
INT. J. CONTROL, 1989, VOL. 50, No.5, 1699-1715

Trajectory control of a non-linear one-link flexible arm

ALESSANDRO DE LUCAt and BRUNO SICILlANOt

The trajectory-tracking control problem is considered for a one-link flexible arm
described by a non-linear model. Two meaningful system outputs are chosen;
namely, the joint angle and the angular position of a suitable point along the link.
The common goal is to stiffen the behaviour of the flexible link with respect to the
chosen output. Based on the input-output inversion algorithm, a state-feedback
control law is designed that enables exact tracking of any smooth trajectory specified
for the output. In the closed loop an unobservable dynamics naturally arises, related
to the variables describing the arm's distributed flexibility. Joint-based design is
shown to be always stable, whereas in the link-point design the closed-loop
dynamics may become unstable depending on the location of the output along the
link. Open- versus closed-loop strategies are developed and compared. Extensive
simulation results are included.

I. Introduction
Robots are typically asked to perform continuous tasks such as arc welding, spray

painting, laser cutting and deburring. These applications demand that the robot
controller be capable of accurately reproducing pre-planned smooth trajectories
(Engelberger 1980). This accuracy is guaranteed by current industrial robots at the
expense of a rigid and massive mechanical design.

Recently, the adoption of lightweight flexible arms has been proposed as offering
potential benefits like increased payload-to-arm ratio, faster executable motions and
lower energy consumption (Book 1984). In spite of these advantages, the control
problem of robots having flexible members becomes much more complex. If high
performance is desired, an accurate dynamic model is strictly required by the
controller.

Most of the existing control approaches use classical methods based upon linear
models, either for designing a regulator around a target point (Hastings and Book
1985, Cannon and Schmitz 1986) or for performing trajectory tracking (Bayo 1987).
Other works utilize non-linear models and different approximate control techniques
such as adaptive control (Siciliano et al. 1986), pseudo-linearization (Nicosia et al.
1989) or singular perturbation (Siciliano and Book 1988).

For rigid non-redundant robot arms, it is known that the controlled variables may
be equivalently defined both in the task space and in the joint or actuator space (Craig
1986). On the other hand, establishing the control objectives to be pursued in the case
of flexible arms is a critical issue. One might be interested in regulating the end-point
around a final position, or in tracking joint trajectories while limiting arm deflections,
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1700 A. De Luca and B. Siciliano

or even in driving the end-point along a feasible path. Therefore, the system output
has to be chosen according to the specified control goal.

In this paper, a non-linear control law is designed using the input-output
inversion algorithm (Hirschorn [979) in order to achieve exact trajectory tracking for
a certain class of outputs. Similarly to most of the contributions in the field, the
proposed control method is developed for the one-link flexible arm as a first step
towards general multi-link arms. In any case, the non-linear dynamic terms are here
explicitly taken into account in the model.

ln particular, two alternative system outputs are considered for trajectory
tracking. A first natural choice is the joint angle, similar to the rigid-arm case. A
second possibility is to pick up a suitable point along the flexible link and choose as
output its angular position with respect to a fixed reference frame.

The inversion approach was first used by Singh and Schy (I 984) for rigid-arm
control and it corresponds to the well-known computed torque method of Bejczy
(1974). The same technique has also been applied successfully to robot arms with
elasticity concentrated at the joints (De Luca 1988). The most relevant result of using
inversion-based feedback control for these two classes of robot arm is the equivalence
of the obtained closed-loop system to a linear and decoupled one, i.e. to strings of
input-output integrators.

However, when the same technique is applied to flexible arms, the full linearization
property is lost. In the closed loop, a subsystem arises which becomes unobservable
and possibly non-linear. As a matter of fact, this subsystem describes the behaviour of
the elastic variables associated with the arm deformation. Its dynamic characteristics
depend on the particular output chosen and stability has to be ensured in order to
validate the overall control design. [f this is the case, it can be concluded that the
flexible link has been stiffened under feedback with respect to that output.

