
Trajectons: Action Recognition Through the Motion Analysis of

Tracked Features

Pyry Matikainen1, Martial Hebert1, Rahul Sukthankar2,1

1 Robotics Institute, Carnegie Mellon University 2 Intel Labs Pittsburgh

pmatikai@cs.cmu.edu, hebert@ri.cmu.edu, rahuls@cs.cmu.edu

Abstract

The defining feature of video compared to still images

is motion, and as such the selection of good motion fea-

tures for action recognition is crucial, especially for bag of

words techniques that rely heavily on their features. Exist-

ing motion techniques either assume that a difficult problem

like background/foreground segmentation has already been

solved (contour/silhouette based techniques) or are compu-

tationally expensive and prone to noise (optical flow). We

present a technique for motion based on quantized trajec-

tory snippets of tracked features. These quantized snippets,

or trajectons, rely only on simple feature tracking and are

computationally efficient. We demonstrate that within a bag

of words framework trajectons can match state of the art re-

sults, slightly outperforming histogram of optical flow fea-

tures on the Hollywood Actions dataset. Additionally, we

present qualitative results in a video search task on a cus-

tom dataset of challenging YouTube videos.

1. Introduction

The recent rise in popularity of the bag-of-words

paradigm for action recognition in video has led to sig-

nificant gains in performance and the introduction of more

challenging datasets to tackle. Indeed, some of these tech-

niques can achieve near perfect performance where more

principled approaches only produce mediocre results. Nev-

ertheless, their success has highlighted the fact that signif-

icant work remains to be done in the area of features for

video, particularly with regards to motion.

Coming from work with static images, it is no surprise

that the familiar techniques of that area have come to be ap-

plied here, such as the ever-popular histograms of oriented

gradients. When dealing with the appearance of frames in

video, these types of features are entirely appropriate. But

actions in video comprise both an appearance aspect and a

motion aspect, and motion features have not had the benefit

inheriting a set of canonical techniques honed over decades.

−4−2
0 2

4
−4−20

24
0

5

10

dxdy

t

−4−2
0 2

4
−4−20

24
0

5

10

dxdy

t

−4−2
0 2

4
−4−20

24
0

5

10

dxdy

t

−4 −2
0 2 4

−4
−2
0

2
4
0

5

10

dxdy

t

Figure 1. Simple KLT feature tracking is used to track as many

features as possible within a video. Each tracked point produces a

fixed length trajectory snippet every frame consisting of the last L

(usually ten) positions in its trajectory. These snippets are quan-

tized to a library of trajectons.

This leads us to believe that there are still significant gains

to be captured with motion features, and since it seems that

actions are defined more by their motion than by their inci-

dental appearance, this problem is doubly important.

Present bag-of-words techniques for motion are largely

extensions of appearance based techniques. Since motion

information cannot be read directly from the video as in the

case of appearance, it is necessary to either explicitly es-

timate this latent information or to implicitly encapsulate

it within an appearance measure. In the latter case, image

derivatives treating time as simply another dimension (pro-

ducing an image cube) implicitly encode some amount of

motion information; this approach amounts to augmenting

2D to 3D filters. However, as the framerate (that is, the

sampling frequency in the time dimension) is rather coarse

compared to the image resolution, any significant motion

will be poorly represented through 3D image gradients.

The former approach, explicit estimation of motion, has

proved to be more popular, most often in the form of optical

flow. However, optical flow is itself a difficult problem to

tackle, and even the best algorithms are noisy and computa-

tionally expensive. While in principle it should be possible

to track a feature using optical flow by simply integrating

a trajectory over the time varying flow field, in practice the

significant noise will quickly overwhelm any estimated tra-

jectory. In contrast, even simple KLT trackers [2] can, with

relative robustness, track a sparse set of features over rela-

tively large periods of time at only a fraction of the compu-

tational cost of optical flow.

