5.

Additional Related Work on Tracing. Our work and comparisons focus on trac-
ing schemes that are collusion resistant. Starting with [14] there existed many
cryptosystems that would be collusion resistant up to t corrupted users where t
was some parameter of system setup. See [3] and the references therein for fur-
ther discussion of collusion bounded systems. Boneh, Sahai and Waters [7] gave
the first collusion resistant tracing schemes with ciphertext size that was sub-
linear in the number of users n. They achieved ciphertext growth proportional
to

√
n using composite order bilinear groups. Later variants [8,15,16] achieved

similar ciphertext size under improved bilinear assumptions. Several years later
Boneh and Zhandry [9] utilized indistinguishability obfuscation to achieve the
ideal case where ciphertexts grow polynomially in log(n) and λ. However, indis-
tinguishability obfuscation is not known from standard assumptions.

2 Preliminaries

Notations and Terminology. In cryptography, the security parameter (denoted as
λ) is a variable that is used to parameterize the computational complexity of the
cryptographic algorithm or protocol, and the adversary’s probability of breaking
security. An algorithm is “efficient” if it runs in (probabilistic) polynomial time
over λ.

When a variable v is drawn randomly from the set S we denote as v
$←

S or v ← U(S), sometimes abbreviated as v when the context is clear. We
use ≈s and ≈c as the abbreviation for statistically close and computationally
indistinguishable.

Let R,Z,N be the set of real numbers, integers and positive integers. Denote
Z/(qZ) by Zq. For n ∈ N, [n] := {1, ..., n}. A vector in R

n (represented in column
form by default) is written as a bold lower-case letter, e.g. v. For a vector v, the
ith component of v will be denoted by vi. A matrix is written as a bold capital
letter, e.g. A. The ith column vector of A is denoted ai. The length of a vector
is the �p-norm ‖v‖p = (

∑
vp

i)1/p. The length of a matrix is the norm of its
longest column: ‖A‖p = maxi ‖ai‖p. By default we use �2-norm unless explicitly
mentioned. When a vector or matrix is called “small”, we refer to its norm.

Traitor-Tracing from LWE Made Simple and Attribute-Based 349

2.1 Learning with Errors

We recall the learning with errors problem.

Definition 2.1 (Decisional learning with errors (LWE) [26]). For n,m ∈
N and modulus q ≥ 2, distributions for secret vectors, public matrices, and error
vectors θ, π, χ ⊆ Zq. An LWE sample is obtained from sampling s ← θn, A ←
πn×m, e ← χm, and outputting (A, sTA + eT mod q).

We say that an algorithm solves LWEn,m,q,θ,π,χ if it distinguishes the LWE
sample from a random sample distributed as πn×m × U(Z1×m

q) with probability
bigger than 1/2 plus non-negligible.

Lemma 2.2 (Standard form [10,24–26]). Given n ∈ N, for any m = poly(n),
q ≤ 2poly(n). Let θ = π = U(Zq), χ = DZ,σ where σ ≥ 2

√
n. If there exists an effi-

cient (possibly quantum) algorithm that breaks LWEn,m,q,θ,π,χ, then there exists
an efficient (possibly quantum) algorithm for approximating SIVP and GapSVP
in the �2 norm, in the worst case, to within Õ(nq/σ) factors.

We drop the subscripts of LWE when referring to standard form of LWE with
the parameters specified in Lemma 2.2.

2.2 Secret-Key and Mixed Functional Encryption

t-CT SKFE. We begin with the definition for SKFE:

Definition 2.3 (Secret-key functional encryption (SKFE)). A secret-key
functional encryption scheme for a class of functions Fμ = {f : {0, 1}μ →
{0, 1}} is a tuple of probabilistic polynomial time (p.p.t) algorithms (Setup,
skGen, skEnc,Dec) such that:

– Setup(1λ) takes as input the security parameter 1λ, and outputs the master
secret key msk and the public parameters pp.

– skGen(msk,m) takes as input msk and a message m ∈ {0, 1}μ, and outputs a
decryption key skm.

– skEnc(msk, f) takes as input msk and a function f ∈ Fμ, and outputs a
ciphertext ct.

– Dec(skm, ct) takes as input skm and ct, and outputs a single bit.

Correctness. For every message m ∈ {0, 1}μ and function f ∈ Fμ we have:

Pr[msk ←Setup(1λ); skm ← skGen(msk,m) :
Dec(skm, skEnc(msk, f)) = f(m)] = 1 − negl(λ),

where the probability is taken over the randomness of the algorithms
Setup, skGen, skEnc,Dec.

Function-Hiding Security. For all p.p.t stateful algorithms Adv, there is a
p.p.t. stateful algorithm Sim such that:{

Experiment REALAdv(1
λ)

}
λ∈N

≈c

{
Experiment IDEALAdv,Sim(1λ)

}
λ∈N

where the real and ideal experiments of stateful algorithms Adv,Sim are as
follows:

350 Y. Chen et al.

Experiment REALAdv(1
λ) Experiment IDEALAdv,Sim(1λ)

msk ← Gen(1λ), Sim ← 1λ

For i ∈ [t]: For i ∈ [t]:

Adv → f [i]; Adv → f [i];

Adv ← ct[i] = skEnc(pp,msk, f [i]); Adv ← ct[i] = Sim(1|f [i]|);

Repeat polynomially many times: Repeat polynomially many times:

Adv → m; Adv ← skGen(pp,msk,m) Adv → m; Adv ← Sim(m,
{
f [i](m)

}
i∈[t]

)

Adv → b; Output b Adv → b; Output b

In the experiments, the adversary Adv can ask for t ciphertexts followed
by polynomially many decryption key queries. Once Adv makes a ciphertext
query for a function f ∈ Fλ, in the real experiment Adv obtains the ciphertext
generated by the secret-key encryption algorithm; in the ideal experiment Adv
obtains the ciphertext generated by Sim given only the (circuit) size of f . Once
Adv makes a message query m, in the real experiment Adv obtains skm from the
decryption key generation algorithm; in the ideal experiment, Adv obtains the
decryption key generated by the simulator who is given m, and

{
f [i](m)

}
i∈[t]

.
The output of the experiment is the final output bit of Adv.

Remark 2.4 (adaptive security). A t-CT SKFE scheme is called adaptively
secure if the function and ciphertext queries can be made adaptively in any
order. Some constructions achieve partially adaptive security and we will explic-
itly mention the restrictions.

t-CT Mixed FE. We provide a simulation-based definition for t-ciphertext (t-CT)
mixed-FE, which is same as the definition in [20, Sect. 5] where it is referred to
as (t − 1)-bounded mixed-FE.

Definition 2.5 (Mixed functional encryption). A mixed functional encryp-
tion scheme for a class of functions Fμ = {f : {0, 1}μ → {0, 1}} is a tuple of
probabilistic polynomial time (p.p.t) algorithms (Setup, skGen, skEnc,Dec, pkEnc)
such that:

– (Setup, skGen, skEnc,Dec) are the same as SKFE.
– pkEnc(pp) takes as input pp, and outputs a ciphertext ct.

Correctness and Function-Hiding Security. Same as SKFE.

