
Trajectory association and fusion across partially overlapping cameras

Nadeem Anjum and Andrea Cavallaro ∗

Queen Mary University of London

Multimedia and Vision Group

Mile End Road, E1 4NS London (United Kingdom)

{nadeem.anjum, andrea.cavallaro}@elec.qmul.ac.uk

Abstract

We present a novel unsupervised inter-camera trajec-

tory correspondence algorithm that does not require prior

knowledge of the camera placement. The approach con-

sists of three steps, namely association, fusion and link-

age. For association, local trajectory pairs correspond-

ing to the same physical object are estimated using mul-

tiple spatio-temporal features on a common ground-plane.

To disambiguate spurious associations, we employ a hybrid

approach that utilizes the matching results on the image-

and ground-plane. The trajectory segments after associa-

tion are fused by adaptive averaging. Finally, linkage inte-

grates segments and generates a single trajectory of an ob-

ject across the entire observed area. We evaluated the per-

formance of the proposed approach on a simulated and two

real scenarios with simultaneous moving objects observed

by multiple cameras and compared it with state-of-the-art

algorithms. Convincing results are observed in favor of the

proposed approach.

1. Introduction

The reconstruction of objects’ trajectories across cam-

eras facilitates the recognition of global behaviors for large

scale events in applications such as sports analysis, remote

sensing and video surveillance. This requires a mechanism

for associating and integrating partially observed data in

each camera view. Local trajectory information from in-

dividual cameras may be corrupted by inaccuracies due to

noise, objects re-entrances, occlusions and by errors due to

crowded scenes. Therefore, trajectory association becomes

a difficult task under such complex scenarios.

In this paper, we consider the problem of object as-

sociation across partially overlapping cameras using local

∗This work was supported in part by the EU, under the FP7 project

APIDIS (ICT-216023).

trajectories. Existing works perform association either on

image-plane [7] or on ground-plane [4]. As image-plane

trajectories are heavily affected by the perspective defor-

mations, which cause inaccurate associations especially if

the trajectories are far from cameras. On the other hand,

accurate associations on ground-plane are hampered by the

image- to ground-plane projections, which do not ensure

unique association of an object trajectories observed in mul-

tiple cameras. We propose a hybrid approach that combines

the strength of both image- and ground-plane associations.

Initial correspondence among trajectories is established on

ground-plane using multiple spatio-temporal features and

then image-plane reprojections of the matched trajectories

are employed to resolve conflicting situations. This makes

sure that only one trajectory of an object from each camera

is associated to other cameras. The fusion is then applied

to combine matched trajectories. A spatio-temporal linkage

procedure connects the fused segments in order to obtain

the complete global trajectories across the distributed set-

up. Figure 1 shows the proposed flow diagram.

The rest of the paper is organized as follows: Sec. 2

covers prior works in the field of object correspondence

across multiple cameras. Section 3 provides the detailed

description of the global ground-plane trajectories construc-

tion from local image-plane segments. Section 4 covers the

experimental results and finally Sec. 5 draws conclusions.

2. Prior work

We categorize object correspondence approaches into

supervised and unsupervised algorithms. Supervised tech-

niques depends either upon the information contained in

training samples or supplied manually by users. Several

authors have proposed supervised association approaches

such as Kettnaker et al. [6], Huang et al. [3], Dick et al. [1]

and Wang et al. [9]. Unlike supervised techniques, unsuper-

vised techniques do not require training samples or manual

selection of the parameters. Recent unsupervised target as-
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Figure 1. Flow diagram of the proposed approach.

sociation algorithms are presented by Kayumbi et al. [4]

and Sheikh et al. [7]. The rest of this section provide the

details of these techniques.

Kettnaker et al. [6] presented a Bayesian solution to

track people across multiple cameras. The system requires

prior information about the environment and the way people

move across it. Huang et al. [3] presented a probabilistic ap-

proach for tracking cars across two cameras on a highway,

where transition times were modeled as Gaussian distribu-

tions. Like Kettnaker et al., it was assumed that the ini-

tial transition probabilities were known. This approach is

application-specific, using only two calibrated cameras with

vehicles moving in one direction in a single lane. Dick et

al. [1], use a stochastic transition matrix to describe patterns

of motion for both intra- and inter-camera correspondence.