It will be shown that when the output is chosen to be the joint angle, the c1osed
loop dynamics is always stable (De Luca and Siciliano 1988). The same result does
not necessarily hold when selecting as output the angular position of a point along the
link. In that case, it will be possible to find that particular location on the arm beyond
which the inversion-based technique for trajectory reproduction leads to an unstable
design, as suggested by De Luca el al. (1988). Thus, in general, end-point trajectories
cannot be tracked exactly without going unstable.

Two possible implementation schemes of the eontrollaws obtained via the system
inversion technique are developed. A closed-loop strategy requires non-linear static
feedback from the full state of the arm. On the other hand, pre-computation of open
loop torques driving the output angle on a given trajectory asks for the off-line
integration of a reduced-order dynamic system. This yields the behaviour of the arm
deflection associated with the desired output trajectory.

The paper is organized as follows. Section 2 presents the dynamic equations of a
one-link flexible arm modelled using the assumed mode technique. In § 3, open- and
closed-loop joint-based control laws are derived and their stability properties are
briefly analysed. The tracking controller for the angular position of a point on the link
is developed in § 4. Section 5 contains the results of a simulation study that allows for
a comparison of the above control strategies on the basis of the induced end-point
deflections. Conclusions are drawn in the final section.

2. Dynamic model of the flexible link
The one-link flexible arm of Fig. 1 is considered. The arm moves on a horizontal

plane and does not undergo torsional deformations. The link is modelled as an
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Trajectory control of non-linear flexible arm

Figure I. One-link flexible arm.

1701

Euler-Bernoulli beam having the equation

Ela4w(~, t) + AL4a2w(~, t) = 0
a~4 p at 2

where ~ = '1/L is the normalized position along the link of lerrgth L, A is the link cross
sectional area and I its inertia, E is the Young's modulus of the material and pits
uniform density. Assuming separability in time and space, i.e.

w(~, r) = 4>( ~).5( r)

modal analysis gives the following general solution (Meirovitch 1967)

(34 EI
.5(t) = exp (jwt) w 2 = -L4pA

4>W = C 1 sin ({3~) + C 2 cos ({3~) + C3 sinh ({3~) + C4 cosh ({3~)

The boundary conditions to the problem specify an infinite set of admissible values for
the parameter (3, each of which determines an associated eigenfrequency w of the
beam.

The following clamped-mass boundary conditions are imposed on the eigenfunc
tion 4>(~):

clamped:

mass:

d24>(~)1 _ J L{34 d4>WI
----;[[2 ;~ 1 - pAL3 T ;~ [
d34>(~) I M L{34
~;~l = - pAL 4>WI;~1

where MLand J L are, respectively, the load mass and the load inertia. The clamped
conditions at the joint yield

C3=-C, C4=-C2

while the mass conditions at the end-point lead to

[Q({3)] [ ~:J = 0
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1702 A. De Luca and B. Siciliano

where the so-called frequency equation is given by setting to zero the determinant of
the 2 x 2 matrix Q(P). It can be shown that the positive values of f3 are given by the
solutions of the transcendental equation

(1 + cos f3 cosh f3) - Mf3(sin f3 cosh f3 - cos f3 sinh f3)

- Jf33(sin f3 cosh f3 + cos f3 sinh f3) + MJf34( I - cos f3 cosh f3) = 0

where M = MdpAL and J = JdpAe.
By considering a finite number m of modal terms, the dynamic equations for the

one-link flexible arm are derived following a lagrangian approach (Siciliano and Book
1988) in the form

[OJ [n I (8, 15, 6)J [ 0 J [UJ
8(15) ~. + n2(8, b) + Kb + F6 = 0

where (J is the joint variable, 15 = [15 1 .•• b..]T is the vector of modal amplitudes, and
U is the control torque at the joint location.