Public/Secret-Key Mode Indistinguishability. In addition to the security
requirement above for a normal secret-key functional encryption, a mixed-FE
further requires that for a function f queried to the encryption oracle, if for
all message m queried by the adversary, f(m) = 1 (the other potential t − 1
functions does not have to satisfy this requirement), then the secret-key ciphertext
skEnc(msk, f) is indistinguishable from a sample from pkEnc(pp). Formally, we

Traitor-Tracing from LWE Made Simple and Attribute-Based 351

require that for all p.p.t stateful algorithms Adv, the following two experiments
produce indistinguishable outputs:{

Experiment SKEXPAdv(1
λ)

}
λ∈N

≈c

{
Experiment PKEXPAdv(1

λ)
}

λ∈N

The experiments are as follows:

Experiment SKEXPAdv(1
λ) Experiment PKEXPAdv(1

λ)

pp,msk ← Gen(1λ), pp,msk ← Gen(1λ),
For i in [i∗ − 1]: For i in [i∗ − 1]:

Adv → f [i]; Adv → f [i];

Adv ← ct[i] = skEnc(msk, f [i]); Adv ← ct[i] = skEnc(msk, f [i]);

Adv → f [i∗]; Adv → f [i∗];

Adv ← ct[i
∗] = skEnc(msk, f [i∗]); Adv ← ct[i

∗] = pkEnc(pp);
For i in [i∗ + 1, t]: For i in [i∗ + 1, t]:

Adv → f [i]; Adv → f [i];

Adv ← ct[i] = skEnc(msk, f [i]); Adv ← ct[i] = skEnc(msk, f [i]);
Repeat polynomially many times: Repeat polynomially many times:

Adv → m; Adv ← skGen(msk,m) Adv → m; Adv ← skGen(msk,m)
Adv → b; Output b Adv → b; Output b

Remark 2.6 (comparison with [20]). What we call a t-CT mixed FE is referred
as a (t − 1)-query mixed FE in [20]. In the latter, security is formalized using
a indistinguishability-based paradigm. For the public/secret-key mode indistin-
guishability, they require that the two ciphertexts are indistinguishable given
honestly generated secret keys from skGen.

3 t-CT Mixed-FE from Lockable Obfuscation and t-CT
SKFE

In this section, we present a construction of t-ciphertext mixed-FE for the class
of all poly-time computable functions from any lockable obfuscation for all poly-
time computable functions and t-ciphertext secret key functional encryption for
all poly-time computable functions. Thus, our construction shows how to use
lockable obfuscation to generically add a public-key oblivious sampling mode to
a SKFE.

3.1 Lockable Obfuscation

Recall the definition of lockable obfuscation from [19,28].

352 Y. Chen et al.

Definition 3.1 (Lockable (or compute-and-compare) obfuscation).
Consider a family of functions F = {Fλ}λ∈N where Fλ ={
f : {0, 1}�(λ) → {0, 1}ν(λ)

}
, ν(λ) = ω(log λ). A lockable obfuscator takes a func-

tion f ∈ F and a target α ∈ {0, 1}ν , outputs an obfuscated program Obf[f, α]
which satisfies the following properties:

Functionality. Obf[f, α] takes an input x ∈ {0, 1}�, output 1 if f(x) = α; ⊥
otherwise.

Virtual Black-Box Security. A lockable obfuscator is said to satisfy virtual black-
box security if there is a p.p.t. simulator S such that for all f ∈ F ,

Obf[f, α] ≈c S(1λ, 1|f |)

over α
$← {0, 1}ν and the randomness of the obfuscator and S.

3.2 The Mixed-FE Construction

Construction 3.2. Given a t-CT SKFE FE = (FE.Gen,FE.skGen,FE.skEnc,
FE.Dec) and a lockable obfuscator Obf, construct a t-CT mixed-FE as follows.

– Setup(1λ) runs FE.msk ← FE.Gen(1λ), and treat it as the master secret key.
– skGen(msk, x) outputs FE.skx ← FE.skGen(FE.msk, x).
– pkEnc(pp) outputs the simulated code for the lockable obfuscation

Obf.S(1λ, 1poly(|f |)).
– skEnc(msk, f) samples a random string α ← {0, 1}λ, runs FE.ctH ← FE.skEnc

(msk,Hα,f) where Hα,f computes the following multiple-output-bit function-
ality

Hα,f (x) =

{
α if f(x) = 0
0 else

.

Then, produce the lockable obfuscation Obf[PFE.ctH , α] as the ciphertext, where
PFE.ctH (Y) computes FE.Dec(FE.ctH , Y).

– Dec(skx, ct) parses skx as FE.skx, and ct as Obf[PFE.ctH , α], outputs
Obf[PFE.ctH , α](FE.skx).

3.3 The Security Analysis

Theorem 3.3. Construction 3.2 is a t-CT mixed-FE assuming the underlying
obfuscator Obf is a lockable obfuscation and FE is a t-CT secure secret-key FE.

The only additional property (compared to a normal SKFE) is the indistin-
guishability of the public-key and the secret-key ciphertext for a function f s.t.
for all x queried in the game, f(x) = 1. The intuition is that in that case, the α
in the SKFE ciphertexts is hidden following the plain SKFE security. Therefore
the α in the lockable obfuscation target is random and independent, and we can
trigger the simulation security of the lockable obfuscation.

Traitor-Tracing from LWE Made Simple and Attribute-Based 353

Proof. We prove the indistinguishability of the public and secret-key modes.
Consider the following intermediate distribution for the t-CT mixed-FE

experiment. Once Adv makes a ciphertext query for a function f (i) ∈ Fλ,
i ∈ [t], the challenger responds by sampling a random string α(i) ←
{0, 1}λ, runs FE.ctH ← FE.Sim(1poly |H

f(i) |). Then produces the lockable
obfuscation Obf[PFE.ctH , α(i)] as the ciphertext, where PFE.ctH (Y) computes
FE.Dec(FE.ctH , Y). Once Adv makes a message query m, the challenger responds
with a decryption key FE.skm ← FE.Sim(m,

{
1(i)

}
i∈[t]

).
So if there is an adversary that distinguishes the real distribution and the

intermediate distribution, then there is an adversary that breaks the simula-
tion security for the t-CT SKFE. If there is an adversary that distinguishes the
intermediate distribution from the public key mode, then we build an adversary
that breaks the lockable obfuscation, due to the fact that the PFE.ctH in the
intermediate distribution does not depend on α(i).

4 t-CT Mixed-FE from Key-Homomorphic Private
Constrained PRF

In this section we present a construction of mixed-FE from key-homomorphic
PCPRF.

4.1 Background of Key-Homomorphic Private Constrained PRFs

We first give the definition of a key-homomorphic private constrained PRF,
which literally combines key-homomorphism [5] with private constrained PRFs
[6,12]. For the purpose of this paper we work with the KHPCPRFs that sat-
isfy the simulation-based definition given one constrained key and many input
queries. We then explain that the PCPRF constructions in [11–13] satisfy
an approximate version of key-homomorphism, which suffices for constructing
mixed-FE.

Definition 4.1 (Key-homomorphic private constrained PRF
(KHPCPRF)). Consider a family of functions F = {Fλ}λ∈N where Fλ = {Fk :
Dλ → Rλ}, along with a tuple of efficient functions (ppGen, skGen, Constrain,
Eval, Constrain.Eval). For a constraint family C = {Cλ = {C : Dλ → {0, 1}}}λ∈N

,

– The public parameter generation algorithm ppGen(1λ,Fλ) takes the security
parameter λ and the description of the constraint class Fλ, generates the
public parameter pp.

– The secret key generation algorithm skGen(1λ, pp) takes the security parame-
ter λ, and the public parameter pp, generates the secret key sk.

– The evaluation algorithm Eval(sk, x) takes sk, an input x, outputs Fsk(x).
– The constraining algorithm Constrain(1λ, pp, sk, C) takes sk, a constraint C ∈

Cλ, outputs the constrained key ckC .

354 Y. Chen et al.

– The constrained evaluation algorithm Constrain.Eval(ckC , x) takes a con-
strained key ckC , an input x, outputs FckC

(x).

F is called a family of key-homomorphic private constrained PRF for C if
it satisfies the following properties:

Functionality preservation for C(x) = 0. For any constraint C ∈ Cλ, any
input x ∈ Dλ s.t. C(x) = 0,

Pr[Eval(sk, x) = Constrain.Eval(ckC , x)] ≥ 1 − negl(λ),

where the probability is taken over the randomness in algorithms ppGen, skGen
and Constrain.

