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ABSTRACT
Recent years have witnessed pervasive use of location-aware
devices such as GSM mobile phones, GPS-enabled PDAs,
location sensors, and active RFID tags. The use of these
devices generates a huge collection of spatio-temporal data,
variously called moving object data, trajectory data, or
moblity data. These data can be used for various data anal-
ysis purposes such as city traffic control, mobility manage-
ment, urban planning, and location-based service advertise-
ments. Clearly, the spatio-temporal data so collected may
help an attacker to discover personal and sensitive informa-
tion like user habits, social customs, religious and sexual
preferences of individuals. Consequently, it raises serious
concerns about privacy. Simply replacing users’ real iden-
tifiers (name, SSN, etc.) with pseudonyms is insufficient to
guarantee anonymity. The problem is that due to the ex-
istence of quasi-identifiers, i.e., spatio-temporal data points
that can be linked to external information to re-identify in-
dividuals, the attacker may be able to trace the anonymous
spatio-temporal data back to individuals.

In this survey, we discuss recent advancement on anonymity
preserving data publishing of moving object databases in
an off-line fashion. We first introduce several anonymity
models, then we describe in detail some of the proposed
techniques to enforce trajectory anonymity, discussing their
merits and limitations. We conclude by identifying challeng-
ing open problems that need attention.

1. INTRODUCTION
The discussion on mobility data collection and the associ-
ated privacy issue, has revamped in the last few months
thanks to various initiatives, and several articles, e.g., on
The New York Times1 or Wired2, discussing the fact that
indeed, mobile phone producers and service providers have
been collecting users’ locations continuously, no matter
whether the users volunteer for this collection or not.

The debate has reached the political spheres in many coun-
tries. A German Green party politician, Malte Spitz, went
to court to find out exactly what his cellphone company,

1http://www.nytimes.com/2011/03/26/business/media/
26privacy.html?_r=1&\_r=2\&smid=tw-nytimes\&seid=
auto
2http://www.wired.com/gadgetlab/2011/04/
apple-iphone-tracking/

Deutsche Telekom, knew about his whereabouts. The re-
sults were astounding. In a six-month period – from Septem-
ber, 2009, to the end of February 2010 – Deutsche Telekom
had recorded and saved his longitude and latitude coordi-
nates more than 35,000 times, tracing him exactly during
his trips and at home.3

Discussing to which extent the whereabouts of a person rep-
resent a private and sensitive information, is a philosophi-
cal, social and legal issue which is beyond the scope of this
paper. It is interesting to note that for many individuals
nowadays this is not an issue at all, on the contrary, up-
dating continuously their contacts in Facebook or Twitter
about their whereabout is a common practice. Just think
about Foursquare4, a platform which has turned reporting
location updates into a social game.

In this paper we give for granted that the collected location
data may help a malicious attacker to discover personal and
sensitive information like user habits, social customs, reli-
gious and sexual preferences of individuals. We do not even
consider the privacy issues related to the data collection it-
self, instead we focus on how to anonymize mobility data in
the case that, for analysis purposes, they must be published,
i.e., shared with some 3rd party.

In fact, mobility data can be used for various data analysis
based applications such as city traffic control, mobility man-
agement, urban planning, and location-based service adver-
tisements, just to mention a few.

The extent of research effort on these data is evidenced by
the number of spatio-temporal data mining techniques that
have been developed in the last several years [28; 29; 27; 42;
43; 49; 36; 58; 44; 9].

Therefore it is important to develop techniques to transform
a database of trajectories of moving objects, in such a way
that it satisfies some concept of anonymity, while most of its
original utility is maintained in the transformed database.

Simply replacing users’ real identifiers (e.g., name, SSN,
etc.) with pseudonyms is insufficient to guarantee
anonymity. The problem is that due to the existence of
the quasi-identifier locations, i.e., a set of locations that can
be linked to external information to re-identify individuals,
the anonymous location data may be traced back to person-
ally identifying information with the help of additional data
sources.

As an example, [41] shows that based on two-week GPS

3http://www.zeit.de/digital/datenschutz/2011-03/
data-protection-malte-spitz
4https://foursquare.com/
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tracks from 172 known individuals, the home address (with
median error below 60 meters) and identity (with success
above 5%) of these individuals were successfully identified
by joining GPS traces with a reverse geocoder and a Web-
based whitepage directory.

The problem of location privacy has been well studied in the
context of location-based services [39; 46; 31; 22; 47], but
with a focus on on-line, service-centric anonymity. In this
paper, we consider off-line and data-centric anonymity, as
in the context of data publishing. In particular, we consider
the following publishing framework. A central trusted com-
ponent (e.g., telecom company) gathers trajectories from a
large number of users. The trusted entity publishes the col-
lected trajectories to share with other entities, which may
be un-trusted, for various purposes, such as traffic optimiza-
tion research. The publisher is assumed to apply privacy-
preserving techniques on the mobility data so that no pri-
vacy breach will occur w.r.t. assumed attack models.

In this survey, we discuss the recent advancement on
anonymity preserving data publishing of personal mobility
databases in an off-line fashion, that is, when we want to
publish a stable database of moving objects.

We first categorize the adversary knowledge in the current
work into two types: (1) adversary knowledge based on lo-
cation only, and (2) adversary knowledge based on mobility
patterns. The location-based adversary knowledge is ap-
plied on the original trajectory database; the adversary will
identify individuals by matching the known locations to the
published trajectories. The mobility pattern based adver-
sary knowledge is mainly applied on the anonymized trajec-
tories; given the cloaked trajectories which may be robust
against location-based attacks, the attacker will use mobil-
ity patterns to predict the real locations and de-generalize
the anonymized trajectories, and thus bring privacy vulner-
abilities.

For each category, we present in detail some of the most
prevalent methodologies that have been proposed recently,
including the definition of adversary knowledge, the privacy
model, and anonymization techniques. Table 1 reports the
classification of papers adopted in this survey.

Adversary Knowledge
Location Based Motion Pattern Based

QID-aware [56], [57] [24], [37]
QID-blind [2; 3], [45], [50]

Table 1: A classification of the main papers reviewed in this
survey.

Paper content and organization. In Section 2, we re-
view the most common application scenarios of publishing
trajectory databases and the privacy issues in these scenar-
ios. Then we focus on a few papers (all very recent) that, to
the best of our knowledge, are the unique that have attacked
the problem of trajectory anonymization so far. We cate-
gorize these papers into two types, viz., methods based on
location-based adversary knowledge (Section 3) and those
based on mobility pattern based adversary knowledge (Sec-
tion 4). Finally, in Section 5, we draw some conclusions and
discuss important open research problems.