The elements bij of the positive-definite symmetric inertia matrix 8(15) take on the
expressions below, which are valid when clamped-free modes are used in the presence
of a tip payload. Similar expressions hold if a mismatch exists between the actual and
the assumed boundary conditions at the tip:

b l l (b) = Jo+ JL + M LL
2+ 10 + ML(<I>~b)2

b1j= MLL<pj-I .• + JL<Pj-I .•+uj _ l , j=2, ... ,m+ I

bii = mb+ M L4>r-l.e + JL4>?- J ,e' i = 2, ... , m + 1

with

<I>~ = <l>TI~= I = [<PI··· <P..] I~~ 1 <Pi. = <pim I~= I

(<I>' )T= [A.' A.' ] A.~ = d<pi( ~) I
c 'Pie ... '+'me 'PIC d!'

~ ~~ I

ui = pAL2l' <Pim~d~ i= I, ... ,m

where mb is the link mass, lois the joint actuator inertia, and J 0 is the link inertia
relative to the joint.

The non-linear terms n l and n2 can be computed by differentiation of the elements
of the inertia matrix and represent Coriolis and centrifugal terms:

n l (8, 15, 6) = 2ML8(<I>~ b)(<1>~6)

n2(8, b) = -ML82(<I>.<I>~)b

K is an equivalent-spring constant matrix

F is a damping matrix

F = diag {II' ...,J..}
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Trajectory control of non-linearflexible arm 1703

which accounts for the internal viscous friction in the flexible structure. It should be
mentioned that the enhancement of such a passive damping is a feasible alternative to
active modal control (Book et al. 1985).

Notice that no control input appears in the left-hand side of the lower m dynamic
equations, as a result of the clamped assumption for the flexible link. Also, the arm
model is independent from the joint angle value e, owing to the symmetry of system
dynamics around the joint axis.

In the following, the inverse D(o) of the system inertia matrix will be used. 8(0) can
be conveniently partitioned into four blocks

[

b l l (0)
8(0) =

8 1 2

with 8 2 2 of order m x m. Accordingly, the inverse can be written explicitly as

[
dll (O) DT2(0)]

D(o) = 8- 1(0) =
Ddo) D22(o)

with

and

3. Joint-based inversion control
Once a scalar output Y is associated with the flexible-arm system, the input torque

II that is capable of exactly reproducing a given trajectory Yd(t) can be derived by
means of system-inversion techniques. A joint-based strategy is pursued first. The
derivation of the control law in this case follows directly from (De Luca and Siciliano
1988). The output is chosen as

y=e

Applying the inversion algorithm of Hirschorn (1979), it is easy to see that the input II

explicitly appears in the second derivative of the output function

j; = d11 (0)[11 - n l (Ii, 0, D)] - DT2(0)[n 2(IJ, 0) + xs+ FD]

Since d1 1 (0) *0 always, this is true no matter what flexible arm is considered or how
many modes are assumed.

Let a = a(t) be the desired output acceleration. Then, the input-output linearizing
control torque can be obtained by setting

y=a

in the above equation. Solving for II gives
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1704 A. De Luca and 8. Siciliano

The input torque u· is the one that 'stiffens' the motion of the flexible arm at the
joint location, ensuring the tracking of any desired output trajectory. Indeed, exact
reproduction is guaranteed only if the trajectory is of class C' (i.e. with, at most, step
discontinuities in acceleration) and if there is matching with the initial conditions, in
this case with joint position and velocity. Otherwise, only asymptotic tracking is
obtained.

The above control law can be implemented in an open- or in a closed-loop scheme.
Assume that a desired smooth joint trajectory e= eAt) has been given, together with
its time derivatives.