Pseudorandomness and Constraint-Hiding. For any polynomial time algorithm
Adv, there is a polynomial time algorithm Sim such that:{

Experiment REALAdv(1
λ)

}
λ∈N

≈c

{
Experiment IDEALAdv,Sim(1λ)

}
λ∈N

.

where the ideal and real experiments are defined as follows. In the experiments the
adversary can ask a single constraint query followed by polynomially many input
queries. Once Adv makes the constraint query C ∈ Cλ, in the real experiment Adv
obtains the constrained key generated by the constraining algorithm; in the ideal
experiment Adv obtains a key generated by Sim, whereas Sim is given only the
size of C. Once Adv makes an input query x, Adv is expected to provide a bit dx

indicating the value of C(x). In the real experiment Adv obtains the unconstrained
function value at x. In the ideal experiment Sim learns the indicator bit dx; if
dx = 0 then Adv gets a value generated by Sim, and if dx = 1 then Adv obtains
a random value from the range R of the function. The output of the experiment
is the final output bit of Adv.

Experiment REALAdv(1
λ) Experiment IDEALAdv,Sim(1λ)

pp ← ppGen(1λ), Sim ← 1λ

sk ← skGen(1λ, pp), Sim ← 1λ

Adv → C; Adv → C;

Adv ← Constrain(pp, sk, C) Adv ← Sim(1|C|)
Repeat : Repeat :

Adv → x; y = Eval(sk, x) Adv → x; y = Sim(x, dx)
Adv ← y if dx = 1 then y = U(R);Adv ← y

Adv → b; Output b Adv → b; Output b

Key-Homomorphism for the SK. Let ◦ denote the group operation. For pp ←
ppGen(1λ,Fλ), sk1, sk2 ← skGen(1λ, pp), and any input x ∈ Dλ.

Pr[Eval(sk1 ◦ sk2, x) = Eval(sk1, x) ◦ Eval(sk2, x)] ≥ 1 − negl(λ).

Traitor-Tracing from LWE Made Simple and Attribute-Based 355

The Distribution Requirement on the Secret Keys. Let ◦ denote the group opera-
tion. We additionally require that for pp ← ppGen(1λ,Fλ), for sk1, sk2, sk

′ sam-
pled from skGen(1λ, pp) with independent randomness, sk1◦sk2, sk1◦(−sk2), and
sk′ are from the same distribution.

Almost Key-Homomorphic PCPRF and the LWE-Based Constructions. The
existing LWE-based PCPRFs satisfies the notion of almost-key-homomorphism.
For simplicity we focus on the case where the range of the PRF is Zn

p for n, p ∈ N,
and let the operation be +, which is what the LWE-based PCPRFs work with.

Definition 4.2 (Almost-Key-Homomorphism). For B, p, n ∈ N such that
B < p. Let + be the group operation. A family of PRFs F = {Fλ}λ∈N with
domain Dλ and range Z

n
p is called B-almost-key-homomorphic if for pp ←

ppGen(1λ,Fλ), sk1, sk2 ← skGen(1λ, pp), and any input x ∈ Dλ.

‖Eval(sk1, x) + Eval(sk2, x) − Eval(sk1 ◦ sk2, x)‖∞ ≤ B

Next we briefly explain how to set the parameters for the existing lattice-
based PCPRFs to achieve almost-key-homomorphism.

Let q > p ≥ 2 be the moduli. In all the LWE-based PCPRF constructions,
the evaluation algorithms first work entirely over Z

n
q , then finalize by applying

a (coordinate-wise) rounding operation a�p : Zq → Zp by multiplying a by p/q
and rounding the result to the nearest integer. For any a, b ∈ Zq, we have

| a�p + b�p − a + b�p | ≤ 1

For the two PCPRF constructions [12,13] for branching programs from the
GGH15 approach [17]. Let h be the length of the branching program (i.e. the
number of indexes), � be the bit-length of the input, and π be the index-to-
input mapping. Recall that the (secret-key) evaluation algorithm takes as input
a sequence of matrices

{
Si,b ∈ Zn×n

q

}
i∈[h],b

and a vector a sampled uniformly

random from Z
n
q , computes the output on x ∈ {0, 1}� as

y =

⎢⎢⎢⎣ ∏
i∈[h]

Si,xπ(i) · a

⎤
⎥⎥⎥

p

By treating a as the secret key, the matrices in
{
Si,b ∈ Zn×n

q

}
i∈[h],b

as the
public parameters (which is explicit proved in [13] and generalizable to the set-
ting in [12]), we have 1-almost-key-homomorphism since for all x ∈ {0, 1}�,⎢⎢⎢⎣ ∏

i∈[h]

Si,xπ(i) · a1

⎤
⎥⎥⎥

p

+

⎢⎢⎢⎣ ∏
i∈[h]

Si,xπ(i) · a2

⎤
⎥⎥⎥

p

∈

⎢⎢⎢⎣ ∏
i∈[h]

Si,xπ(i) · (a1 + a2)

⎤
⎥⎥⎥

p

+{−1, 0, 1}

So setting p to be a bit larger than the appropriated number of key addition suf-
fices for achieving a meaningful key-homomorphism. The distribution property
holds since the secret key is sampled uniformly random from Z

n
q .

356 Y. Chen et al.

For the PCPRF constructions for all poly-size circuits in [11], the first con-
struction [11, Sect. 4] satisfies almost-key homomorphism and the distribution
requirement. Very briefly, the construction uses a secret key s sampled uniformly
random from Z

n
q , and a set of matrices in the public parameter pp. The evalua-

tor takes an input x and pp, derives a matrix pp(x) which is independent of the
secret key, then computes

⌊
sT · pp(x)

⌉
p
. The approximate-key homomorphism

and the distribution property follow immediately.

Remark 4.3. One can also define key-homomorphism for the constrained keys in
the natural way, although it is not used in this paper. Let us remark that the
constrained keys of the PCPRFs from [12,13] are also key-homomorphic.

4.2 Constructing t-CT Mixed-FE from KHPCPRF

Next we construct a t-CT secure mixed-FE from key-homomorphic PCPRF.
The construction achieves t-CT security with a O(t) blow-up in the size of the
functional decryption key, which is smaller than the other existing secret-key
functional encryptions with bounded collusion.

We first describe the construction of a mixed-FE from a PCPRF with exact
key-homomorphism, then explain how to modify the construction and secu-
rity analysis slightly to work with the LWE-based almost-key-homomorphic
PCPRFs.

Let us remark that the construction and security analysis for a 1-CT secure
mixed-FE from PCPRF (even without key-homomorphism) is implicit in [12,
Sect. 6] and is explained in the introduction. So we deal with the case of 2 ≤ t ≤
poly(λ) directly.

Let T = {1, 2, ..., 2t − 2}. The idea is to pick λ × (2t − 2) independently
sampled secret keys for the KHPCPRF scheme, denote each of them as skj,d,
j ∈ [λ], d ∈ T . To generate a ciphertext for a function f , pick a random vector
z ∈ T λ, and encrypt the function f in the constrained key derived from the
secret key

∑
j∈[λ] skj,zj

. We then prove each encryption is a constrained key
derived from an independently generated master secret key with overwhelming
probability.

Construction 4.4. Given a key-homomorphic PCPRF F with group operation
+, domain D and range R, construct a t-CT secure mixed-FE MFE as follows.

– MFE.Setup(1λ) runs F.ppGen(1λ) to generate F.pp. Then runs F.skGen(1λ, pp)
for λ · (2t − 2) times with independent randomness, denote the resulting set
of secret keys as {F.skj,d}j∈[λ],d∈T . Let MFE.msk := F.pp, {F.skj,d}j∈[λ],d∈T ,
let MFE.pp := F.pp.

– MFE.skGen(MFE.msk, x) takes a message x ∈ Dλ, outputs

skx = x, {F.Eval(F.skj,d, x)}j∈[λ],d∈T .

– MFE.skEnc(MFE.msk, f) samples z $← T λ. Then let F.skf =
∑

j∈[λ] F.skj,zj
.

Outputs
ctf = z,F.Constrain(F.pp,F.skf , f).

Traitor-Tracing from LWE Made Simple and Attribute-Based 357

– MFE.pkEnc(MFE.pp) runs the simulator of F on the size of the maximum
constraint 1|Cλ| to generate a simulated constrained key F.Sim.ck, outputs

ctf = z $← T λ,F.Sim.ck

– MFE.Dec(skx, ctf) parses skx as x, {yj,d}j∈[λ],d∈T and ctf as z, ckf , outputs

{
0 if F.Constrain.Eval(ckf , x) =

∑
j∈[λ] yj,zj

1 else
.