2. APPLICATION SCENARIOS AND PRI-
VACY ISSUES

GPS Traces. The personal mobility databases that have
caught most attention are those that are collected from
GPS-based devices [2; 35]. In these datasets, first, the per-
sonal trajectories are normally continuous, since the moving
objects can be traced all the time. Second, the trajecto-
ries may be short. For example, Hoh et al. [35] collected a
dataset containing GPS traces from 233 vehicles driving in
a large US city and its suburban area. Each GPS sample
does not contain any identification of drivers. Their data
analysis shows a large number of very short trips, for exam-
ple 30% of trips are shorter than 10 minutes, 50% of trips
shorter than 18 minutes. This enables the attacker to break
the privacy: by following a trace for only 10 minutes, the
adversary may be able to track a vehicle from its home to
a sensitive destination. Another possible privacy leakage is
enabled when the attacker knows a series of locations that a
specific user has been to (e.g., the attacker knows user Alice
went to a beauty salon and a pharmacy). Then by match-
ing the traces with the adversary knowledge, the attacker
may be able to re-identify the drivers and thus know all the
locations they have been to [57].

RFID-based Moving Objects. Due to huge advances in
positioning technologies such as RFID, the data collected
from RFID devices has become largely available. Unlike
GPS traces, RFID trajectories need not be continuous [45].
However, it still can lead to privacy breaches. Terrovitis et
al. [56] give an example of a company in Hong Kong called
Octopus that collects daily trajectory data of Hong Kong
residents who use Octopus smart RFID card. When a card
holder A uses her Octopus card to pay at different conve-
nience stores that belong to the same chain (e.g., 7-Eleven),
her transaction records gave away a portion of her own tra-
jectory. If this portion of trajectory uniquely identifies A,
then by matching it with the published trajectory database,
even though the IDs of users have be removed, A still can
be re-identified, together with her unknown trajectory por-
tions.

Location Based Services. The advancement of mobile
devices and networking techniques have spurred new types
of services such as online user navigation to avoid traffic
jams and/or bad weather conditions, way finding, store find-
ing and friend finding, as well as mobile commerce and
surveying. Users can use social networking applications
(e.g., Google Latitude) to share information about their geo-
spatial context on the go. These services are called location
based services (LBS).

There has been much work on privacy issues regarding the
use of LBSs by mobile users. Most works define the pri-
vacy risk as linking of requests for services and locations to
specific mobile users. Works in [18; 32] de-identify a given
request or a location by using perturbation and obfuscation
techniques. Anonymization based privacy protection is used
in [22; 11; 32; 33]. Among these works, [33] focuses on the
protection of links between users and sensitive locations, [22;
32] unlinks individual location points belonging to a user,
and [11] enforces location points referring to the same set of
users to be anonymized together always. [26] replaces the
exact location of a user U with a so-called anonymizing spa-
tial region (ASR) that contains at least K − 1 other users.
Furthermore, it defines a reciprocity privacy model which
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requires that a set of K users always be grouped together
for a given K. As anonymization may ruin data utility, [25]
proposes to use private location-dependent queries based on
the theory of Private Information Retrieval (PIR), instead
of using an anonymizer. [51] defines the notion of strong lo-
cation privacy, which renders a query indistinguishable from
any location in the data space. The strong location privacy
is achieved by employing secure hardware-aided PIR. While
these works focus on on-line, service-centric anonymity, we
consider off-line and data-centric anonymity, as in the con-
text of data publishing.

We refer the reader to the survey [30] on on-line service-
centric data anonymity in location based services, and to
[12; 23] for discussion on the relationship between trajec-
tory anonymity in off-line static context and in on-line LBS
context.

3. METHODS USING LOCATION BASED
ADVERSARY KNOWLEDGE

In this section, we review recent papers [2; 45; 50; 56; 57]
that consider location-based adversary knowledge. We will
discuss the definition of location based adversary knowl-
edge, the privacy model, and the anonymization techniques
of these papers.

3.1 Adversary Knowledge and Privacy Model
In the context of publishing relational databases, there is
a fundamental notion of quasi-identifier attributes, which
correspond to the attributes (e.g., age, gender, and zipcode)
that constitute public knowledge and that may be used as
key for a linking attack leading to re-identification of the
individuals [52; 53; 55]. The same reasoning exists for tra-
jectory databases; the attacker may realize the existence of a
set of quasi-identifier (QID) (location, time) pairs that may
uniquely identify moving objects [11; 45; 56; 57]. In this
context, QIDs are defined as (sets of) pairs of locations and
timestamps.

Defining realistic quasi-identifiers is often challenging. It
is not clear from where and how the knowledge of quasi-
identifiers for each single user should be obtained. Both [11]
and [57] argue that the quasi-identifiers may be provided
directly by the users when they subscribe to the service,
or be part of the users’ personalized settings, or they may
be found by means of statistical data analysis or data min-
ing. However, defining spatio-temporal quasi-identifier in
the real-world is not an easy task.

Given the aforementioned challenges, some works anonymize
the trajectories without considering the QIDs of trajectories
[2; 3; 50; 45], i.e., they are oblivious to the possible existence
of QIDs. These three pieces of work are distinct from each
other in that [2; 3] and [50] anonymize trajectories as a
whole, assuming there does not exist any QID, while [45]
anonymizes trajectories partially, without considering any
specific QID but requiring that every sub-sequence of the
trajectories of length L has to be shared by at least a certain
number of moving objects.

We categorize the six papers [2; 3; 45; 50; 56; 57] that we
will review in this section into two types: (1) QID-aware
anonymization, and (2) QID-blind anonymization. QID-
blind techniques do not consider any specific quasi-identifier
when anonymizing the trajectories, while QID-aware tech-
niques anonymize trajectories based on their QIDs.

tid trajectory

t1 a1 → b1 → a2

t2 a1 → b1 → a2 → b3
t3 a1 → b2 → a2

t4 a1 → a2 → b2
t5 a1 → a3 → b1
t6 a3 → b1
t7 a3 → b2
t8 a3 → b2 → b3

(a)

tid trajectory

tA1 a1 → a2

tA2 a1 → a2

tA3 a1 → a2

tA4 a1 → a2

tA5 a1 → a3

tA6 a3

tA7 a3

tA8 a3

(b)

Table 2: (a) an example trajectory database D, and (b) a
local database DA (A’s knowledge).

3.1.1 QID-aware Anonymity Models
Terrovitis et al.’s QID definition and privacy model.
Terrovitis et al. consider trajectories being simple sequences
of addresses [56]. Let P be the domain of all addresses. Con-
sider that P is partitioned into m disjoint non-empty sets of
addresses P1,P2, . . . ,Pm, where each adversary i controls a
portion of addresses Pi. For each trajectory t in the input
database D, adversary i holds a portion (or a projection)
ti, thus adversary i holds a local database Di containing the
projections of all t ∈ D with respect to Pi. Table 2(a) shows
an example of the original trajectory database D. The loca-
tions ai (bj) are controlled by adversary A (resp., B). Table
2(b) shows the projection DA of the trajectory database
that A controls.