The correspondence between cameras has to be supplied as

training data. Wang et al. [9] connect trajectories observed

in multiple cameras based on their temporal information.

The trajectories are considered to be corresponding, if they

overlap in time for a empirically pre-selected interval.

Kayumbi et al. [4] establish correspondence between

cameras and virtual ground-plane. Trajectory association is

done on the ground-plane using shape and length along with

temporal information. The maximum likelihood for asso-

ciation is calculated by cross correlation of spatio-temporal

feature vectors. However, this approach cannot differentiate

two objects moving with varying speed in the environment.

Another approach in this category is presented by Sheikh

et al. [7], in their approach, airborne cameras are used with

the assumption of the simultaneous visibility of at least one

object by two cameras. Taking as input time-stamped tra-

jectories from each view, the algorithm estimates the inter-

camera transformations. The maximum likelihood is esti-

mated as a function of the reprojection error. A pair of tra-

jectories is considered as generated from the same object if

the reprojection error is minimum.

Figure 2. Illustration of notations.

3. Global trajectory generation

3.1. Problem formulation

Let C = {C1, C2, ..., CN} be a set of N partially

overlapping synchronized cameras (Fig. 2). Let Oi
n rep-

resent the ith object observed in Cn. We perform video

object extraction (foreground segmentation) using a sta-

tistical color change detector and then we associate them

across consecutive frames using graph-matching [8]. Let

T i
n(xi, yi, t) be the resulting observation (track-point) of

Oi
n on location (xi, yi) at instant t in camera Cn. The

trajectory of Oi
n is a set of all observations i.e., Ti

n =
{T i

n(xi, yi, 0), T i
n(xi, yi, 1), ..., T i

n(xi, yi, J i
n)}, where J i

n

represent the length of the trajectory.

We construct a virtual ground-plane (G) from the avail-

able information of the datasets and the image-plane to

ground-plane projection is estimated by applying the ho-

mography matrix Hn,G [2] i.e.,

T̂ i
n,G(x̂i, ŷi, t) = Hn,GT i

n(xi, yi, t), (1)

where, T̂ i
n,G(x̂i, ŷi, t) is the local ground-plane projection

of T i
n(xi, yi, t) and Hn,G is the homography matrix. Hn,G

is constructed by selecting control points to establish the

image- and ground-plane correspondence. However, these

local projections result in differences in the overlapping re-

gion (Ωm,n) on the ground plane. Figure 3(top) shows a

network of two partially overlapping cameras and accumu-

lated trajectories in each view (Fig. 3(middle-row)). Fig-

ure 3(bottom-left) shows the local projections of the trajec-

tories on a common ground plane, where there are consid-

erable differences of an object’s trajectory viewed in two

cameras (Fig. 3(bottom-right)). This leads to the require-

ment of a process which can establish a proximity matrix to

associate every pth trajectory to all qth trajectories in Ωm,n.

The final goal is to reconstruct a complete global trajectory

2
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Figure 3. A network of partially overlapping cameras. (Top) con-

figuration of the cameras; (middle-row) accumulated trajectories

in each view; (bottom-left) ground-plane projection from the two

views and (bottom-right) an example of the differences on the

ground-plane.

of an object by fusing the trajectory segments across the en-

tire environment.

3.2. Trajectory association

In the case of partially overlapping cameras, we need

to establish the correspondence between transformed tra-

jectory segments (T̂i
n,G) in the overlapping regions on the

ground-plane. To find the relative pair-wise similarities for

association, we use both spatial and temporal features ex-

tracted from the trajectory segments. We assume that a pair

of trajectories from different cameras has to be similar both

in time and space for the association and fusion. In [4], the

shape (βi
n,G), which is approximated by polynomial coef-

ficients, and length (di
n,G) are used to find the similarity.