Correctness. For f and x such that f(x) = 0, then

F.Constrain.Eval(ckf , x) = F.Eval(F.skf , x) =
∑
j∈[λ]

F.Eval(F.skj,zj
, x),

where the first equality follows the correctness of the PCPRF, the second equality
follows the exact key-homomorphism.

For f and x such that f(x) = 1, by the pseudorandomness of the PRF eval-
uations on x such that f(x) = 1, F.Eval(F.skf , x) looks random, and is therefore
unlikely to be equal to F.Constrain.Eval(ckf , x) as long as the range R is super-
polynomially large.

Theorem 4.5. Assuming F is a key-homomorphic PCPRF, Construction 4.4
gives a t-CT secure mixed-FE.

Proof. We construct the mixed-FE simulator MFE.Sim(1λ) as follows:

1. Preprocessing: Sample a set of tags
{
z[i] $← T λ

}
i∈[t]

. We define t+1 sets H[i],

for i ∈ [t], and G w.r.t. the tags, where H[i] contains the coordinates that only
appear in z[i]; G contains the indexes that either appear in the tags for more
than once, or never appear in the tags. Later we will prove that w.h.p. all the
sets H[i], i ∈ [t], are non-empty.
Formally, first initialize all the sets as empty sets. Then for (j, d) ∈ [λ] × T :

– If there exists an i∗ ∈ [t] such that z[i
∗]

j = d and ∀i �= i∗, z[i
∗]

j �= d, then
add (j, d) in H[i∗].

– Else, add (j, d) in G.
2. Given the ith ciphertext query, MFE.Sim(1λ) calls for F.Sim.ck[i] ←

F.Sim(1|C|), outputs z[i],F.Sim.ck[i] as the simulated ciphertext ct[i].
3. Given a decryption key query on the input x with the indicators{

f [i](x)
}

i∈[t]
, the mixed-FE simulator MFE.Sim(1λ, x,

{
f [i](x)

}
i∈[t]

) outputs
x and {yx,j,d}j∈[λ],d∈T , where each yx,j,d is computed in the following way:

– First go over all (j, d) ∈ G, and let yx,j,d
$← Rλ, where Rλ is the range of

the KHPCPRF.

358 Y. Chen et al.

– Then, for each i ∈ [t], let p[i] := |H[i]|.
For the first p − 1 indexes (j, d) ∈ H[i], let yx,j,d

$← Rλ.
For the last index (j∗, d∗) ∈ H[i], let

yx,j∗,d∗ :=

⎧
⎨

⎩

F.Constrain.Eval(F.Sim.ck[i], x)− ∑
j∈[λ],j �=j∗ y

x,j,z
[i]
j

if f [i](x) = 0

U(Rλ) if f [i](x) = 1
.

(1)

We first prove that with all but negligible probability, all the sets H[i], i ∈ [t],
are non-empty.

Lemma 4.6. With probability greater or equal to 1 − t · 2−λ, |H[i]| ≥ 1 for all
i ∈ [t].

Proof. For each tag z[i], i ∈ [t], the probability that the jth coordinate of z[i]

does not show up in the other t − 1 tags is ≥ (2t−2)−(t−1)
2t−2 = 1

2 . Therefore the
probability that |H[i]| ≥ 1 is 1−2−λ. Therefore with probability greater or equal
to 1 − t · 2−λ, |H[i]| ≥ 1 for all i ∈ [t].

Next we reduce the simulation security of the KHPCPRF (with the same
public parameter and many independent secret keys) to the indistinguishability
of the real experiment and the simulated one for the mixed-FE scheme. Suppose
there is a p.p.t. adversary A that breaks the t-CT secure mixed-FE MFE with
non-negligible probability η, we build a p.p.t. adversary A′ for the KHPCPRF
F. A′ goes through the following stages.

1. Preprocessing: A′ sample a set of tags
{
z[i] $← T λ

}
i∈[t]

. Define the sets H[i],

for i ∈ [t], and G w.r.t. the tags in the same way as was defined for the MFE
simulator.

2. The mixed-FE ciphertext queries: Once the mixed-FE adversary A makes
the encryption queries for

{
f [i]

}
i∈[t]

, A′ then forwards the t functions
as the KHPCPRF constrained key queries. A′ gets back t constrained
keys

{
ck[i]

}
i∈[t]

, each of them is either a real constrained key ck[i] ←

F.Constrain(F.pp,F.sk[i], f [i]) derived from some secret key F.sk[i], or a sim-
ulated constrained key ck[i] ← F.Sim(1|C|).
A′ then responses z[i], ck[i] to A as the ciphertext ct[i], for i ∈ [t].

3. The mixed-FE decryption key queries: Once the mixed-FE adversary A makes
a functional decryption key query on x, A′ forwards x with the indicators{
f [i](x)

}
i∈[t]

as a KHPCPRF evaluation query. A′ gets back t evaluations{
y[i]

}
i∈[t]

, each of them is either the real evaluation y[i] = F.Eval(F.sk[i], x)

on some secret key F.sk[i], or a simulated evaluation y[i] = F.Sim(x, f [i](x)).
A′ then produces the set {yx,j,d}j∈[λ],d∈T as follows:

– First go over all (j, d) ∈ G, and let yx,j,d
$← Rλ, where Rλ is the range of

the KHPCPRF.

Traitor-Tracing from LWE Made Simple and Attribute-Based 359

– Then, for each i ∈ [t], let p[i] := |H[i]|.
For the first p − 1 indexes (j, d) ∈ H[i], let yx,j,d

$← Rλ.
For the last index (j∗, d∗) ∈ H[i], let yx,j∗,d∗ = y[i] −

∑
j∈[λ],j �=j∗ y

x,j,z
[i]
j

.

A′ then responses x, {yx,j,d}j∈[λ],d∈T to A as the functional decryption key
for x.

4. Finally A′ forwards the answer of A on whether the scheme is real or simu-
lated.

We justify that the distributions produced by A′ are computationally close to
the desired distributions in the mixed-FE security game. Recall that all the sets
H[i], for i ∈ [t], are non-empty with probability ≥ 1 − t · 2−λ due to Lemma 4.6.

If the KHPCPRF samples A′ received are from the real distribution, then

– The correct distribution of a mixed-FE ciphertext is

U(T λ),F.Constrain(F.pp,F.skf , f), where F.skf =
∑
j∈[λ]

F.skj,zj
.

The distribution of the mixed-FE ciphertext produced by A′ is

U(T λ),F.Constrain(F.pp,F.sk, f), with some correctly generated secret key F.sk.

These two distributions are the same due to the distribution requirement for
the correctly generated secret keys for F. Recall that for sk1, sk2, sk

′ sampled
from F.skGen(1λ, pp) with independent randomness, sk1 + sk2 and sk′ are
required to be from the same distribution. This immediately implies that the
sum of many correctly generated secret keys distributes the same as a single
secret key.

– The correct mixed-FE functional decryption key for x is skx =
x, {F.Eval(F.skj,d, x)}j∈[λ],d∈T . We argue that the mixed-FE functional
decryption key for x produced by A′ is computationally indistinguishable
to the real one due to the pseudorandomness of the PRF evaluations w.r.t.
the secret keys whose constrained keys are not giving out.

• For all (j, d) ∈ G, the PRF secret keys on these indexes are independent
from the constrained keys that are given out, so the PRF evaluations on
these indexes are indistinguishable from random.

• For each i ∈ [t], pick an index (j∗, d∗) ∈ H[i], the real PRF evaluation
yx,j∗,d∗ can be re-written following the key-homomorphism as

F.Eval(F.skf , x) −
∑

j∈[λ],j �=j∗
F.Eval(F.sk

j,z
[i]
j

, x) = F.Eval((F.skf −
∑

j∈[λ],j �=j∗
F.sk

j,z
[i]
j

), x).

Therefore, yx,j∗,d∗ distributes correctly due to the distribution require-
ment of the KHPCPRF secret keys. The PRF evaluations on the rest
of the indexes in H[i] are using independent PRF secret keys, so these
evaluations are pseudorandom.