A trajectory may appear multiple times in D and more than
one trajectory may have the same projection with respect to
Pi. The most important property of a trajectory projection
ti is that adversary i can directly link it to the identities of all
persons that pass through it, in its local database (e.g., loy-
alty program). Suppose D is an original trajectory database
and D′ is the transformed database that is published. For
t ∈ D, let tA be the projection of t on the locations con-
trolled by adversary A. Suppose pj �∈ tA is a position not
in the projection of a trajectory in the prtion controlled by
A. Then what is the probability that A can associate (i.e.,
re-identify) to a real person? This is the measure of privacy
that is of interest in [56] and is defined as

P (pj , t
A, D′) =

|{t′|t′ ∈ S(tA, D′) ∧ pj ∈ t′}|
|S(tA, D′)| ,

where S(tA, D′) is the set of trajectories in the published
database D′ which support tA, i.e., each of them projects to
tA. Based on the quantified threats, Terrovitis et al. define
the following privacy model.

Definition 3.1. [56] Given a database D of trajectories,
where locations take values from P , construct a transformed
database D′, such that if D′ is public, for all t ∈ D, every
adversary A cannot correctly infer any location {pj |pj ∈
t∧ pj �∈ tA} with probability larger than Pbr, where Pbr is a
given breach probability threshold.

Yarovoy et al.’s QID definition and privacy model.
Yarovoy et al. [57] argue that unlike in relational micro-
data, where every tuple has the same set of quasi-identifier
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attributes, in mobility data we can not assume a set of par-
ticular locations, or a set of particular timestamps, to be a
quasi-identifier for all the individuals. It is very likely that
various moving objects have different quasi-identifiers and
this should be taken into account in modeling adversarial
knowledge. More precisely, given a moving object database
D = {O1, ..., On} that corresponds to n individuals, and a
set of m discrete time points T = {t1, ..., tm}, the QID is
defined as a function:

QID : {O1, ..., On}→ 2{t1,...,tn}.

According to this definition, every moving object may po-
tentially have a distinct quasi-identifier.

Based on the QID definition, the privacy model is defined as
a notion of indistinguishability. More precisely, let D∗ be a
distorted (i.e., transformed) version of a trajectory database
D. Two moving objects O,O′ are indistinguishable in D∗

at time t provided that D∗(O, t) = D∗(O′, t), i.e., both are
assigned to the same region in D∗.
A straightforward way to define k-anonymity is as follow-
ing: for every moving object O in D, there exist at least
k − 1 other distinct moving objects O1, ..., Ok−1, which are
called the anonymization group of O, in D∗, such that ∀t ∈
QID(O), O is indistinguishable from each of O1, ..., Ok−1 at
time t. Note that since different moving objects may have
different QID, the anonymization groups associated with
different objects may not be disjoint.

This is a fundamental shift from the situation for relational
microdata and may lead to privacy breach of the plain k-
anonymity model since it is possible that by combining over-
lapping anonymization groups, some moving objects may be
uniquely identified. We will illustrate this with an example
shortly. To capture such attack, Yarovoy et al. [57] define
an attack graph associated with a trajectory database D and
its distorted version D∗, as the bipartite graph G consisting
of nodes for every individual I in D (called I-nodes) and
nodes for every moving object id O (called O-nodes) in the
published database D∗. G contains an edge (I,O) iff for
each t ∈ QID(I), D(O, t) � D∗(O, t).

An assignment of individuals to moving objects is consis-
tent provided there exists a perfect matching in the bipar-
tite graph G. Consider the trajectories in Figure 1(a) and
its distorted database shown in Figure 1(b). Let k = 2
and QID(O1) = {t1}, QID(O2) = QID(O3) = {t2}. In-
tuitively the best (w.r.t. information loss) anonymization
group for O1, O2, and O3 (with regard to their QIDs)
are AS(O1) = {O1, O2}, AS(O2) = AS(O3) = {O2, O3}.
Clearly, the anonymization groups of O1 and O2 overlap.
The corresponding attack graph is shown in Figure 1 (c).
It is obvious that the edge (I1, O1) must be a part of every
perfect matching. Thus, by constructing the attack graph
an attacker may easily conclude that MOB O1 can be re-
identified as I1.

Given the considerations above, Yarovoy et al. [57] formalize
the attack model as follows. The attacker first constructs an
attack graph associated with the published distorted version
of D and the known QIDs as described above. Then, he
repeats the following operation until there is no change to
the graph:

1. Identify an edge e that cannot be part of any perfect
matching.

2. Prune the edge e.

MOB t1 t2
O1 (1, 2) (5, 3)
O2 (2, 3) (2, 7)
O3 (6, 6) (3, 6)

(a)

MOB t1 t2
O1 [(1, 2), (2, 3)] (5, 3)
O2 [(1, 2), (2, 3)] [(2, 6), (3, 7)]
O3 (6, 6) [(2, 6), (3, 7)]

(b)

O3

I1

I2

I3

O1

O2

(c)

Figure 1: AssumingQID(O1) = {t1}, QID(O2) =QID(O3)
= {t2}: (a) original database; (b) a 2-anonymity scheme
that is not safe, and (c) the attack graph.

Next, he identifies every node O with degree 1. He concludes
the (only) edge incident on every such node must be part
of every perfect matching. There is a privacy breach if the
attacker succeeds in identifying at least one edge that must
be part of every perfect matching. We henceforth assume
that unless otherwise mentioned, an attack graph refers to
the graph obtained at the end of the above operations.

To defend against such attack, Yarovoy et al. [57] define the
k-anonymity model as follows.

Definition 3.2. [57] Let D be a trajectory database and
D∗ its distorted version. Let G be the attack graph w.r.t.
D,D∗. Then D∗ is k-anonymous provided that (i) every
I-node in G has degree k or more; and (ii) G is symmetric,
i.e., whenever G contains an edge (Ii, Oj), it also contains
the edge (Ij , Oi).

An immediate observation is that in an attack graph that
satisfies the above conditions, every O-node will have degree
k or more as well.

3.1.2 QID-blind Anonymity Models

Abul et al.’s anonymity model [2; 3]. Abul et al. pro-
pose a novel concept of k-anonymity based on co-localization
that exploits the inherent uncertainty of the moving object’s
whereabouts. Based on the observation that due to the im-
precision in sampling and positioning systems (e.g., GPS),
the trajectory of a moving object is represented a cylindrical
volume instead of a polyline in a three-dimensional space.
The position of a moving object in the cylinder then becomes
uncertain. A graphical representation of an uncertain tra-
jectory is shown in Figure 2.