3.1. Open-loop control
In this scheme set

D= Dd(t) a = (J~(t)

The control u· is not completely specified by these identities, since knowledge of b(e)
and ~(e) is still needed. This is essentially different from the case of rigid arms, where
assigning the behaviour to the joint variables uniquely determines the required torque
inputs. Here, a dynamic generator has to be set up to recover the time evolution of the
elastic coordinates b. Plugging the expression for u· into the dynamic equations and
replacing the joint variables by their desired values gives

S= - 8 22
1 [812(J~ + n2(Od, b) + Kb + F~J

The off-line integration of these m second-order differential equations, starting from
(b(O), ~(O)), yields the desired time evolutions (b.tt), bd(e)). If the above dynamics were
unstable, the whole process of generation of the open-loop torque would be
unfeasible. Note that these differential equations are linear time-varying ones and can
be rewritten in state-space format as

with

A21(Od) = - 822' [K - Ml.DJ(cI>,<I>~)]

A22= -822
1 F b2((J~) = -822' 8'2(}~

The resulting open-loop torque to be applied at the joint is then

To gain some robustness at low expense, a linear feedback can be used in addition to
this reference torque signal. A proportional derivative (PO) controller on the joint
trajectory error is properly designed as

lt is worth remarking that this kind of control law does not require any measurement
of arm deflection.
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Trajectory control of non-linear flexible arm 1705

3.2. Closed-loop control

In this case u* is computed by feeding back the full state (0, 0, <5, b) of the flexible
arm. The resulting closed-loop system equations are given by

li=a .1'=0

S· = - Bi} [B 1 2 a + n2 (0, <5) + K<5 + Fb]

The input-output relation from the external reference a to the joint angle 0 is now
linear, as a result of the inversion control law u* chosen. The behaviour of this
input-output double integration path can be suitably shaped by choosing

a= IJ~ + kv(ed- e) + kp(Od - 0)

with kp > °and k;» 0. The closed-loop control results in

UCL.PD= u*(IJ~, e, <5, b) + d
1

1\<5) [kp(Od - 0) + kv(ed- en
Once this feedback control has been applied, an unobservable part related to the

dynamics of the elastic variables <5 arises (see also Fig. 2). The stability of this 'sink'
plays a crucial role in the proposed control design. In particular, one is interested in
the dynamic behaviour of the elastic variables when the trajectory is completed. This
describes the way arm vibrations damp out about the final trajectory point, and thus
accounts for the positional accuracy of the arm tip.

Figure 2. Closed-loop inversion control.

The study of the dynamics of the unobservable part in these conditions is closely
related to the so-called 'zero-dynamics' of the given non-linear system (Isidori and
Moog 1987). Setting .1'(1) == 0 for all times implies y= e=°and y= a = 0. Replacing
these values into the closed-loop dynamics of <5 gives

S·= -B221 [n 2(0, <5) + K<5+ Fb] = -B221[K<5 + Fb]

using the fact that "2 is quadratic in the joint velocity. Note that the internal arm
dynamics associated with a constant zero value of the joint output becomes linear too.
When F = 0, since K and B2 2 are positive-definite matrices, the 2m eigenvalues are all
complex pairs located on the imaginary axis and the system is critically stable. As
soon as some passive damping is present, i.e. F > 0, these closed-loop roots move to
the open left half-plane and asymptotic internal stability is obtained.

The above analysis holds only at the terminal point of the trajectory. Indeed, the
elastic deflections must also be kept limited during point-to-point motion in order to
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1706 A. De Luca and B. Siciliano

avoid too much stressing of the beam. Note that the deflected configuration of the arm
at the end of the trajectory provides the initial conditions for the above linear
differential equations governing the residual oscillatory behaviour.

In general, it is quite difficult to extract accurate information about structural
damping. Thus, it is reasonable to drop the term F8 from the control law u·. The
resulting closed-loop system will be described by

li=a-Di2(0)FJ

tJ= -B;}[Bi2a + n2(0, 0) + Ko] - Ddo)F8

It follows that exact tracking of joint trajectories is no longer guaranteed. The actual
trajectory will typically lag behind the desired one by a small amount depending on
the modal damping coefficients in F. However, the stability properties are preserved.