360 Y. Chen et al.

If the KHPCPRF samples A′ received are from the simulated distribution,
then

– The correct simulated distribution of the mixed-FE ciphertexts is
U(T λ),F.Sim(1|C|), which is exactly what A′ produces.

– For the simulated mixed-FE functional decryption key for x. Observe
that the constrained PRF simulator outputs U(Rλ) if f(x) = 1, outputs
F.Constrain.Eval(F.Sim.ck, x) if f(x) = 0. So the functional decryption key
produced by A′ follows the correct distribution.

Hence A′ wins with η − negl(λ) advantage in the KHPCPRF simulation
security game.

Finally we verify the public/secret-key mode indistinguishability. It follows
from observing that if f [i](x) = 1 for all x being queried, the simulated ciphertext
is independent from the simulated functional decryption keys, and has the same
distribution as the public-key mode.

The Instantiation from the LWE-Based Almost-Key-Homomorphic PCPRFs.
We provide the details for instantiating the mixed-FE from the LWE-based
1-almost-key-homomorphic PCPRFs. Note that the maximum number of key
addition is λ in both the construction and the analysis, so we can choose the
modulus p to be ≥ 4λ, the range R as Z

n
p where n = Ω(λ), and the rest of the

parameters under the restrictions mentioned in the original PCPRF construc-
tions.

In the construction of the mixed-FE, we change the decryption algorithm as:
MFE.Dec(skx, ctf) parses skx as x, {yj,d}j∈[λ],d∈T and ctf as z, ckf , outputs

{
0 if

∥∥∥F.Constrain.Eval(ckf , x) −
(∑

j∈[λ] yj,zj

)∥∥∥
∞

≤ λ

1 else
.

In the simulation, we change one piece in the simulated functional decryption
key for each i ∈ [t]. That is, for the last index (j∗, d∗) ∈ H[i], we let

yx,j∗,d∗ :=

⎧
⎨

⎩
F.Constrain.Eval(F.Sim.ck[i], x) + N(λ) −

∑
j∈[λ],j �=j∗ y

x,j,z
[i]
j

if f [i](x) = 0

U(Rλ) if f [i](x) = 1
. (2)

where N(λ) is a noise factor added to compensate the error caused by the
almost-hey-homomorphism. The distribution of N(λ) is efficiently sampleable
and identical to the distribution of∑

j∈[λ]

F.Eval(F.skj , x) − F.Eval(F.skΣ , x)

where
{
F.skj ← F.skGen(1λ,F.pp)

}
j∈[λ]

and F.skΣ =
∑

j∈[λ] F.skj .

Traitor-Tracing from LWE Made Simple and Attribute-Based 361

5 Attribute-Based Traitor Tracing

5.1 Definition of Attribute-Based Traitor Tracing

Definition 5.1 (Attribute-Based Traitor Tracing (AB-TT)). An
attribute-based traitor-tracing (AB-TT) scheme for a class of functions Fμ =
{f : {0, 1}μ → {0, 1}} and a message length � (where μ, � are functions of
the security parameter λ) is a tuple of p.p.t. algorithms (Setup, skGen,Enc, Dec,
Trace) such that:

– Setup(1λ) takes as input the security parameter 1λ, outputs the master secret
key msk and the public parameter pp.

– skGen(msk, f, i) takes msk, a function f ∈ Fμ and an identity i ∈ [2λ] and
outputs a decryption key skf,i.

– Enc(pp, x,m) takes as input pp, the attribute x ∈ {0, 1}μ and a message
m ∈ {0, 1}� and outputs a ciphertext ct.

– Dec(skf,i, ct) takes skf,i and ct, outputs the message m or ⊥.
– TraceD(msk, 1n, 1h, x,m0,m1) takes as input msk the number of identities n ∈

Z, a correctness parameter h, an attribute x ∈ {0, 1}μ and two messages
m0,m1 as well as oracle-access to a “decoder” D. Outputs an identity t ∈ [2λ]
or ⊥ to indicate that no identity was traced.

The scheme satisfies the following properties:

– Correctness: This is the same as in standard ABE if we ignore the index i
(allow it to be arbitrary).

– ABE Security: This is the same as in standard ABE if we ignore the index i
(allow the adversary to choose it arbitrarily).

– Tracing Security: For any ε(λ) = 1/poly(λ). We define the following experi-
ment between an adversary A and a challenger:
1. 1n ← A(1λ).
2. (mpk,msk) ← Setup(1λ)
3. (D,x,m0,m1) ← AskGen(msk,·,·)(pp) : x ∈ {0, 1}μ,m ∈ {0, 1}� and oracle

queries (f, t) must satisfy f ∈ Fμ and t ∈ [n].
4. t ← TraceD(msk, 1n, 1�1/ε	, x,m0,m1)

Within the above experiment, define the event GoodDecoder to occur if

Pr[D(ct) = b : b ← {0, 1}, ct ← Enc(pp, x,mb)] ≥ 1/2 + ε(λ)

where D,x,m0,m1 are defined in step 3 of the experiment. Define the event
BadTrace to occur if, for the t output by the trace algorithm in step 4, the
adversary never made a skGen query of the form (f, t) where f(x) = 1. We
require that Pr[GoodDecoder ∧ BadTrace] ≤ negl(λ).

We make several remarks about the above definition. Firstly, while syntac-
tically the scheme allows the identities i to come from a large space [2λ], for
tracing security we assume that the range of identities [n] is polynomially sized
where the polynomial can be chosen arbitrarily by the adversary. Secondly, we
think of the identities i as corresponding to users but each user can get several
different keys skf,i for different functions f .

362 Y. Chen et al.

5.2 Tool: Attribute-Based Mixed FE

An attribute-based Mixed FE (AB-MFE) combines aspects of MFE and ABE.
In particular, like in ABE, a secret key is associated with an ABE function
f and a (public-key) ciphertext is associated with an ABE attribute x and a
message m and decryption works if f(x) = 1. However, like in MFE, the secret
key is also associated with an MFE function g. The MFE function is irrelevant
when decrypting public-key ciphertexts. But there is also a secret-key encryption
algorithm that additionally associates a ciphertext with an MFE attribute y. A
secret-key ciphertext decrypts correctly if f(x) = 1 and g(y) = 1. The security
requirements are a combination of MFE and ABE security.

(Note that, from the point of view of MFE, we switched the role of attributes
and functions from the original definition by associating secret keys with func-
tions and ciphertexts with attributes. This change is essentially cosmetic to
better fit the connection with ABE and one can convert back and forth easily
using universal circuits).

Definition 5.2 (Attribute-Based Mixed FE). An attribute-based mixed-
FE (AB-MFE) scheme for a class of ABE functions Fμ = {f : {0, 1}μ →
{0, 1}}, MFE functions Gν = {g : {0, 1}ν → {0, 1}} and message length � (where
μ, ν, � are functions of the security parameter λ) is a tuple of p.p.t. algorithms
(Setup, skGen, pkEnc, skEnc,Dec) such that:

– Setup(1λ) takes as input the security parameter 1λ, outputs the master secret
key msk and the public parameter pp.

– skGen(msk, f, g) takes msk, an ABE function f ∈ Fμ, a MFE function g ∈ Gν

and outputs a decryption key skf,g.
– pkEnc(pp, x,m) takes as input pp, the ABE attribute x ∈ {0, 1}μ and a mes-

sage m ∈ {0, 1}� and outputs a ciphertext ct.
– skEnc(msk, x, y,m) takes as input pp, the ABE attribute x ∈ {0, 1}μ the MFE

attribute y ∈ {0, 1}ν and a message m ∈ {0, 1}� and outputs a ciphertext ct.
– Dec(skf,g, ct) takes skf,g and ct, outputs a message m or ⊥.