Compared with a cube of optical flow vectors, the key

advantage of a trajectory is that it is attached to a partic-

ular moving feature. That is, in video deriving from the

movement of physical bodies through space, a properly

tracked feature (and hence trajectory) automatically gains

foreground-background separation. In contrast, histogram-

ming over a cube of optical flow vectors will blend the var-

ious sources of motion within that cube. For simple videos,

such as a single person against a static background, this con-

flation of foreground and background may not matter. For

more complicated videos with background motion and mul-

tiple occluding actors, this conflation comes at a cost.

To this end we introduce new trajectory-based motion

features, which we call trajectons. We demonstrate that

within a bag-of-words framework our simple and compu-

tationally efficient trajecton features are competitive with

state-of-the-art motion features on simple datasets and out-

perform them on complicated ones.

2. Related Work

The idea of textons, or quantized filter bank responses,

originated with texture classification but quickly grew to

be applied to object and scene recognition in static im-

ages [21, 6]. These approaches are backed by some degree

of psychological research suggesting that even human vi-

sion may employ unstructured statistical approaches at early

stages [15], and can scale well even to large datasets when

used with sparse features [5]. By analogy to the idea that

textual works are composed from a set of discrete repeating

elements (words), techniques that model data using a library

of quantized features are generally known as bags-of-words

approaches.

Recently bag of words techniques have gained signifi-

cant popularity in video interpretation [11]. In the case of

video appearance, the same features that work for static im-

ages still apply to video (e.g., histograms of oriented gra-

dients, filter responses). However, in the case of motion it

is not possible to directly read off the motion of the video

in the same way as appearance can be directly read from

pixels, and so the choice of motion features is complicated

significantly.

The philosophically closest measure to motion pixels is

dense optical flow, which has been a very common rep-

resentation of motion [11, 8, 10, 18]. Dense optical flow

has the benefit of intuitively representing our notion of mo-

tion in a directly analogous way to pixels and appearance,

but the actual calculation of optical flow from sequential

frames is itself a difficult problem and even the best algo-

rithms are plagued by severe artifacts and noise. In an at-

tempt to sidestep this problem, many techniques avoid the

actual calculation of optical flow, either by implicitly encod-

ing motion through temporal derivatives [16, 12, 7], or by

producing the information that would be required to com-

pute optical flow but refraining from the final step [18].

A more radical approach is to discard the notion of a

dense motion field computed over the entire video and only

compute motion at locations where it can be effectively esti-

mated. Since most applications are interested in classifying

the motion of actors distinct from their backgrounds, a nat-

ural desire is to only compute that motion which is relevant

to those actors. Due to the intuitive appeal of the idea that

the evolution of a silhouette through time is enough to cap-

ture the motion of an action, silhouette based features have

been common as well [23, 3, 10, 19]. However, silhouettes

cannot represent motion that occurs within the silhouette

boundary (like a person clapping with both hands in front

of her body), so the natural extensions has been from sil-

houettes to visual hulls [22, 20].

As silhouette extraction is not trivial either, the next step

is to discard both density and semantic meaning to simply

find special locations of interest (wherever they may be, on a

person or not) for which the motion can be effectively com-

puted. When these locations are pointlike, that is, occur-

ing at a single time, the result is space time interest points

around which various measures can be calculated, such as

optical flow [7, 23].

When these locations extend in time they become trajec-

tories, most frequently arising from tracked features. Often

it is assumed that these trajectories are from known, fixed

features, such as particular landmarks (e.g., elbows, hands)

on a human body [1, 14, 9]. If the trajectories are not on

known features, then if they are very long and robust, it

is potentially possible to extract full 3D information even

from a single view [13]. The duration and coherence of tra-

jectories means that each potentially contains a great deal

of information.

Our contribution is to bring trajectories into a bag of

words framework while avoiding the pitfalls of existing

trajectory-based motion features: the assumption that tra-

jectories are long, noise free, or tracking known body land-

marks; at the same time, we do not discard the fundamental

time-series nature of trajectories by treating them as merely

as unrelated series of derivatives to be binned. Our method

deals with short (< 20 frames) and inconsistent trajectories,

and we are able to use computationally-efficient stock fea-

ture tracking methods such as KLT even on complex video.