The location uncertainty is captured by a radius parameter δ
of the cylinder. Clearly all trajectories that move within the
same cylinder are indistinguishable from each other. Based
on this, Abul et al. [2] defined a (k, δ)-anonymity model as
follows.
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(a)

(b)

Figure 2: (a) an uncertain trajectory: uncertainty area, tra-
jectory volume and possible motion curve. (b) an anonymity
set formed by two co-localized trajectories, their respective
uncertainty volumes, and the central cylindrical volume of
radius δ/2 that contains both trajectories.

Definition 3.3. Given an anonymity threshold k and a
radius parameter δ, a (k, δ)-anonymity set is a set of at least
k trajectories that are co-localized w.r.t. δ.

They show that a set of trajectories S, with |S| ≥ k, is a
(k, δ)-anonymity set if and only if there exists a trajectory τc
such that all the trajectories in S are possible motion curves
of τc within an uncertainty radius of δ/2. Given a (k, δ)-
anonymity set S, the trajectory τc is obtained by taking, for
each t ∈ [t1, tn], the point (x, y) that is the center of the
minimum bounding circle of all the points at time t of all
trajectories in S.

Therefore, an anonymity set of trajectories can be bounded
by a cylindrical volume of radius δ/2. In Figure 2(b), we
graphically represent this property.

The (k, δ)-anonymity framework requires to transform a tra-
jectory database D to D∗ such that for each trajectory
τ ∈ D∗ it exists a (k, δ)-anonymity set S ⊆ D∗, τ ∈ S,
and the distortion between D and D∗ is minimized.

Nergiz et al.’s anonymity model [50]. Inspired by the
condensation approach [4; 5], Nergiz et al. [50] consider the
trajectories as a collection of points, each point represented
by intervals on the three dimensions: [x1, x2], [y1, y2], and
[t1, t2]. Based on this, they define the k-anonymity model
as following:

Definition 3.4. [50] A trajectory database D∗ is a k-
anonymization of a trajectory dataset D if

• for every trajectory in D∗, there are at least k−1 other
trajectories with exactly the same set of points;

• there is a one to one relation between the trajectories
tr ∈ D and trajectories tr∗ ∈ D∗ such that for each
point pi ∈ tr∗ there is a unique pj ∈ tr such that
x1
i ≤ x1

j , x2
i ≥ x2

j , y1
i ≤ y1

j , y2
i ≥ y2

j , t1i ≤ t1j , and

t2i ≥ t2j , .

Given a set of trajectories that are going to be anonymized
together, the key is to construct anonymity sets by creating
point matching. Figure 3 shows an example of producing a
point matching of three trajectories tr1, tr2, and tr3. Un-
matched points are suppressed in the anonymization.

Figure 3: Anonymization of three trajectories tr1, tr2 and
tr3 via point matching

3.2 Anonymization Techniques
Next, we discuss the details of these anonymization tech-
niques developed to achieve the anonymity models discussed
above.

3.2.1 QID-aware Anonymization Techniques
Terrovitis et al.’s anonymization algorithm [56]. The
main idea of Terrovitis et al.’s anonymization algorithm is
to suppress the existence of certain points in the trajecto-
ries, taking into account the benefit in terms of privacy and
the deviation from the main direction of the trajectory. As
finding the optimal set of points to delete from trajectories
with the minimum possible information loss is an NP-hard
problem, the authors propose a greedy heuristic that iter-
atively suppresses locations, until the privacy constraint is
met. The idea is that the algorithm simulates the attack
from any possible adversary, and then resolves the identi-
fied privacy breaches.

First, the algorithm extracts the projected database Di of
each attacker i, according to his adversary knowledge (i.e.,
subsequences of each trajectory). Then the algorithm com-
putes sup(pj , t

i, D) for each pj ∈ t, pj �∈ ti. If there ex-
ists any unsafe projection, i.e., there exist pairs (Pj , t

i) such

that P (pj , t
i, D) =

sup(pj ,t
i,D)

S(ti,D)
> Pbr, where Pbr is a user-

defined privacy breach threshold, then the algorithm will
unify a pair of projections (tix, t

i
y), at least one of which is

unsafe. Two projections can be unified only if one is a sub-
trajectory of the other, i.e., the larger projection contains
all the points of the smaller one, and in the right order. For
example, a1 → a3 can be unified with a3 (see tA5 and tA6 in
Table 2(b)).

The reasoning behind unifying is that if tix is an unsafe
projection then either tix is not supported in the trans-
formed database D′ resulting from this unification, or
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P (pj , t
i
x, T

′) ≤ Pbr for all pj �∈ Pi. In the example of Table
2, after the unification of a1 → a3 with a3, trajectory t5 be-
comes t′5 = a3 → b1 and the problems of both a1 → a3 and
a3 are resolved; a1 → a3 is no longer supported in D′ and
a3 does not map to any B-location with probability higher
than 50%.

Since there may be more than one unsafe projection, the al-
gorithm always picks the one of the lowest cost with respect
to the information loss it entails. This cost is quantized by
summing the distances of the transformed trajectories to the
corresponding original ones, had the unification been com-
mitted, minus the corresponding cost before the unification.
To improve the efficiency of the anonymization algorithm,
the authors perform multiple unifications at each loop in the
algorithm.

The experimental results of [56] were from synthetic tra-
jectories of moving objects generated by using Brinkhoffs
generator [14]. The results show that the anonymization al-
gorithm performs the best if the number of unifications per
iteration is large, the database size is large, and the location
points in the adversary knowledge are distributed to many
adversaries.

Yarovoy et al.’s anonymization algorithm [57].
Yarovoy et al. [57] study the case that QIDs of various mov-
ing objects may not be identical. Due to this fact, the design
of anonymization algorithm is challenging since anonymiza-
tion groups may not be disjoint, which is dramatically dif-
ferent from traditional anonymization techniques on rela-
tional databases where anonymization groups of different
objects never overlap. Overlapping anonymization groups
will result in revisits of earlier generalizations and possi-
ble re-generalization of existing anonymization groups with
other objects, which will lead to significant computational
complexity.

Yarovoy et al. proposed two different anonymization algo-
rithms. Both make use of space filling curves for fast re-
trieval of nearest neighbors at every time point. Specifi-
cally, they use the Hilbert index of spatial objects for effi-
cient indexing of moving objects at each time point. The
Hilbert curve [34] is a continuous fractal space-filling curve
that naturally maps a multi-dimensional space to one di-
mension. The Hilbert index of a list of points is assigned
following the order in which the Hilbert curve visits these
points in an n-dimensional space. It is well known that
the Hilbert index preserves locality, i.e., points close in the
multi-dimensional space remain close in the linear Hilbert
ordering. To make use of this property, at each time point
t, the Hilbert index of all moving objects will be constructed
according to their locations at t. Figure 4 shows an example
of the Hilbert index of locations.