The scheme is q-query secure for some polynomial q = q(λ) if it satisfies the
following properties:

– Correctness: For all f ∈ Fμ and all x ∈ {0, 1}μ such that f(x) = 1, for all
g ∈ Gν and all m ∈ {0, 1}� it holds that

Pr

⎡
⎣Dec(skf,g, ct) = m :

(pp,msk) ← Setup(1λ),
skf,g ← skGen(msk, f, g),
ct ← pkEnc(pp, x,m)

⎤
⎦ ≥ 1 − negl(λ)

Furthermore, for all f, x,m as above and all y ∈ {0, 1}ν such that g(y) = 1
it holds that:

Pr

⎡
⎣Dec(skf,g, ct) = m :

(pp,msk) ← Setup(1λ),
skf,g ← skGen(msk, f, g),
ct ← skEnc(pp, x, y,m)

⎤
⎦ ≥ 1 − negl(λ)

Traitor-Tracing from LWE Made Simple and Attribute-Based 363

– ABE Security: The algorithms (Setup, skGen, pkEnc,Dec) satisfy ABE secu-
rity if we ignore the g part of skGen.

– Public/Secret Hiding: Consider the following experiment with an adver-
sary A
1. (mpk,msk) ← Setup(1λ)
2. (x∗, y∗,m∗) ← AskGen(msk,·,·),skEnc(msk,·,·,·)(mpk)
3. b ← {0, 1}. If b = 0 then set ct ← pkEnc(pp, x∗,m∗) else if b = 1 set

ct ← skEnc(msk, x∗, y∗,m∗).
4. b′ ← A(ct).

An adversary A in the above experiment is legal if (a) it makes at most q
queries to the skEnc oracle, and (b) every query (f, g) made to the skGen oracle
satisfies g(y∗) = 1, meaning that the MFE component is always qualified to
decrypt. We require that for any legal A in the above game we have Pr[b′ =
b] ≤ 1

2 + negl(λ).
– MFE Attribute Hiding: Consider the following experiment with an adver-

sary A
1. (mpk,msk) ← Setup(1λ)
2. (x∗,m∗, y0, y1) ← AskGen(msk,·,·),skEnc(msk,·,·,·)(mpk)
3. b ← {0, 1}, ct ← skEnc(msk, x∗, yb,m

∗).
4. b′ ← A(ct).

An adversary A in the above experiment is legal if (a) it makes at most q
queries to the skEnc oracle, and (b) every query (f, g) made to the skGen
oracle satisfies g(y0) = g(y1). We require that for any legal A in the above
game we have Pr[b′ = b] ≤ 1

2 + negl(λ).
– Message Hiding: Consider the following experiment with an adversary A

1. (mpk,msk) ← Setup(1λ)
2. (x∗, y∗,m0,m1) ← AskGen(msk,·,·),skEnc(msk,·,·,·)(mpk)
3. b ← {0, 1}, ct ← skEnc(msk, x∗, y∗,mb).
4. b′ ← A(ct).

An adversary A in the above experiment is legal if (a) it makes at most q
queries to the skEnc oracle, and (b) every query (f, g) made to the skGen
oracle satisfies g(y∗) = 0 or f(x∗) = 0. We require that for any legal A in the
above game we have Pr[b′ = b] ≤ 1

2 + negl(λ).

Decoder-Based Security. In the above definition of AB-MFE security we con-
sidered three security properties each of which consists of a 4-step experiment.
For each of them, the adversary can make at most q queries to skEnc(msk, ·)
oracle during the experiment and at the end of the experiment gets as input a
ciphertext ct and outputs a bit b. We now consider a variant of the three secu-
rity properties which we call decoder-based security. Firstly, the adversary loses
access to the skEnc(msk, ·) oracle entirely in each of the experiments. Secondly,
in step 2 of each of the experiments the adversary additionally outputs a decoder
circuit D and the experiment ends. For some ε = ε(λ), we say that the decoder is
ε-good if Pr[D(ct) = b] ≥ 1/2+ε where b and ct are sampled as in step 3 of each
of the original experiments. For decoder-based security we will require that in

364 Y. Chen et al.

each of the experiments, for any legal adversary A and for any ε(λ) = 1/poly(λ)
it holds that

Pr[D is ε(λ)-good] ≤ negl(λ)

where D is the output of the adversary in step 2 of the experiment.
The reason for defining both standard and decoder-based security properties

is that the standard definitions are more natural to target when constructing
Attribute-Based Mixed-FE, while the decoder definitions are directly compatible
with tracing definitions. The lemma below connects them, allowing us to get the
best of both worlds.

Lemma 5.3. An AB-MFE with (q = 1)-query security also satisfies decoder-
based security.

A variant of the above lemma for MFE was given in [20] (Sect. 4). The proof
of our lemma for AB-MFE is identical, up to minor syntactic changes needed to
account for the expanded ABE syntax.

5.3 From Attribute-Based Mixed-FE to Attribute-Based Traitor
Tracing

We now move on to building Attribute-Based Traitor Tracing from Attribute-
Based Mixed-FE using the decoder-based security properties. We begin with
some high level intuition. Suppose an attacker produces a decoder D that can
decrypt ciphertexts associated with some attribute x. A natural approach would
be to follow [20] using the Mixed-FE piece to remove each user one index at a time
until we reach an index i where the decryption probability between encryptions
to index i and i+1 differ. At this point we can finger user i as having contributed
to creating the box D. However, the problem with this strategy is that the
decoder algorithm might catch (and only catch) a user i who was not qualified
to decrypt the ABE ciphertext to begin with. As argued earlier a meaningful
trace will catch a user with a private key for f where f(x) = 1.

For that reason the MixedFE component will be used to gradually remove
only qualified decryptors one index at a time. That is the function g will be of the
form if f(x) = 0 or j ≥ i. So a user with index i and f(x) = 0 will always have
the Mixed-FE component output 1 even if j ≥ i. Therefore if there is some index
i where the decoding probability differs between encryptions to index i − 1 and
i it must be the case that user i was a contributor and was qualified to decrypt.
This is perhaps slightly counterintuitive as our tracing strategy explicitly always
allows non-qualified users to pass the Mixed-FE portion.

We observe that for any good decoder box there must be some such i. The
public/secret hiding property guarantees that any good decryptor box for the
public key encryption will still decrypt well on index i = 0. The Message hiding
property guarantees that when encrypting to index i = n that no user will
be able to decrypt. This is either because f(x) = 0 or due to the way g was
selected. Thus there must exists some i where the decoder has a non-negligible
gap in decrypting.

Traitor-Tracing from LWE Made Simple and Attribute-Based 365

A formal description of the tracing system appears below.
Let Fμ = {f : {0, 1}μ → {0, 1}} be a function family. Define the family

Gν = {g : {0, 1}ν → {0, 1}} consisting of functions

gf,i(x, j) =
{

1 if f(x) = 0 or j ≥ i
0 otherwise

where i ∈ [2λ], j ∈ [2λ] ∪ {0} and f ∈ Fμ.
Assume that ABMFE = (Setup, skGen, pkEnc, skEnc,Dec) is an AB-MFE for

the class of ABE functions Fμ and the class of MFE functions Gν . Further assume
that ABMFE satisfies decoder-based security.

We show how to construct an AB-TT scheme ABTT = (Setup′, skGen′,
Enc′,Dec′,Trace) for the function class Fμ = {f : {0, 1}μ → {0, 1}} as follows.

– Setup′ is the same as Setup.
– skGen′(msk, f, i): Construct gf,i ∈ Gν and let skf,i ← skGen(msk, f, gf,i).
– Enc′ is the same as pkEnc.
– Dec′ is the same as Dec.
– TraceD(msk, 1n, 1h, x,m0,m1): Let ε = 1/h and W = λ · (n · h)2. For i = 0 to

n, the trace algorithm does the following:
1. It first sets ci := 0. For j = 1 to W , it does the following:

(a) It chooses bi,j ← {0, 1}, sets cti,j ← skEnc(msk, x, (x, i),mbi,j
). If

D(cti,j) = bi,j , it sets ci = ci + 1.
2. It sets p̂i = ci/W .

The trace algorithm outputs the first index i ∈ {1, 2, . . . , n} such that p̂i−1 −
p̂i ≥ ε/4n. If no such index exists output ⊥.