4. Inversion control for a point along the arm
Necessitated by moving towards end-point trajectory tracking, inversion control

is investigated next for stiffening the motion of a suitable point along the arm. In fact,
there may exist a continuous range of points along the structure, other than just the
joint location, for whieh a smooth trajectory can be exactly reproduced in a stable way
(De Luca et al. 1988).

The angle ex formed by a generic point along the arm with the reference frame can
be expressed in parametric form with respect to 1'/ as (Fig. I)

ex(l'/) = 0 + arctg (w~I'/))

For small deflections, the output can be defined as the linearized version of ex, i.e.

It is worth noting that this parametrization is a convenient one, since for 1'/ = 0 the
joint-based strategy of the previous section is recovered, owing to the clamped
boundary conditions

lim w(l'/) = 0
.-0 1'/

Conversely, for 1'/ = L, a true end-point strategy is obtained.
Applying the inversion algorithm with this output and following the same steps as

in the previous case gives

.. [ <1JT(I'//L) ] .
Y= s.. (0) + 1'/ Ddo) [u -", (0,0, J)]

- [Di2(0) + <1JT(~/L) D22(0)}n2(1:i, 0) + xs+ FD]

The input-output linearizing control is computed as
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Trajectory control of non-linear flexible arm 1707

x [a + (DT 2(<5) + <t>T(~/L) D22 (<5)}n2 (8, <5) + K<5 + F6)]

=u:(a, Ii, <5, 6)

where ais the new control variable. As before, u: can be implemented either in an
open- or in a closed-loop fashion, with the possible addition of a PO action to increase
robustness. Under the above control law, the system equations in the new coordinates
(y, <5) become

ji=a

. B22' .
J = - r('1) [B12a + n2(Y' <5, <5) + K<5 + FD]

with

<t>T('1/L) -1
r('1) = 1 - B22 B 12

'1

which can be obtained after some handy algebraic manipulations.
The stability of the sink, i.e. of the flexible equations, has to be investigated with

respect to the parameter '1 E [0, L]. This eventually determines the range of points
along the link whose dynamic behaviour can be stiffened. Restricting the study to a
local analysis around a given arm configuration, the zero-dynamics is described by

J" = - :{;; [K<5 + F6]

The sign of the scalar function r('1) plays a crucial role in the evaluation of the
stability properties. Note that r(0) = I, from which the stability of the joint-based
design is again implied. This suggests seeking that value '1. at which r vanishes for the
first time. Then, choosing as output a point on the arm at a location '1 in the range
[0, '1*) guarantees a stable tracking design.

It can be argued that beyond this critical point, application of inversion-based
control laws leads to unstable closed-loop behaviour. In the non-linear setting, this is
equivalent to the well-known case of non-minimum phase zeros (Chen 1984) that
prevent inversion of linear transfer functions. As a consequence, the design of a
controller capable of exactly reproducing any smooth trajectory for the arm tip may
generally lead to instabilities. This is the case, for instance, in the experimental results
reported by Cannon and Schmitz (1986).

5. Simulation results
The above inversion control laws have been simulated using a two-mode model of

the one-link flexible arm existing in the Flexible Automation Laboratory at the
Georgia Institute of Technology. An experimental validation of the model was made
by Hastings and Book (1985). In particular, it was found that only two modes are
relevant in this case. The arm is 4 ft long and its first two eigenfrequencies are at 2·12
and 14·3 Hz. The equivalent spring coefficients associated with the two assumed
modes are k , = 5·54 and k2 = 198·56Ibfft- l

.

The desired output trajectory specifies an angular motion from y(O) = 0 to
y(T) =90deg, with a velocity profile Yd(t) =(90/T)[I-cos(360t/T)] degs- I

, where
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1708 A. De Luca and B. Siciliano

T = 2 s. The simulations run for four seconds, with a sampling time of one millisecond.
This sampling time is estimated to be long enough to perform in real-time the compu
tations required by the most complex of the above controllers. A PO output feedback
action is introduced in all simulations with gains chosen as k, = 2500, k; = 100, cor
responding to a critical response with a double pole at - 50.