Since we are able to match the performance of optical flow

based methods even with our naive system, we believe there

are still significant gains to be made with the combination

of tracked feature point trajectories and bag of words tech-

niques.

3. Method

Our method proceeds according to the standard bag-of-

words approach: first, features are tracked over the video

using a KLT tracker [2] to produce feature trajectories (x

and y positions over time) for a number of features. These

trajectories are slightly transformed (cropped and filtered,

as described later) to produce a number of trajectory snip-

pets for each video. Given a training set of videos, first a

dictionary of trajectory words or trajectons is produced by

clustering a sample set of trajectory snippets into a specified

number (k) of clusters, the centers of which are retained as

the trajecton library. Next, for each video, either training

or test, its trajectory snippets are assigned the label of the

nearest center in the trajecton library, and these labels are

accumulated over the video to produce a histogram with k

bins. This k length vector is normalized to sum to one for

each video, and the training set of histograms along with

training class labels is used to train a support vector ma-

chine (SVM) to classify videos into action categories. This

SVM is used to classify the test set. The experiments shown

below employ the standard LIBSVM [4] implementation of

support vector machines.

We propose two variants of trajectons, which differ in

their construction of trajectory snippets. For vanilla trajec-

tons, each trajectory snippet is simply a concatenated vector

of (dx, dy) derivatives for the trajectory, whereas in Affine-

Augmented (AA) trajectons, this vector of derivatives is

concatenated with a vector of local affine transforms to de-

scribe the motion around each trajectory point.

3.1. Vanilla trajectons

3.1.1 Feature Tracking

A standard KLT tracker is used to track features (using

“good features to track”) over a video. In our implemen-

tation, we track a fixed number of features (typically 100),

with features replaced as necessary when tracks are lost.

The output of this tracking is a trace of (x, y) pairs for each

feature. For convenience of notation, we can assume that

feature indices are never reused; then we can express a fea-

ture i’s position at time t as Xt
i = (xt

i, y
t
i).

3.1.2 Trajectory Snippet Production

Then, for each frame, each feature that exists during this

frame produces a trajectory snippet that consists of the dis-

crete derivatives of the feature point locations in time. In

−4−2
0 2

4
−20

2

5

10

−100
10 20

−20
−10
0

10

5
10

−80−60
−40

−20
0

−15−10−50
510

−30
−20

−10
0

−15−10−50

5
10

−10
−5

0
5

−20
24

6

5

10

−20
0

20
40

5
10

−20
−10

0

024
68

5
10

0 10
2030−40

−20
0
510

0
20

40

−2024

5
10

0
10

20
0

10
20

5
10

−5
0

5
−8−6−4−20

5

10

−8−6
−4−2

0 2
−4−20

24
6

5

10

0
10

20
30

−4−20

5
10

−4−2
0 2

−2−10
1

5

10

−30
−20

−10
0

−8−6−4−2
02

5
10

0 1020
30

010
2030

5
10

Figure 2. Example trajectons in the trajecton library computed

from the KTH dataset. Many, such as the long and straight tra-

jectories and the curving arcs, correspond to stereotypical portions

of specific actions in the KTH dataset (running, waving arms).

other words, given a frame time t and feature i, and a max-

imum snippet length L, the trajectory snippet produced is:

T t
i = {Xt

i −Xt−1
i , Xt−1

i −Xt−2
i , . . . , Xt−L+1

i −Xt−L
i },

where if X
j
i does not exist for a given time any terms con-

taining it are set to zero.

Since Xi includes both x and y position, the full flat-

tened vector will be of length 2L. If the number of tracked

features is fixed at n, and a video has f frames, this means

that the total number of trajectory snippets (and hence even-

tually trajectons) will be nf . Also, note that if a feature is

tracked for longer than L frames, every window of size L in

that trajectory produces its own snippet.

3.1.3 Trajectory Snippet Clustering and Quantization

Next, these trajectory snippets are clustered into a library

and that library is used to quantize snippets to a set of labels.