To find the moving objects of the smallest aggregate distance
from a moving object O over a set of time points, a local
score for its Hilbert distance to the target moving object at
the same timepoint is defined. The global score is equal to
the sum of all local scores. The problem of finding mov-
ing objects with the top-(k − 1) closest aggregate distance
from O thus reduces to finding the top-(k − 1) moving ob-
jects with the lowest overall score. Yarovoy et al. proposed
the anonymization algorithm GenAG , which adopts a re-
cent improvement of the well-known Threshold Algorithm
(TA) [19; 20] and its variants (see [8]). In particular, the
moving objects are stored in increasing order of the Hilbert
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Figure 4: Illustration of locations and their Hilbert indexes:
(a) time t1; (b) time t2.

index, and the TA algorithm is applied on the sorted Hilbert
lists. As shown in [20], the TA algorithm has the instance
optimality property. This property is inherited by GenAG.
Intuitively, it guarantees that any algorithm, which does not
make any wild guesses, cannot compute the answer to the
top-k query (i.e., compute top-k nearest neighbors) in fewer
accesses than the GenAG algorithm by more than a constant
factor, on any input database.

The basic idea of the anonymization algorithm GenAG is
as following. First, for every time point t, we compute the
Hilbert index Ht(O) of every moving object O and insert
the entries (O,Ht(O)) into a list Lt in increasing order of
Ht(O). These lists will be used repeatedly for computing
the anonymization group of different subjects, where sub-
ject is the moving object w.r.t. which we may need to com-
pute nearest neighbors. A key condition in the definition of
k-anonymity is that the induced attack graph must be sym-
metric. To satisfy this requirement, Yarovoy et al. first pro-
posed the Extreme Union (EU) method that can achieve
the symmetry requirement at the expense of generalizing all
objects in an anonymization group with regard to the QIDs
of all moving objects in the group. Specifically, they take the
union of the QIDs of all moving objects in the anonymiza-
tion group of the object O and generalize all of them with
regard to every time point in this union.

While EU does produce generalizations that are k-
anonymous, it can result in considerable information loss.
To generalize objects less aggressively than EU and still
meet the k-anonymity condition, Yarovoy et al. then pro-
posed the Symmetric Anonymization (SA) method. Instead
of keeping the set of objects being generalized together fixed
(as EU does), SA keeps the timestamps with regard to
which a set of moving objects is generalized together, fixed
and equal to the QID of the target object Oi.

After the anonymization groups are constructed, all moving
objects in the same anonymization group will be general-
ized identically. However, due to the fact that QIDs may
overlap, anonymization groups associated with different ob-
jects may not be disjoint, which will result in revisits of ear-
lier generalizations and possible re-generalization of existing
anonymization groups with other objects. The problem is
to avoid the backtracking of generalization, so that the gen-
eralized position of every object at every timestamp can be
computed in one shot. To achieve this goal, each moving ob-
ject Oi with t ∈ QID(Oi) is run through and AG(Oi), the
anonymization group, is added to its generalization set ECt.
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ECt is maintained by using the well-known UNION/FIND
data structure for disjoint sets, with path compression [21].
The algorithm has an amortized complexity of O(nα(n)) for
performing n operations consisting of union (i.e., merge) of
two disjoint sets or finding the unique set to which an ele-
ment belongs, where α is the inverse of the extremely fast
growing Ackermann’s function.

After the computation of generalization sets, a k-
anonymization D∗ of D can be obtained as follows. For
each time t in the union of all QIDs, for each generalization
set C w.r.t. time t, we generalize the position of every mov-
ing object O ∈ C to the least upper bound of the positions
of objects in C w.r.t. the lattice of rectangles.5 This corre-
sponds to the smallest region containing the positions of all
moving objects in C at time t.

Yarovoy et al. [57] use two datasets for their experiments,
a real-world trajectory dataset that is obtained by col-
lecting traces of GPS-equipped cars moving in the city of
Milan (Italy), and a synthetic dataset generated by using
Brinkhoffs generator [14]. The observation is that the max-
imal size of the QIDs has a significant impact on the al-
gorithm’s performance. While run-time grows sub-linearly
with k, it grows super-linearly with the maximal size of the
QIDs.

3.2.2 QID-blind Anonymization Techniques
Next, we review the details of these papers.

Abul et al.’s anonymization algorithms [2; 3].

Abul et al. propose a two-step (k, δ)-anonymity anonymiza-
tion method, called NWA (N ever Walk Alone), that can
efficiently anonymize a trajectory database with low infor-
mation loss, by means of clustering and perturbation. In
particular, as perturbation method is chosen space trans-
lation: i.e., slightly moving some observations in space. A
suitable measure of the information distortion introduced by
space translation is defined, and the problem of achieving
(k, δ)-anonymity by space translation with minimum distor-
tion is proven to be NP-hard.

In the first clustering step, the moving objects database D is
partitioned in groups of trajectories, each group having size
in the interval [k, 2k − 1]. After having tried a large variety
of clustering methods for trajectories under the k-member
constraint, Abul et al. chose a simple greedy method as the
best trade-off between efficiency and quality of the results.
The method is further enhanced with ad-hoc preprocessing
and outlier removal. In fact it is claimed by the authors
(but also by other previous work, e.g., [15]), that outlier de-
tection and removal might be a very important technique in
clustering-based anonymization schemes: the overall quality
of the anonymized database can benefit by the removal of
few outlying trajectories.

The pre-processing step aims at partitioning the input
database into larger equivalence classes w.r.t. time span,
i.e. groups containing all the trajectories that have the same
starting time and the same ending time. This is needed be-
cause NWA adopts Euclidean distance that can only be de-
fined among trajectories having the same time span: if per-
formed directly on the raw input data this often produces
a large number of very small equivalence classes, possibly
leading to very low quality anonymization. To overcome

5The lattice of rectangles is defined using a discrete grid and
the partial order is naturally based on containment.

this problem, a simple pre-processing method is developed.
The method enforces larger equivalence classes at the price
of a small information loss. The pre-processing is driven by
an integer parameter π: only one timestamp every π can be
the starting or ending point of a trajectory. For instance, if
the original data was sampled at a frequency of one minute,
and π = 60, all trajectories are pre-processed in such a way
that they all start and end at full hours. To do that, the first
and the last suitable timestamps occurring in each trajec-
tory are detected, and then all the points of the trajectory
that do not lay between them are removed.

The greedy clustering method iteratively selects a pivot tra-
jectory and makes a cluster out of it and of its k−1 unvisited
nearest neighbors, starting from a random pivot and choos-
ing next ones as the farthest unvisited trajectories w.r.t.
previous pivots. Being simple and extremely efficient, the
greedy algorithm allows to iteratively repeat it until clusters
satisfying some criteria of compactness are built.