However, these features are not generalized enough to han-

dle variety of trajectories. Figure 4(left) shows an exam-

ple, where two trajectories are considered as similar using

these features. In fact, the second object is moving twice

the speed of the first one. We expand the feature set by

including the average target velocity, vi
n,G, which helps in

describing the rate of change of the ith object position and

is calculated as

vi
n,G =

1

J i
n

Ji

n
−1∑

j=1

(
x̂i(j + 1) − x̂i(j), ŷi(j + 1) − ŷi(j)

)
.

(2)

However, vi
n,G defines the average rate of change of an en-

tire trajectory segment. For localizing (time and position)

the abrupt changes in a trajectory, we employ the sharp-

ness of turns (~i
n,G), which defines the statistical directional

characteristics of a trajectory and is calculated as

~
i
n,G = H(θi

n,G), (3)
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Figure 4. Illustration of feature’s limitations. (Left) shape and

length features unable to distinguish the trajectories belonging to

different objects and (right) shape, length and average velocity fea-

tures unable to differentiate two trajectories that are spatially far

from each other.

where H(.) is a histogram function calculated over the di-

rectional angles (θi
n,G = tan−1(ŷi(j + 1) − ŷi(j)/x̂i(j +

1) − x̂i(j)). We take the indices to the top three peaks of

~
i
n,G as they describe the dominant angles in the trajec-

tory. Furthermore, we consider a situation where two tra-

jectories with similar shape, length and velocity are present

in completely different regions of the environment (see

Fig. 4(right)). In order to distinguish them, trajectory mean

(mi
n,G) is used and is defined as

mi
n,G =

1

J i
n

Ji

n∑

j=1

(
x̂i(j), ŷi(j)

)
. (4)

The features discussed so far define the overall pattern of a

trajectory. In order to get the variation information at the

sample level, we include PCA components analysis (pi
n,G).

We apply PCA on sample points of each trajectory by con-

sidering the covariance matrix as

Ξi
n,G =

1

J i
n,G

T̃ i
n,GT̃ i

n,G, (5)

where T̃ i
n,G is the mean-shifted version of T i

n,G. The eigen-

value decomposition of Ξi
n,G results in eigenvalues, α =

{αj}
Ji

n

j=1, and corresponding eigenvectors, ϕ = {ϕj}
Ji

n

j=1
.

After sorting α in descending order, we consider first two

ϕk, ϕl ∈ ϕ, corresponding to the top two eigenvalues,

αk, αl ∈ α, as most of the variation lies in these two com-

ponents. The final (normalized) feature vector is:

Θi
n,G = (βi

n,G,di
n,G,vi

n,G, ~i
n,G,mi

n,G,pi
n,G)T , (6)

where T denotes the transpose operator. Because of its

robustness to the scale variation, we use cross correlation

as proximity measure. For T
′i
n,G and T

′k
m,G in Ωn,m the

association matrix is calculated as:

AΩ(T̂ i
n,G, T̂ k

m,G) = ς(Θi
n,G,Θk

m,G), (7)

where, ς is the correlation function. A trajectory T̂i
n,G will

be associated to any trajectory T̂k
m,G for which it has max-
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Figure 6. Examples of conflicting situations in (top-left) p, (top-

right) m, (bottom-left) combined v and ~ and (bottom-right) d.
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Figure 7. An example of association conflict. (Top-left) four sam-

ple trajectories (see Fig. 3); (top-right) association results with two

trajectories (blue and green) have equal scores; (bottom) repre-

sentation of trajectories in each feature space with a marker color

maps to trajectory color (key; star:v; cross:m; triangle: β; circle:

p; square: ~); particular to v and ~ all trajectories coincide.

imum correlation i.e.,

DΩ = arg max
r

(AΩ(T̂ k
l,G, T̂ r

m,G)) ∀ Or
m ∈ Cm. (8)

It is noticed that individual features result in spurious as-

sociations as shown in Figure 5. There are number of con-

flict situations (examples are shown in Fig. 6), however, the

use of combined feature set reduces this number consider-

ably. However, still there are cases where multiple trajecto-

ries can correspond to a trajectory. Figure 7 demonstrates
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Figure 8. An example of trajectory fusion. (Left) matched trajecto-

ries from a pair of overlapping cameras (Fig. 3) and (right) Fusion

result.