Theorem 5.4. For any Fμ with a corresponding Gν , if ABMFE is a secure AB-
MFE for the ABE class Fμ and the MFE class Gν satisfying decoder-based secu-
rity then the scheme ABTT is a secure attribute-based traitor tracing scheme
(AB-TT).

A variant of the above theorem showing that (non attribute-based) MFE
implies traitor-tracing was given in [20] (Sect. 4.2.2). The proof of our theorem
for AB-MFE is essentially identical. We give a high level proof below.

Proof. Assume that, in the tracing game, the adversary outputs a good decoder
D meaning that the event GoodDecoder occurs. This means D can find b given
pkEnc(pp, x,mb) with some noticeable advantage ε.

– By (decoder-based) public/secret hiding, it must be the case that D can find
b given skEnc(msk, x, (x, 0),mb) with advantage ε − negl(λ). Otherwise D
could distinguish between pkEnc(pp, x,mb) and skEnc(msk, x, (x, 0),mb) even
though for all f, i we have gf,i(x, 0) = 1.

– By (decoder-based) message hiding, D can only have negligible advantage
in finding b given skEnc(msk, x, (x, n + 1),mb). Not that for every AB-MFE
secret key obtained by the adversary associated with functions (f, gf,i) we
have that either f(x) = 0 or gf,i(x, n + 1) = ¬f(x) = 0.

366 Y. Chen et al.

– Combining the above two points, there must be at least one index j such
that the advantage of D in finding b given skEnc(msk, x, (x, j),mb) is at least
(ε − negl(λ))/n ≥ ε/(2n) larger for j versus j + 1. We can use the Chernoff
bound to argue that, with overwhelming probability, the tracing algorithm
outputs some t for which the difference in advantage is at least ε′/8n. For
this t there must be at least one b ∈ {0, 1} such that the decoder D can
distinguish between skEnc(msk, x, (x, t),mb) and skEnc(msk, x, (x, t + 1),mb)
with noticeable advantage.

– By (decoder-based) attribute-hiding security, the above can only happen if
the adversary got an AB-MFE secret key for the functions (f, gf,j) such that
gf,j(x, t) �= gf,j(x, t + 1), which can only happen if f(x) = 1 and j = t.
This means that the adversary must have queried an AB-TT secret key for
the function f such that f(x) = 1 with the identity t. Therefore the tracing
algorithm succeeds in finding a valid traitor t and the event BadTrace does
not occur whenever GoodDecoder occurs as we wanted to show.

5.4 From Mixed-FE to Attribute-Based Mixed-FE

Let ABE = (ABE.Setup,ABE.skGen,ABE.Enc,ABE.Dec) be an ABE scheme
for all circuits. Let MFE = (MFE.Setup,MFE.skGen,MFE.pkEnc,MFE.skEnc,
MFE.Dec) be an MFE scheme (without a message) for some function class Fμ =
{f : {0, 1}μ → {0, 1}}; for simplicity we switch the roles of attribute/function
and associate keys with functions and ciphertexts with attributes. We construct
and AB-MFE scheme ABMFE = (Setup, skGen, pkEnc, skEnc,Dec) as follows:

– Setup: Run (ABE.pp,ABE.msk) ← ABE.Setup(1λ) and (MFE.pp,MFE.msk)
← MFE.Setup(1λ). Output pp = (ABE.pp,MFE.pp) and msk = (ABE.msk,
MFE.msk).

– skGen(msk, f, g): Let MFE.skg ← MFE.skGen(MFE.msk, g). Let C be a cir-
cuit which has f,MFE.skg hard-coded inside it, takes as input x,MFE.ct
and outputs 1 if f(x) = 1 and MFE.Dec(MFE.skg, ct) = 1. Output skf,g ←
ABE.skGen(ABE.msk, C).

– pkEnc(pp, x,m): Let MFE.ct ← MFE.pkEnc(MFE.pp).
Output ct ← ABE.Enc(ABE.pp, (x,MFE.ct),m).

– skEnc(msk, x, y,m): Let MFE.ct ← MFE.skEnc(MFE.msk, y).
Output ct ← ABE.Enc(ABE.pp, (x,MFE.ct),m).

– Dec(skf,g, ct): Output ABE.Dec(skf,g, ct).

Theorem 5.5. If ABE is a secure ABE scheme and MFE is a secure MFE
scheme then ABMFE is a secure AB-MFE scheme.

Proof. The correctness of the AB-MFE follows directly from that of the ABE
and MFE schemes. The ABE security of the AB-MFE follows directly from
the ABE security of the ABE. The “public/secret hiding” security of the AB-
MFE follows directly from that of the MFE. The “attribute-hiding” security of
the AB-MFE follows directly from the “attribute-hiding” security of the MFE
(previously we called this “function hiding” but since we switched the roles of

Traitor-Tracing from LWE Made Simple and Attribute-Based 367

attributes and functions this is now “attribute hiding”). Lastly for message-
hiding security of the AB-MFE we rely on the security of the ABE. In par-
ticular, the adversary gets as a challenge an ABE ciphertext with attribute
(x∗,MFE.ct = MFE.skEnc(MFE.msk, y∗)) but only has ABE keys for circuits C
such that C(x,MFE.ct) = 1 if f(x∗) = 1 and MFE.Dec(MFE.skg, ct) = 1 ⇔
g(y∗) = 1. Therefore if one of f(x∗) = 0 or g(y∗) = 0 always holds, it must
mean that none of the ABE secret keys are qualified to decrypt the challenge
ciphertext.

Acknowledgments. The research of Yilei Chen was conducted at Boston Univer-
sity supported by the NSF MACS project and NSF grant CNS-1422965. Vinod
Vaikuntanathan is supported in part by NSF Grants CNS-1350619 and CNS-1414119,
Alfred P. Sloan Research Fellowship, Microsoft Faculty Fellowship, the NEC Cor-
poration and a Steven and Renee Finn Career Development Chair from MIT. This
work was also sponsored in part by the Defense Advanced Research Projects Agency
(DARPA) and the U.S. Army Research Office under contracts W911NF-15-C-0226 and
W911NF-15-C-0236. Brent Waters is supported by NSF CNS-1414082, DARPA Safe-
Ware, Microsoft Faculty Fellowship, and Packard Foundation Fellowship. Hoeteck Wee
is supported by ERC Project aSCEND (H2020 639554). Daniel Wichs is supported by
NSF grants CNS-1314722, CNS-1413964.

References

1. Abdalla, M., Dent, A.W., Malone-Lee, J., Neven, G., Phan, D.H., Smart, N.P.:
Identity-based traitor tracing. In: Okamoto, T., Wang, X. (eds.) PKC 2007. LNCS,
vol. 4450, pp. 361–376. Springer, Heidelberg (2007). https://doi.org/10.1007/978-
3-540-71677-8 24

2. Agrawal, S.: Stronger security for reusable garbled circuits, general definitions and
attacks. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017. LNCS, vol. 10401, pp.
3–35. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63688-7 1

3. Agrawal, S., Bhattacherjee, S., Phan, D.H., Stehlé, D., Yamada, S.: Efficient public
trace and revoke from standard assumptions: extended abstract. In: Proceedings of
the 2017 ACM SIGSAC Conference on Computer and Communications Security,
CCS 2017, Dallas, TX, USA, October 30–November 03 2017, pp. 2277–2293 (2017)

4. Agrawal, S., Rosen, A.: Functional encryption for bounded collusions, revisited. In:
Kalai, Y., Reyzin, L. (eds.) TCC 2017. LNCS, vol. 10677, pp. 173–205. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-70500-2 7

5. Boneh, D., Lewi, K., Montgomery, H., Raghunathan, A.: Key homomorphic PRFs
and their applications. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS,
vol. 8042, pp. 410–428. Springer, Heidelberg (2013). https://doi.org/10.1007/978-
3-642-40041-4 23

6. Boneh, D., Lewi, K., Wu, D.J.: Constraining pseudorandom functions privately.
In: Fehr, S. (ed.) PKC 2017. LNCS, vol. 10175, pp. 494–524. Springer, Heidelberg
(2017). https://doi.org/10.1007/978-3-662-54388-7 17