More in details, a compactness constraint is added to the
greedy clustering method briefly described above: clusters
to be formed must have a radius not larger than a given
threshold. When a cluster cannot be created around a new
pivot without violating the compactness constraint, the lat-
ter is simply deactivated — i.e., it will not be used as pivot
but, in case, it can be used in the future as member of some
other cluster — and the process goes on with the next pivot.
When a remaining object cannot be added to any cluster
without violating the compactness constraint, it is consid-
ered an outlier and it is trashed. This process might lead
to solutions with a too large trash, in which case the whole
procedure is restarted from scratch relaxing the compact-
ness constraint, reiterating the operation till a clustering
with sufficiently small trash is obtained. At the end, the set
of clusters obtained is returned as output, thus implicitly
discarding the trashed trajectories.

In the second step, each cluster of trajectories is perturbed
by means of the minimum spatial translation needed to push
all the trajectories within a common uncertainty cylinder,
i.e., transforming them in an anonymity set.

Starting from a discussion on the limits of NWA Abul et
al., in a subsequent paper [3], we develop a novel method
that, being based on EDR (Edit distance on Real sequences)
[16] (instead of the Euclidean distance as it was NWA), it
has the important feature of being time-tolerant. The novel
method is named W4M (Wait for Me).

Another idea introduced in this follow-up paper, is to exploit
the EDR computation also as a guide on how to perform
the last step of the anonymization process. After having
clustered trajectories it is needed to modify each cluster to
make it an anonymity set. Being an edit distance, it is
EDR itself to suggest how to do this spatio-temporal editing :
this means that the computation done during the clustering
phase can be reused in the points translation phase.

The experiments on both real and synthetic datasets con-
firm that W4M produces higher quality (k, δ)-anonymized
data than NWA. However, it might be prohibitively ex-
pensive for large and complex datasets. Thus, Abul et al.
develop techniques to make W4M scalable. In particular,
they introduce a novel O(n) spatio-temporal distance func-
tion, named LSTD (linear spatio-temporal distance). Be-
ing linear, LSTD has the same computational cost of Eu-
clidean distance, but it has not the same limits: in fact
LSTD is time-tolerant, can be applied to trajectories of dif-
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ferent length, and it is tolerant to outliers. In practice, it
represents a good trade-off between Euclidean distance and
EDR.

Nergiz et al.’s anonymization algorithms [50].

As we discussed before, the key operation of Nergiz et al.’s
technique is point matching. After defining and comput-
ing point matching for anonymization sets, the next chal-
lenge is to find the optimal anonymization of two trajecto-
ries. Nergiz et al. observed that there exists similarity be-
tween the problem of optimal trajectory anonymization and
the string alignment problem in the context of DNA com-
parisons, where the goal is to find an alignment of strings
such that total pairwise edit distance between the strings
is minimized. By adapting the solution of string alignment
problem, the alignment of two trajectories can be solved
in polynomial time by using a dynamic programming ap-
proach.

Based on the definition of anonymization cost by using align-
ment of trajectories, Nergiz et al. proposed a greedy al-
gorithm, called multi TGA, that is based on condensation
based grouping algorithm. In particular, in each iteration,
the algorithm creates an empty group G, randomly samples
one trajectory tr ∈ D, puts tr into G, and initializes the
group representative as repG = tr. Next, the closest trajec-
tory tr′ ∈ TR \ G to repG is added to G, and then repG
is updated. At the end of each iteration, a new group of k
trajectories is formed. The iteration stops when there are
less than k trajectories that remain ungrouped.

To reduce the significant cost of finding the closest trajec-
tory to the group representative, a new algorithm (called
Fast TGA) is introduced: in Fast TGA all the k − 1 clos-
est trajectories to the group representative are chosen in
one pass. Fast TGA is faster by a factor of k but prodcues
worse utility since it does not directly optimize against the
log cost function. Indeed, as proven by Nergiz et al., com-
puting the optimal anonymization groups with minimal log
cost for n > 2 trajectories in NP-hard. Therefore, Nergiz et
al. adapted the heuristics of the string alignment problem
to trajectory anonymization.

Figure 5: Example of reconstruction starting from the
anonymization of Figure 3.

Nergiz et al. also discussed the drawbacks of applying the
generalization-based anonymization techniques to trajectory
databases. In particular, first, the generalized locations may
disclose uncontrolled information about exact locations of
the points. Second, the generalized trajectories may become
useless for data mining and statistical applications which
work on atomic trajectories. Therefore, Nergiz et al. adapt

the reconstruction approach [4] and publish reconstructed
data rather than data anonymized by means of general-
ization. An example reconstruction is shown in Figure 5.
Compared with the generalization approach, the output af-
ter reconstruction is atomic and suitable for trajectory data
mining applications.

Mohammed et al’s anonymization technique [45].
Mohammed et al. define the LKC-privacy model that re-
quires: (1) every sub-sequence with a maximum length L in
the trajectory database has to be shared by at least a certain
number of records, and (2) the ratio of sensitive value(s) in
every anonymization group cannot be too high.

LKC-privacy is achieved by performing a sequence of sup-
pressions on selected pairs from the trajectory database D.
Mohammed et al. employ global suppression, meaning that
if a pair p is chosen to be suppressed, all instances of p in
D are suppressed. The purpose of using global suppression
instead of local suppression is to retain exactly the same sup-
port counts of the preserved maximum frequency sequences
in the anonymous trajectory database as there were in the
raw data. The property of data truthfulness is vital in some
data analysis tasks such as traffic analysis.

The LKC-privacy anonymization algorithm consists of two
steps. The first step is to identify all sequences that violate
the given LKC-privacy requirement. To avoid enumerating
all possible violating sequences, the authors aim at find-
ing minimal violating sequences. The solution is similar to
Apriori algorithm [7]. It starts from size-1 sequences, i.e.,
all distinct pairs, as candidates. For each candidate, it scans
D once to compute its frequency. If the sequence q violates
the LKC-privacy requirement, then q is added to the MVS
set, which stores minimal violating sequences; otherwise, q
is added to the non-violating sequence set for generating the
next candidate set.

The second step is a greedy algorithm that transforms the
raw trajectory database D into an anonymous table D′ with
respect to a given LKC-privacy requirement by a sequence
of suppressions. In each iteration, a pair p for suppression
will be selected based on a greedy selection function. The
greedy function, Score(p), is to select a suppression on a
pair p that maximizes the number of minimal violating se-
quences(MVSs) that have been removed but minimizes the
number of maximal frequency sequences (MFS) removed in
D. More formally, Score(p) is defined as follows:

Score(p) =
PrivGain(p)

UtilityLoss(p) + 1

where PrivGain(p) and UtilityLoss(p) are the number of
minimal violating sequence (MVS) and the number of max-
imal frequent sequence (MFS) containing the pair p, respec-
tively. Adding 1 to the denominator is to avoid dividing by
zero when a pair p may not belong to any MFS, resulting in
|UtilityLoss(p)| = 0.