such an example, where two out of three trajectories match

the input trajectory. In order to have single trajectory seg-

ment belong to a physical object in the overlapping region,

we need to resolve this conflict situation. For this, we per-

form matching in image-plane by reprojecting the matched

trajectories from the ground-plane. Suppose, trajectory seg-

ment T̂i
n,G can be associated to T̂k

m,G and T̂s
m,G (or even

more), we reproject the trajectories onto the image-plane

using H−1

n,G. Resampling is done in order to have equal

length trajectories and then standard Euclidean distance (d)

is employed as proximity measure. The trajectory is se-

lected for which the distance is minimum i.e.,

K = arg min
l

(d(T̂ i
n,G, T̂ l

m,G))∀ l = 1, ..., L, (9)

where L is the total number of matched trajectories on the

ground-plane.

3.3. Trajectory fusion

Once association is done, the next step is to fuse a pair of

corresponding trajectories in overlapping regions. To fuse

T̂i
n,G and T̂k

m,G, where both trajectories are generated from

the same object in real world, we use an adaptive weighting

method i.e.,

T̂ i,k
n,m,G(t) =





w1T̂
i
n,G(t) + w2T̂

k
m,G(t) inRn,m

T̂ i
n,G(t) inRn

T̂ k
m,G(t) inRm,

(10)

where Rn,m is the region where observations from both

T̂ i
n,G and T̂ k

m,G are available at t. Rn and Rm are the re-

gions where the observation is available from either T̂ i
n,G

or T̂ k
m,G, respectively. At each time t when the observation

from both trajectories are available, the trajectory segment

which has more track points is given higher weight than the

other; otherwise, we utilize the available observation from

one of the trajectories. The weights (wi : i = 1, 2) are

calculated as function of number of observations for each

trajectory:

w1 =
|T̂ i

n,G|

|T̂ i
n,G| + |T̂ k

m,G|
, w2 =

|T̂ k
m,G|

|T̂ i
n,G| + |T̂ k

m,G|
, (11)

4
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Figure 9. An example of trajectory linkage.

Figure 10. Trajectory segments accumulated over 500 frames from

the 4 partially overlapping cameras. (Left) configuration of the

cameras; (right) accumulated trajectory segments (segment’s color

corresponds to the camera’s color).

where |.| is the number of observations in a trajectory and

w1+w2=1. In order to have smoother overall trajectory to

avoid small fluctuations due to the observation’s gaps, we

apply a moving average approach where window size is set

to 5 observations.

Finally, to construct a complete trajectory across the en-

tire environment, we connect all segments that belong to

same object (see Fig. 9) i.e.,

T i
G =

κ⋃

i=1

χi, (12)

where κ is total number of connected regions. Also, χi

is the segment observed in overlapping region between

Cn and Cm and χi+1 is the segment observed in non-

overlapping region (i.e. only in Cm) and χi+2 is the seg-

ment observed in overlapping region between Cm and Cl.

In this way, a complete trajectory is constructed for cameras

Cl, Cm and Cn, whereby Cl and Cn are non-overlapping

by configuration.

4. Experimental results

We evaluate the performance of the proposed approach

on two real world datasets. The first dataset (S1) is an

indoor basketball video sequence, which consists of 500
frames (RGB 24 bit images at 25 frames/sec and 1200x1600
pixels), describing a scene simultaneously recorded by

4 cameras located at different viewpoints (see Fig. 10).

The second dataset (S2) is a more complex soccer match

footage, which consists of 3000 frames (RGB 24 bit images

at 25 frames/sec and 1920x1080 pixels), describing a scene

simultaneously recorded by 6 cameras located at different

viewpoints (see Fig. 11). In both datasets, the closeness of

players’ movement and similarity in team colors make the

association task even more challenging. When acquiring

Figure 11. Trajectory segments accumulated over 3000 frames

from the 6 partially overlapping cameras of Figure 3. (Left)

configuration of the cameras; (right) trajectory segments (color-

coded). Note the visibility of the limits of the fields of view of

each camera.

these sequences, no constraints were imposed on objects’

trajectories. Figure 12 and Fig. 13 show the complete global

trajectories of all the objects for both sequences. For both

datasets, we used visual data to generate the ground truth

for association, we perform objective evaluation of associa-

tion and fusion results using Recall (R) and Precision (P ).