The conventional PD co-located joint controller was tested first and its tracking
performance is shown in Figs 3 and 4. A feedforward acceleration term was then
added, which resulted in an order-of-magnitude improvement in the joint tracking
(Fig. 5). No significant differences occurred for the end-point tracking, however.

The non-linear inversion-based controllers were applied next. Figures 6 and 7
illustrate the results with the closed-loop control UCL•PD in the case of no passive
damping (F = 0). The desired joint trajectory is accurately reproduced (0'006 deg as
maximum error) with a remarkable improvement in the steady state. The arm tip still
oscillates around the final point by less than 0·01 ft; its time evolution does not
substantially differ from the one in Fig. 4, and is therefore omitted. Note that some
control effort is also present after T = 2 s (Fig. 7), and is needed for keeping the joint
angle at its desired final value.

Figures 8 and 9 relate to a doubling in value of the load parameters MLand JL'

Some ripples are present in the joint-position error, but the achieved result indicates
the robustness of the control scheme with respect to these variations.

The open-loop control UOL•PD has been evaluated for the nominal plant. Although,
in this case, the joint maximum error is doubled and the joint angle keeps on
oscillating even after T= 2 s (Fig. 10), the end-point error is practically the same as in
the closed-loop scheme. In addition, the required torque input is very similar. Thus, a
cheap implementation of the proposed inversion control law, with no use of deflection
measures, is a feasible alternative.

Passive damping in the structure is introduced next with Ii = 0'2(ki ) ['2, i = 1,2,
although this is not compensated in the control law. The benefits are apparent from
Figs 11 and 12, which refer to closed-loop control with the same doubling of load
parameters as above. A small delay in the tracking of the joint trajectory can be
recognized. On the other hand, oscillations in the tip position vanish immediately
after the completion of the joint trajectory. In the case of open-loop control, passive
damping also has positive effects.

In order to implement inversion-based control for a point along the arm, the
assumed-mode shapes of the beam have been computed (Fig. 13). These are essential
in determining the range of points that lead to a stable design. Figure 14 shows the
distribution of angular accelerations experienced by the arm points at time t = O. The
first node occurs at 0·934 ft, which is exactly the value of '1* zeroing the function f('1).

The points from 0·934 to 3-650 ft are clearly in the opposite phase to the commanded
input signal. Note that points in the final range again possess positive angular
acceleration, displaying a typical whipping effect. Incidentally, it can be shown that
attempting to apply inversion control to such points produces closed-loop
insta biIities.

On the basis of the previous analysis, the output has been chosen at '1= 0·9 ft. The
results of Figs 15 and 16 demonstrate the effectiveness of the closed-loop inversion
control strategy; angular tracking is satisfactory while the maximum end-point
tracking error is halved with respect to the joint-based strategy. The input torque in
Fig. 17 is evidence of the control effort after T = 2 s necessary to maintain the output
at the final target.
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Trajectory control of non-linear flexible arm

Figure 3. PO control (joint error x 10- 2 deg).

Figure 4. PO control (x-component of end-point error x 10- 2 ft).

Figure 5. PO control with acceleration feedforward (joint error x 10- 3 deg).
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1710 A. De Luca and B. Siciliano

Figure 6. Closed-loop inversion control (joint error x 10- 3 deg).

Figure 7. Closed-loop inversion control (input torque: ft lb).

Figure 8. Closed-loop inversion control with double load (joint error x 10- 3 deg).
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Trajectory control of non-linear flexible arm 1711

Figure 9. Closed-loop inversion control, double load (x-component of end-point error
x 10- 1 ft).

Figure 10. Open-loop inversion control (joint error x 10- 3 deg).