Examples, selected at random, from the trajecton library

computed for the KTH dataset [17] are shown in Fig. 2.

Given a sample set of trajectory snippets (vectors of

length 2L), these snippets are clustered using k-means with

the standard Euclidean distance metric into k clusters and

the cluster centers stored in a library of k trajectons. These

trajectons represent archtypical trajectories within the video

set.

The trajectory snippets of each video (both training and

test) are quantized using the trajecton library by assigning

each trajectory snippet the index of the trajecton to which it

has the smallest Euclidean distance.

Note that no attempt is made to explicitly induce scale

invariance, either spatial or temporal. If a particular action

Figure 3. Example computed motion clusters for a video of a man

jogging. Point color and shape indicates cluster assignment. The

jogging person is oversegmented into four clusters, however as

each cluster’s points are largely correct this oversegmentation will

have no effect on the end result. Note that each frame’s motion

segmentation is independent.

occurs at different scales or speeds, then instances of that

action are initially represented by different sets of trajec-

tons, and it is at the classification stage that these instances

are grouped together under a single label. This idea is con-

sistent with typical bag of words approaches and allows the

representation to discriminate between similar types of mo-

tion when necessary (e.g., running vs. jogging).

3.1.4 Video Classification

Following the standard bag of words framework, these tra-

jecton labels are binned to produce a fixed-length histogram

that is the final feature vector for a video. Given the nf

trajectory snippets and associated trajecton label for each

video, the trajecton labels are accumulated over the entire

video into a histogram with one bin per label, for k total

bins. Each video’s histogram is normalized to sum to one.

Finally, videos are classified using support vector ma-

chines. A multi-class SVM is trained on the set of training

histograms to produce video action classifications.

3.2. AffineAugmented Trajectons

Vanilla trajectons suffer from the deficit, relative to his-

tograms of optical flow, that each trajecton contains only

information about a single point while ignoring the motion

of neighboring points. Since we want to preserve the prop-

erty that a trajecton encodes information that is attached to

a particular body, we cannot simply histogram derivatives

of nearby trajectories since that would confuse the trajec-

tories of points co-located on the same body and foreign

trajectories. Instead, we propose to first cluster the mo-

tions within the video into sets of trajectories which can be

well described with mutually shared transforms; these mo-

tion clusters ideally fall within a single moving body. Each

trajecton can then calculate local movement around itself

according to the transforms for its motion cluster. Some

example motion clusters can be seen in Fig. 3 in which a

person moving his head and arm in independent ways has

them properly assigned into different clusters.

For k motion clusters, the goal is to produce a set of

assignments of trajectory snippets to clusters and cluster

transforms such that the error between how a trajectory is

expected to evolve (as calculated by successively transform-

ing the first found location of a given feature point accord-

ing to a cluster center) and its actual historical record. This

goal is achieved in a k-means like manner in which trajec-

tory snippets are first assigned to the centers that minimize

error, and then center transforms are refined according to

their assigned trajectory snippets. These two steps repeat

until either convergence is reached or a fixed number of it-

erations have elapsed (in our implementation we limit to 20

iterations).

3.2.1 Point to Center Assignment

In the center assignment step, each trajectory snippet is as-

signed to the center which minimizes the error between its

predicted trajectory according to those transforms and its

actual trajectory.

For a given trajectory Xi, let Xi
t =< xi

t, y
i
t > be the

location of the tracked point at time t, where t0 is the current

frame.

Let T
j
a→b be the transform for center j from time ta to

time tb. In particular, let T
j
a→0 be the cumulative transform

from a given time ta to the current frame t0.

Then the error for a trajectory Xi to a center T j is given

by

e(Xi, T j) =

∑0
t=si,j+1 ||T

j

si,j
→t

Xi
si,j − Xi

t ||

|si,j |
,

where si,j is the earliest time for which both the trajectory

and the center have information. This is simply the average

Euclidean distance between where a trajectory’s next point

is expected to be according to its transforms and its recorded

position.

Each trajectory is simply assigned the center to which it

has the least error:

ai = arg min
j

e(Xi, T j).