The greedy algorithm assigns the initial Score(p) to every
candidate pair. In each iteration, the pair of the highest
Score(p) will be suppressed. After suppression, the score of
the remaining candidate pairs will be updated. The iteration
repeats until no candidate pair is available.
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4. METHODS ON MOTION PATTERN
BASED ADVERSARY KNOWLEDGE

In this section, we will review two papers [24; 37] that con-
sider motion pattern based adversary knowledge. We will
discuss the definition of the adversary knowledge, the pri-
vacy model, and the anonymization techniques of these pa-
pers.

4.1 Velocity-based Adversary Knowledge
Ghinita et al. [24] considered an attack based on static
cloaking mechanisms, in which an adversary uses back-
ground knowledge of maximum speed to infer more specific
location information. As an example, user Alice uses social
networking applications (e.g., Google Latitude) to share in-
formation about her geo-spatial context, so that she can ask
a nearby friend to join her for dinner, or to find on-going
events close to her location. She reports her (cloaked) loca-
tion as she moves. Assume that Alice has set her current
on-line status to “Visiting shops in the down-town area”.
An attacker can infer with high probability that Alice is
currently walking, hence her velocity can be no higher than
5 km/h. Alternatively, if Alice’s status is “Out for a bi-
cycle trip”, her speed can be bound to at most 20 km/h.
The attacker can estimate user Alice’s possible region and
intersect it with Alice’s reported (cloaked) location. If a
hospital building is situated in the intersected region, then
the attacker can infer that Alice has a medical appointment,
compromising her privacy.

Ghinita et al. considered two types of attacks: (1) the at-
tacks without background knowledge about the sensitive lo-
cations on the map, and (2) the attacks with such back-
ground information. In the former case, the privacy re-
quirement is not to allow an attacker to pinpoint the user
location within a sub-region of a reported cloaked region.
In the latter case, the privacy requirement dictates that the
association probability between a user and a sensitive loca-
tion must not exceed the user-specified threshold. Given a
cloaked region A, the probability of association is formally
defined as

∑
∀f∈fti

Area(f ∩ CR)

Area(CR)
.

Based on these two cases, the privacy model is defined as

Definition 4.1. [24] Two cloaked regions A and B sep-
arated by time interval δt are safe to disclose in the attack
model without background knowledge if dhaus(A,B) ≤ vδt.
Similarly, in the attack model with background knowledge
the two regions are safe to disclose if dpp(A,B) = vδt, where
dhaus(A,B) is the Hausdorff distance [10] between CRs A
and B, and dpp(A,B) measures the maximum distance be-
tween any point in A to any point in B.

Ghinita et al. [24] consider two types of transformation on
trajectory databases, temporal cloaking and spatial cloak-
ing. Temporal cloaking is applicable when the partition of
the map into cloaking regions (CRs) is fixed in advance.
The authors propose two alternatives for achieving tempo-
ral cloaking: request deferral and postdating. In particular,
consider user U who wants to issue a request at current time
tq . The location of u is enclosed as CR C. Previously at
time tA, u issued a request with CR A. Prior to entering C,
u was situated inside region B, but no request with associ-

ated CR B was issued. At current time tq , C is not safe to
disclose, as it is too far away from A.

By request deferral, the request at tq will be deferred until
C becomes safe to disclose, i.e., until tC s.t.

d(A,C) ≤ v(tC − tA), tC ≥ tA + d(A,C)/v,

where d can signify either the dhaus or dpp distance. In this
case, the request is delayed for a period of time equal to
tC − tq.

By postdating, the request at tq will be issued immediately,
but using CR B. Since u is already outside B, the request
will certainly incur some amount of space error. However,
if the current position of u is not far away from B (e.g., u
has only recently exited B), the error is likely to be low.

With the deferral and postdating primitives, the authors de-
vise an heuristic that chooses the best of the two methods
in order to maintain good QoS. The heuristics is based on
the assumption that the user has the ability to predict (with
reasonable accuracy) its position at a future time. This pre-
diction will be used in evaluating whether deferral or post-
dating is more beneficial. Since the proposed solution is an
heuristic in the first place, predicting future locations with
high accuracy is not a necessity.

The second anonymization technique of the paper, spatial
cloaking, is based on the assumption that the user’s mobile
device has sufficient resources, or when cloaking is performed
by a trusted service, CRs can be dynamically computed
at the time of the request. The challenge is to construct
the CRs with the sets of sensitive features and associated
sensitivity thresholds taken into considering. For example,
assume that at some point along its trajectory, user u is
situated inside a hospital H. Denote by thrH = 0.5 the sen-
sitivity threshold of u for feature type hospital. In this case,
it is necessary to reduce the probability of association of u
with H by creating a CR at least twice as large as the area
of H. On the other hand, if the user is in a non-sensitive
area, then the exact location could potentially be disclosed,
since this is not a privacy violation.

The CR construction procedure consists of three steps. By
the first step, features of the trajectories will be filtered; only
sensitive features that intersect MS(A), which encloses all
locations where user u could be situated at request time tq,
will be kept to represent the set SF of candidates for inclu-
sion in the CR. By the second step, the algorithm chooses
a sensitive feature f ∈ SF and enlarges it to find a CR
that satisfies the privacy requirement, i.e., the sensitive area
within the CR is of a fraction of the total CR area no larger
than the user-specified threshold. By the third step, the al-
gorithm checks whether the safety requirement is enforced
and defer the request if necessary.

[24] used a set of trajectories that are randomly generated,
and reported the space and time error by temporal cloaking
and spatial cloaking on the dataset. The results show that at
low velocity, it is likely that the requests are safe to be issued.
As velocity increases initially, consecutive requests need to
be deferred/postdated. However, as velocity continues to
increase, the safety condition can be satisfied with only a
short delay.

4.2 Correlation-based Adversary Knowledge
Jin et al. [37] pointed out that the locations of a user at
continuous timestamps are indeed correlated. The attacker
may exploit such fact and design a motion model to define
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the probability distribution of locations for a particular user,
given the location of the user at the preceding h epochs (for-
ward motion model), or the following h epochs (backward
motion model). To be formal, a forward motion model is a
conditional probability mass function

Pr[loc(p, tj) = lj |loc(p, tj−1 = lj−1), . . . , loc(p, tj−h = lj−h)]

where 1 ≤ h ≤ j and loc(p, tj) = lj indicates that the loca-
tion of user P at time tj is lj . Similarly, a forward motion
model is a conditional probability mass function

Pr[loc(p, tj) = lj |loc(p, tj+1 = lj+1), . . . , loc(p, tj+h = lj+h)]

where 1 ≤ h ≤ j. Both forward motion model and the back-
ward motion models can be viewed as an hth-order Markov
chain. In their work, they mainly used a simple (forward
and backward) linear motion model that is based on sim-
ple velocity distribution assumptions. Formally, the speed
of each user is assumed to be uniformly distributed in the
range [v1, v2], and that the angle of motion is uniformly dis-
tributed in [θ1, θ2]. Given user p’s location at timer t1 as
l1, the possible locations for p at t2 are as a sector with an-
gles [θ1, θ2] and distances [r1, r2] where r1 = v1 × (t2 − t1),
r2 = v2 × (t2 − t1).