R is the fraction of accurate associations to the true number

of associations. P is the fraction of accurate associations

to the total number of achieved associations. Let ξΩ be the

ground truth for pairs of trajectories on the overlapping re-

gion Ω and let EΩ be the estimated results. Then R and P
are calculated as:

R =
|ξΩ ∩ EΩ|

|ξΩ|
, (13)

P =
|ξΩ ∩ EΩ|

|EΩ|
, (14)

where |.| is the cardinality of a set.

We compare the performance of the proposed approach

with standard Dynamic Time Warpping (DTW) [5] (M1)

and two state-of-the-art approaches presented in [4] (M2)

and [7] (M3) in terms of P and R for both sequences. The

results are compiled in Table 1. The results show that the

proposed approach is better by 21% and 18% in R and P .

This implies that in complex datasets such as S1 and S2,

where objects are very close in time and space, trajectory

statistics help in better association. Furthermore, on aver-

age the proposed approach is better by 8% and 6% for R
and P respectively, compared to M2. Compared to M3, the

proposed approach outperforms it by 7% and 4% for R and

P , respectively. In particular, for dense segments’ regions

like Ω1,2, Ω3,4 and Ω3,4 in S2, it outperformed the other

two approach because of the more generic feature-set used

built-in verification method. On the other hand, M2 cov-

ers very limited features and lacking a procedure to resolve

conflict situations. This results in lower P and R scores.

Similarly, if the segments are too close on the image-plane,

they cannot be separated using the reprojection error crite-

rion. Therefore, M3 fails to distinguish the segments that in

fact belong to different physical objects exhibiting similar

5
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Table 1. Evaluation and comparison of trajectory association results on S1 and S2.

S1 S2
Ω1,2,3,4 Ω1,2 Ω3,4 Ω5,6 Ω1,3 Ω2,4 Ω3,5 Ω4,6 Average

Algorithm R P R P R P R P R P R P R P R P R P

M1 .75 .83 .60 .70 .76 .85 .73 .78 .71 .87 .72 .76 .68 .80 .73 .71 .71 .79

M2 .95 .93 .80 .90 .88 .90 .81 .98 .90 .90 .82 .96 .82 .90 .78 .81 .84 .91

M3 1.00 1.00 .76 .81 .81 .92 .78 .99 .89 .92 .84 .97 .87 .96 .82 .85 .85 .93

Proposed 1.00 1.00 .96 .98 .95 1.00 .96 1.00 .93 .95 .85 .98 .87 .98 .82 .85 .92 .97

Figure 12. Trajectory association and fusion results across the

cameras of S1. Each complete trajectory is shown with different

color.

Figure 13. Trajectory association and fusion results across the

cameras of S2. Each complete trajectory is shown with different

color.

motion patterns. However, for lower density regions (see

S1) both the proposed approach and M3 produces similar

results and outperform M2. The results show that on these

real world dataset, the proposed approach works accurately

for association in both dense and sparse regions.

5. Conclusions

We addressed the problem of trajectory association

across partially overlapping cameras in an unsupervised

fashion, without imposing constraints on the camera place-

ment. Local trajectory segments from each camera are

projected on a common ground-plane. Multiple spatio-

temporal features are then analyzed to find the degree of

proximity among the trajectories. The matching is verified

via ground-plane to image-plane reprojections.

The proposed approach generates a complete trajectory

belonging to a physical object in an unsupervised way with-

out requiring learning (a computationally complex process)

of motion parameters. We tested the performance of the

proposed approach on two real world datasets and found

that it outperforms by at least of 4% in precision and 8% in

recall state-of-the-art approaches.

Our current work includes employing application-

domain information to identify and understand the events

of interest from common patterns.
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