3.2.2 Center Refinement

In the center refinement step, given a number of assigned

trajectory snippets, each center’s transforms (a set of affine

transforms, one per frame) is re-estimated by solving the

least squares minimization for the transforms.

Given a center with transforms T j and assigned points

X1, X2 . . . Xk, we can refine the transforms by solving for

the cumulative transforms T
j
t→0 according to

(T j
t→0)

(

X1
t X2

t · · · Xk
t

)

=
(

X1
0 X2

0 · · · Xk
0

)

.

Any other needed transforms can be calculated from the

cumulative transforms.

3.2.3 Trajectory Snippet Augmentation

Each trajectory snippet now has an associated center as-

signment. For each frame in the snippet, along with the

(dx, dy) information that it already contains, the snippet is

augmented with the affine matrix At
C(i) for the center asso-

ciated with it at the current frame. Each trajectory snippet

is of length 6L, 2L for the derivatives for each of L frames

and 4L for the parameters of the affine matrix.

4. Experiments

We evaluate our proposed method quantitatively on the

Hollywood Actions [11] dataset and qualitatively on a cus-

tom YouTube dataset.

4.1. Hollywood Actions

Table 1. Hollywood Actions Results

Action Ours Ours (Lax) Laptev et al. [11]

Total 31.1% 27.2% 27.1%

SitDown 4.5% 13.6% 20.7%

StandUp 69.0% 42.9% 40.0%

Kiss 71.4% 42.9% 36.5%

AnswerPhone 0.0% 35.0% 24.6%

HugPerson 0.0% 23.5% 17.4%

HandShake 5.3% 5.3% 12.1%

SitUp 11.1% 11.1% 5.7%

GetOutCar 7.7% 7.7% 14.9%

We evaluate on the Hollywood Actions dataset [11] in

order to gauge the performance in a difficult scenario. We

train and test on the “clean” (manually annotated) training

and testing sets. We track 100 features which are clustered

into 1000 trajectons using the AA-trajecton method with six

motion clusters per frame. Classification is performed using

a SVM with a linear kernel.

Per-class classification accuracies are presented in Ta-

ble 1 with a comparison to Laptev et al.’s HOF features. As

can be seen, with aggressive SVM settings we outperform

HOF at the cost of concentrating most of the discriminative

ability into a few classes (Hollywood Actions is an imbal-

anced dataset with some actions representing significantly

more than 1/8 of the total instances). With less aggressive

Figure 4. Sample frames from our YouTube dataset

SVM settings (labeled “lax” in Table 1), we still outper-

form HOF, and our gains can be seen in five out of the eight

classes.

4.2. YouTube Dataset

As an exploration of how our trajectons motion represen-

tation can fare in a difficult retrieval task, we evaluate qual-

itative search results on a custom YouTube dataset. This

dataset is composed of 2019 YouTube videos of an average

length of approximately 2 minutes each (or approximately

66 hours of video), some frames of which can be seen in

Fig. 4. Each raw YouTube video is split into overlapping

sequences of 2s such that one sequence starts each second

of each video. A library of 400 trajectons was used, using

100 tracked features and 6 motion clusters using the AA-

trajecton method. Trajecton histograms are accumulated

over these 2s windows, and search is performed over all of

these windows, and as a result we are effectively searching

over more than 230,000 clips.

4.2.1 Video Similarity with Trajectons

For video search, since we are doing a direct comparison

between videos without an intermediate machine learning

step, direct trajecton histogram comparisons with a chi-

squared distance would be dominated by the more common

trajecton bins. To account for this, following Chum et al. [5]

we downweight trajectons that occur frequently using tf-idf

weighting, the weights being placed into the diagonal ma-

trix W (or equivalently, all the trajecton histograms are ele-

ment wise multiplied with the weighting vector w), and the

histogram distance simply given by the chi-squared distance

between histograms weighted by w. The distance between

two videos is then given by

d(m1, m2) = chisqr(Wm1, Wm2), (1)

where mi is the trajecton histogram for a video i. The actual

search is performed by calculating the motion mi feature

vector for the query video clip and then comparing it to all

the dataset video clips using the distance metric in eq. 1.