7. Boneh, D., Sahai, A., Waters, B.: Fully collusion resistant traitor tracing with
short ciphertexts and private keys. In: Vaudenay, S. (ed.) EUROCRYPT 2006.
LNCS, vol. 4004, pp. 573–592. Springer, Heidelberg (2006). https://doi.org/10.
1007/11761679 34

https://doi.org/10.1007/978-3-540-71677-8_24
https://doi.org/10.1007/978-3-540-71677-8_24
https://doi.org/10.1007/978-3-319-63688-7_1
https://doi.org/10.1007/978-3-319-70500-2_7
https://doi.org/10.1007/978-3-642-40041-4_23
https://doi.org/10.1007/978-3-642-40041-4_23
https://doi.org/10.1007/978-3-662-54388-7_17
https://doi.org/10.1007/11761679_34
https://doi.org/10.1007/11761679_34

368 Y. Chen et al.

8. Boneh, D., Waters, B.: A fully collusion resistant broadcast, trace, and revoke
system. In: Proceedings of the 13th ACM Conference on Computer and Communi-
cations Security, CCS 2006, Alexandria, VA, USA, I October 30–November 3 2006,
pp. 211–220 (2006)

9. Boneh, D., Zhandry, M.: Multiparty key exchange, efficient traitor tracing, and
more from indistinguishability obfuscation. In: Garay, J.A., Gennaro, R. (eds.)
CRYPTO 2014. LNCS, vol. 8616, pp. 480–499. Springer, Heidelberg (2014).
https://doi.org/10.1007/978-3-662-44371-2 27

10. Brakerski, Z., Langlois, A., Peikert, C., Regev, O., Stehlé, D.: Classical hardness of
learning with errors. In: Proceedings of the Forty-Fifth Annual ACM Symposium
on Theory of Computing, pp. 575–584. ACM (2013)

11. Brakerski, Z., Tsabary, R., Vaikuntanathan, V., Wee, H.: Private constrained PRFs
(and More) from LWE. In: Kalai, Y., Reyzin, L. (eds.) TCC 2017. LNCS, vol.
10677, pp. 264–302. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
70500-2 10

12. Canetti, R., Chen, Y.: Constraint-hiding constrained PRFs for NC1 from LWE.
In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017. LNCS, vol. 10210, pp.
446–476. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-56620-7 16

13. Chen, Y., Vaikuntanathan, V., Wee, H.: GGH15 beyond permutation branching
programs: proofs, attacks, and candidates. In: Shacham, H., Boldyreva, A. (eds.)
CRYPTO 2018. LNCS, vol. 10992, pp. 577–607. Springer, Cham (2018). https://
doi.org/10.1007/978-3-319-96881-0 20

14. Chor, B., Fiat, A., Naor, M.: Tracing traitors. In: Desmedt, Y.G. (ed.) CRYPTO
1994. LNCS, vol. 839, pp. 257–270. Springer, Heidelberg (1994). https://doi.org/
10.1007/3-540-48658-5 25

15. Freeman, D.M.: Converting pairing-based cryptosystems from composite-order
groups to prime-order groups. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS,
vol. 6110, pp. 44–61. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-
642-13190-5 3

16. Garg, S., Kumarasubramanian, A., Sahai, A., Waters, B.: Building efficient fully
collusion-resilient traitor tracing and revocation schemes. In: Proceedings of the
17th ACM Conference on Computer and Communications Security, CCS 2010, pp.
121–130 (2010)

17. Gentry, C., Gorbunov, S., Halevi, S.: Graph-induced multilinear maps from lat-
tices. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015. LNCS, vol. 9015, pp. 498–527.
Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46497-7 20

18. Gorbunov, S., Vaikuntanathan, V., Wee, H.: Functional encryption with bounded
collusions via multi-party computation. In: Safavi-Naini, R., Canetti, R. (eds.)
CRYPTO 2012. LNCS, vol. 7417, pp. 162–179. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-32009-5 11

19. Goyal, R., Koppula, V., Waters, B.: Lockable obfuscation. In: FOCS, pp. 612–621
(2017)

20. Goyal, R., Koppula, V., Waters, B.: Collusion resistant traitor tracing from learning
with errors. In: STOC (2018)

21. Katz, J., Schröder, D.: Bootstrapping obfuscators via fast pseudorandom functions.
In: Annual Conference of the ITA (ACITA) (2011)

22. Liu, Z., Cao, Z., Wong, D.S.: Blackbox traceable CP-ABE: how to catch people
leaking their keys by selling decryption devices on eBay. In: 2013 ACM SIGSAC
Conference on Computer and Communications Security, CCS 2013, Berlin,
Germany, 4–8 November 2013, pp. 475–486 (2013)

https://doi.org/10.1007/978-3-662-44371-2_27
https://doi.org/10.1007/978-3-319-70500-2_10
https://doi.org/10.1007/978-3-319-70500-2_10
https://doi.org/10.1007/978-3-319-56620-7_16
https://doi.org/10.1007/978-3-319-96881-0_20
https://doi.org/10.1007/978-3-319-96881-0_20
https://doi.org/10.1007/3-540-48658-5_25
https://doi.org/10.1007/3-540-48658-5_25
https://doi.org/10.1007/978-3-642-13190-5_3
https://doi.org/10.1007/978-3-642-13190-5_3
https://doi.org/10.1007/978-3-662-46497-7_20
https://doi.org/10.1007/978-3-642-32009-5_11

Traitor-Tracing from LWE Made Simple and Attribute-Based 369

23. Liu, Z., Wong, D.S.: Practical ciphertext-policy attribute-based encryption: traitor
tracing, revocation, and large universe. In: Malkin, T., Kolesnikov, V., Lewko, A.B.,
Polychronakis, M. (eds.) ACNS 2015. LNCS, vol. 9092, pp. 127–146. Springer,
Cham (2015). https://doi.org/10.1007/978-3-319-28166-7 7

24. Peikert, C.: Public-key cryptosystems from the worst-case shortest vector problem:
extended abstract. In: STOC, pp. 333–342 (2009)

25. Peikert, C., Regev, O., Stephens-Davidowitz, N.: Pseudorandomness of Ring-LWE
for any ring and modulus. In: STOC, pp. 461–473. ACM (2017)

26. Regev, O.: On lattices, learning with errors, random linear codes, and cryptogra-
phy. J. ACM 56(6), 1–40 (2009)

27. Sahai, A., Seyalioglu, H.: Worry-free encryption: functional encryption with public
keys. In: Al-Shaer, E., Keromytis, A.D., Shmatikov, V. (eds.) Proceedings of the
17th ACM Conference on Computer and Communications Security, CCS 2010,
Chicago, Illinois, USA, 4–8 October 2010, pp. 463–472. ACM (2010)

28. Wichs, D., Zirdelis, G.: Obfuscating compute-and-compare programs under LWE.
In: FOCS, pp. 600–611 (2017)

https://doi.org/10.1007/978-3-319-28166-7_7

	Traitor-Tracing from LWE Made Simple and Attribute-Based
	1 Introduction
	1.1 Technical Overview
	1.2 Mixed FE from Lockable Obfuscation
	1.3 Mixed FE from Private Constrained PRFs
	1.4 Attribute-Based Traitor Tracing

	2 Preliminaries
	2.1 Learning with Errors
	2.2 Secret-Key and Mixed Functional Encryption

	3 t-CT Mixed-FE from Lockable Obfuscation and t-CT SKFE
	3.1 Lockable Obfuscation
	3.2 The Mixed-FE Construction
	3.3 The Security Analysis

	4 t-CT Mixed-FE from Key-Homomorphic Private Constrained PRF
	4.1 Background of Key-Homomorphic Private Constrained PRFs
	4.2 Constructing t-CT Mixed-FE from KHPCPRF

	5 Attribute-Based Traitor Tracing
	5.1 Definition of Attribute-Based Traitor Tracing
	5.2 Tool: Attribute-Based Mixed FE
	5.3 From Attribute-Based Mixed-FE to Attribute-Based Traitor Tracing
	5.4 From Mixed-FE to Attribute-Based Mixed-FE

	References