Based on the forward and backward motion models, Jin et
al. defined the privacy breach as following:

Definition 4.2. A release candidate D∗(tj) is said to
cause a privacy breach if either of the following statements
is true for user-defined breach threshold T :

maxp,ljPr[loc(p, tj) = lj |D(tj−1), . . . , D(tj−m), D∗(tj)] > T

maxp,ljPr[loc(p, tj) = lj |D(tj+1), . . . , D(tj+m), D∗(tj)] > T

The goal of publishing the trajectory database is to ensure
that location trace data does not result in a privacy breach.
First, Jin et al. proposed an pruning method to improve the
performance of computation of both forward and backward
privacy breach. Second, they designed a publishing proto-
col of the trajectories, suggesting increase the size or vary
the composition of anonymization groups, and limit the fre-
quency with which to publish a release candidate. They also
proposed the concept of durable anonymization groups that
contain the same pseudonyms at all epochs across time. In
their empirical study, they analyzed the occurrence of the
motion prediction inference problem, and evaluated the ef-
fectiveness of the publishing algorithms, including the prun-
ing approach and the effect of using durable versus non-
durable clusters. They implemented two protocols for data
publishing. In the first protocol, the data is initially clus-
tered into anonymization groups at epoch 1 using the clus-
tering method proposed in [4], which is called k−Condense.
This method takes as input a parameter k, and uses a heuris-
tic to cluster the points into groups based on their proxim-
ity, such that each resulting group contains at least k points.
With durable clusters, once the cluster is produced at the
first epoch, the clusters are retained and simply checked at
subsequent epochs for forward breaches. Data is published
if the forward breach probability for each cluster is below

the user-defined threshold. In the second protocol, the data
is reclustered at each epoch, using the k − Condense algo-
rithm. At each epoch the breach probability is computed
and the snapshot at an epoch is published if the forward
and backward breach probability for each cluster is below
the user-defined threshold.

Jin et al.[37] use real GPS traces from a study conducted by
a Transportation Research Institute of University of Michi-
gan, as well as synthetic trajectories. The experiments show
that the correlation-based attack can be successful against
both datasets. However, their approaches can be effective
to defend against the attack.

5. CONCLUSION AND OPEN PROBLEMS
Location privacy has already been acknowledged as an im-
portant problem, and effective privacy-preserving solutions
to publish trajectories will be necessary to support the
widespread development and adoption of location-based ap-
plications. This survey discussed the state-of-the-art in
anonymous personal mobility data publication, with the fo-
cus on the definition of adversary knowledge, the privacy
model, and the anonymization algorithms.

There are several interesting open directions for future re-
search in this area. We discussed earlier the challenge of
deriving quasi-identifiers in the context of mobility data: as
argued by some authors, they might be defined by the users
themselves, or they might be “learnt” by mining the trajec-
tory database. There are two fundamental issues here.

Granularities of QID Locations. With today’s position-
ing systems, the locations of moving objects can be recorded
very accurately, down to the level of (longitude, latitude)
pairs. Indeed, this has led to some papers [2; 57] defining
QIDs as a sequence of coordinates in the Euclidean space.
However, in practice, a set of spatial areas as opposed to
(long, lat) pairs, may be sufficient to identify moving ob-
jects with high probability. Examples of such spatial areas
include landmarks such as living area, working buildings,
and public places (e.g., an oncology clinic) [56; 40].

Defining a suitable granularity of QID locations is an im-
portant and challenging problem. There have been several
approaches that define QIDs on various granularities. Be-
sides coordinates in the Euclidean space [2; 57]), Kido et
al. [38] divide the space into several regions; the attacker’s
adversary knowledge of position information is delimited by
the region it belongs to. Monreale et al. [48] consider the se-
mantic trajectory [54], which reasons over trajectories from
a semantic point of view, and defines sensitive spatial areas
and QIDs based on a “privacy places” taxonomy. Finding
a realistic and actionable and computational definition of
quasi-identifiers is an important open problem.

Efficient Discovery of QIDs. Several existing works (e.g.,
[11; 57]) assume that the QIDs can be provided either di-
rectly by the users when they subscribe to the location-based
service or be part of the users’ personalized settings. We
argue that in practice, the quasi-identifiers are application
dependent, and may not be known a priori. Therefore, it is
necessary to develop algorithms that can efficiently compute
QIDs from the trajectory databases.

Intuitively, QIDs are the sets of locations whose frequen-
cies are nearly unique in the sense of potentially identify-
ing an individual. Hence, the problem of finding QIDs is
similar to the well-known problem of frequent pattern min-

SIGKDD Explorations Volume 13, Issue 1 Page 39



ing [6]. However, frequent pattern mining algorithms cannot
be used directly to find QIDs, since frequent pattern min-
ing returns the patterns whose frequency counts are no less
than a given threshold, while QID mining looks for the pat-
terns whose frequency counts are no more than a threshold.
We cannot use infrequent pattern mining algorithms [17] ei-
ther, as the proper subsets of infrequent patterns must be
frequent, which does not hold for QIDs. How to efficiently
discover QIDs from the trajectory databases, which are typ-
ically large scale, is an interesting problem that is worthy of
further exploration.

A close and interesting research area is the so called privacy-
preserving data mining [13], i.e., instead of anonymizing the
data for privacy-aware data publication, the focus of privacy
is shifted directly to the analysis methods. Few papers exist
along this line of research. An example is [1] which addresses
the problem of hiding mobility patterns, that is, we want to
publish a database of trajectories of moving objects, in such
a way that some sensitive patterns holding in the data can
not be retrieved by means of pattern mining techniques.
The authors show how a trivial solution may be not safe
enough: in fact, in certain cases, a malicious adversary can
exploit the background knowledge of the road network to
reconstruct the original database.

Another line of research, not yet started, is about developing
ad-hoc anonymization techniques for the intended use of the
data: for instance, with respect to a specific spatio-temporal
data mining analysis.

With the recent explosion of social applications over mobile
devices, the activity of collecting and analyzing individual
mobility data for the purpose of developing novel services is
expected to have a growing importance in the next years.
The privacy issues related to these activities pose technical
problems for which only preliminary solutions exist, as we
reported in this survey. Therefore there is plenty of inter-
esting research opportunities and challenges in this rather
young area.
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