The n video clips with the smallest distance are returned as

matches.

We randomly chose 25 windows to act as queries; we

have identified a number of common and interesting cases

in the clips.

4.2.2 Human Body Motion

Performance on whole-body human motions (such as rais-

ing one’s hands up) is reasonable. In the pictured exam-

ple (top row of Fig. 5), the best match is a false positive of

people bouncing up and down in a rollercoaster (mimicking

the up and down motion of the query video person’s arms).

However, the following two matches are correct.

4.2.3 Camera Motion (not shown here)

Performance in finding similar camera movements (e.g.,

panning, zooming) is very good, as expected. However,

since camera motions are so simple there is often little se-

mantic agreement between the matches (e.g., a POV shot

from a car driving along a road is motion-wise a match for

a zooming camera shot of a soccer game, but is semantically

unrelated).

4.2.4 Small Motion (Shaky Cam Failure Case)

Many scenes are largely static but filmed with handheld

cameras which introduces small whole-scene movements.

Since these movements are relatively strong and correlated

over the entire scene, the whole scene shaking dominates

the motion distance. Any semantically important motions

are lost in the movement, and the returned matches are

scenes where the camera shaking shares similar statisti-

cal properties rather than semantically interesting matches.

The tf-idf weighting is unable to help, since trajectons pro-

duced by strong random motion are uncorrelated with each

other and hence individually uncommon, so they will not be

downweighted by tf-idf.

In the pictured example (third row of Fig. 5), a video of

a baby taken with a handheld camera is incorrectly matched

to a number of unrelated scenes also filmed through hand-

held cameras. The third match of the motion only case is

arguably a correct match. These failure cases can largely be

avoided by preprocessing the video using a standard stabi-

lization technique that eliminates dominant frame motion.

4.2.5 Static Scenes (not shown here)

The most common types of video in our YouTube sample

are those showing static images to accompany music. Such

static scenes are trivially matched to other static scenes by

our technique, but trajectons alone (since they focus exclu-

sively on motion) are insufficient to determine whether the

content present in different static scenes is semantically re-

lated.

4.2.6 Interviews

Another common case is a person or group of people talk-

ing directly to a camera. This results in a combination of

handheld camera movement and person-like movement. In

the “Interview 1” section of Fig. 5, a small video of a cow-

boy musician interview has been correctly matched to two

interviews and incorrectly to a basketball game with similar

camera movement.

In the “Interview 2 (talking)” example the camera is

completely stationary and the person is quite still as well,

with mouth motion being the most prominent. This is cor-

rectly matched to two scenes of people talking, and sur-

prisingly correctly matched to a cartoon character talking

(likely because of the exaggerated mouth movements pro-

duced by cartoon characters).

5. Conclusions

We present a novel and concise method for using the

trajectories of tracked feature points in a bag of words

paradigm for video action recognition. Compared to ex-

isting motion features (optical flow, silhouettes, derivatives)

our quantized trajectory words or trajectons are able to take

advantage of the positive features of each class: the com-

putational efficiency of derivatives and sparse features, the

performance of optical flow, and the deep structure of sil-

houettes. However, on this third point we have barely

scratched the surface of using the structured information

content of trajectories, and we believe that there are still

significant gains to be made in this area. Future work will

concentrate on how to use the information within trajecto-

ries without making assumptions on trajectory consistency

or location.

5.1. Acknowledgements

This work was supported in part by NSF Grant

IIS-0534962 and by ERC program under Grant No.

EEC-0540865.

References

[1] S. Ali, A. Basharat, and M. Shah. Chaotic invari-

ants for human action recognition. In Proceedings

of IEEE International Conference on Computer Vision

and Pattern Recognition, 2007.

[2] S. Birchfield. KLT: An implementation of the Kanade-

Lucas-Tomasi feature tracker, 2007.

[3] M. Blank, L. Gorelick, E. Shechtman, M. Irani, and

R. Basri. Actions as space-time shapes. In Proceed-

ings of International Conference on Computer Vision,

2005.

[4] C.-C. Chang and C.-J. Lin. LIBSVM – a library for

support vector machines, 2001.

Figure 5. Top matches for query videos on the YouTube dataset.

[5] O. Chum, J. Philbin, J. Sivic, M. Isard, and A. Zisser-

man. Total Recall: Automatic query expansion with a

generative feature model for object retrieval. In Pro-

ceedings of International Conference on Computer Vi-

sion, 2007.

[6] G. Csurka, C. R. Dance, L. Fan, J. Willamowski, and

C. Bray. Visual categorization with bags of keypoints.

In In Workshop on Statistical Learning in Computer

Vision, ECCV, 2004.

[7] P. Dollar, V. Rabaud, G. Cottrell, and S. Belongie. Be-

havior recognition via sparse spatio-temporal features.

In VS-PETS, 2005.

[8] A. Fathi and G. Mori. Action recognition by learning

mid-level motion features. In Proceedings of IEEE In-

ternational Conference on Computer Vision and Pat-

tern Recognition, 2008.

[9] I. N. Junejo, E. Dexter, I. Laptev, and P. Pérez.

Cross-view action recognition from temporal self-

similarities. In Proceedings of European Conference

on Computer Vision, 2008.

[10] Y. Ke, R. Sukthankar, and M. Hebert. Event detection

in crowded videos. In Proceedings of International

Conference on Computer Vision, June 2007.

[11] I. Laptev, M. Marszalek, C. Schmid, and B. Rozen-

feld. Learning realistic human actions from movies.

In Proceedings of IEEE International Conference on

Computer Vision and Pattern Recognition, 2008.

[12] O. Masoud and N. Papanikolopoulos. A method for

human action recognition. Image and Vision Comput-

ing, 21:729–743, 2003.

[13] V. Rabaud and S. Belongie. Re-thinking non-rigid

structure from motion. In Proceedings of IEEE Inter-

national Conference on Computer Vision and Pattern

Recognition, 2008.

[14] C. Rao, A. Yilmaz, and M. Shah. View-invariant rep-

resentation and recognition of actions. International

Journal of Computer Vision, 50(2), 2002.

[15] L. W. Renninger and J. Malik. When is scene iden-

tification just texture recognition? Vision Research,

44(19), 2004.

[16] M. Rodriguez, J. Ahmed, and M. Shah. Action

MACH: a spatio-temporal maximum average correla-

tion height filter for action recognition. In Proceedings

of IEEE International Conference on Computer Vision

and Pattern Recognition, 2008.

[17] C. Schuldt, I. Laptev, and B. Caputo. Recognizing

human actions: a local svm approach. In Proceedings

of International Conference on Pattern Recognition,

2004.

[18] E. Shechtman and M. Irani. Space-time behavior-

based correlation—or—how to tell if two underlying

motion fields are similar without computing them?

IEEE Transactions on Pattern Analysis and Machine

Intelligence, 29(11), 2007.

[19] S. Vitaladevuni, V. Kellokumpu, and L. Davis. Action

recognition using ballistic dynamics. In Proceedings

of IEEE International Conference on Computer Vision

and Pattern Recognition, 2008.

[20] D. Weinland, R. Ronfard, and E. Boyer. Free view-

point action recognition using motion history vol-

umes. Computer Vision and Image Understanding,

104(2), 2006.

[21] J. Winn, A. Criminisi, and T. Minka. Object catego-

rization by learned universal visual dictionary. In Pro-

ceedings of International Conference on Computer Vi-

sion, 2005.

[22] P. Yan, S. Khan, and M. Shah. Learning 4D action

feature models for arbitrary view action recognition.

In Proceedings of IEEE International Conference on

Computer Vision and Pattern Recognition, 2008.

[23] A. Yilmaz and M. Shah. Actions sketch: A novel

action representation. In Proceedings of IEEE Inter-

national Conference on Computer Vision and Pattern

Recognition, 2005.