Figure II. Closed-loop inversion control with double load and F> 0 (joint error x 10- 3 deg).
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1712 A. De Luca and B. Siciliano

0.0 1.0 2.0 3.0 4.0

Figure 12. Closed-loop inversion control with double load and F> 0 (x-component of end
point error x 10- 2 ft).

Figure 13. First and second assumed modes shape profiles (x-axis: ft).

Figure 14. Angular acceleration of the points along the arm at time I =0 (x-axis: ft).
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Trajectory control of non-linear flexible arm 1713

0.0 1.0 2.0 3.0 4.0

Figure 15. Closed-loop inversion control for a point along the arm with ~ = 0·9 ft (angular
output error x 10- J deg).

0.0 l.0 2.0 3.0 to

Figure 16. Closed-loop inversion control for a point along the arm with ~ = 0·9 ft
(x-component of end-point error x 10- 2 ft).

0.0 l.0 2.0 3.0 4.0
Figure 17. Closed-loop inversion control for a point along the arm with '1 = 0·9 ft (input

torque: ft Ib).

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
B
l
a
c
k
m
o
r
e
,
 
R
o
b
e
r
t
]
[
i
n
f
o
r
m
a
 
i
n
t
e
r
n
a
l
 
u
s
e
r
s
]
 
A
t
:
 
1
5
:
3
4
 
2
2
 
A
p
r
i
l
 
2
0
0
9



1714 A. De Luca and B. Siciliano

Finally, it is interesting to examine the behaviour of the system under closed-loop
inversion control for an output chosen in the range of out-of-phase points. For
" = 2 ft, it can be seen from Fig. 18 that the angular error diverges within 5 per cent of
the total trajectory time, and so does the input torque in Fig. 19. This can be adduced
to the internal instability of the system.

~

0;;
0.0

J
D.B

Figure 18. Instability of the closed-loop inversion control for a point along the arm with
'1= 2·0ft (angular-output error during the first 0·\ s).

0.0 O.B

Figure 19. Instability of the closed-loop inversion control for a point along the arm with
'1 = 2·0ft (input torque during the first 0·1 s).

6. Conclusions
Inversion-based controllers have been designed for tracking output trajectories of

a one-link flexible arm. It has been shown that any assigned smooth joint trajectory
can be exactly reproduced for matched initial conditions. Closed-loop and open-loop
schemes have been proposed. If an accurate dynamic model is available, open-loop
computation of joint torque plus a linear PO joint-trajectory controller yields
satisfactory results. The presence of passive damping considerably improves the
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Trajectory control of non-linear flexible arm 1715

steady-state performance of the above controllers. Although the development has
been carried out for a single flexible link, it is possible to extend the joint-based
approach to the multi-link case (De Luca and Siciliano 1989).

An alternative strategy has been investigated that allows for the trajectory control
of a range of angular outputs defined along the link. Using inversion techniques, it has
been shown that the motion of suitable link points can be stiffened; a reduction of end
point deflections has been observed. A proper parametrization of the system output is
crucial in discriminating between points leading to stable or to unstable design. As a
result, limited confidence should be given to the exact reproduction of end-point
trajectories using only inversion techniques. It is believed, however, that the method
could serve as a powerful design tool for flexible arms.

REFERENCES
BAYO, E., 1987, A finite-element approach to control the end-point motion of a single-link

flexible robot. Journal of Robotic Systems, 4, 63- 75.
BEJCZY, A. K., 1974, Robot arm dynamics and control. TM 33-669. Jet Propulsion Laboratory,

California Institute of Technology, Pasadena, California.
BOOK, W. J., 1984, New concepts in lightweight arms. Proceedings of the 2nd International

Symposium on Robotics Research, Kyoto, Japan, pp. 203-205.
BOOK, W. 1., DICKERSON, S. L., HASTINGS, G., CETIKUNT, S., and ALBERTS, T, 1985, Combined

approaches to lightweight arm utilization. Proceedings of the A.S.M.E. Winter Annual
Meeting, Miami, Florida, pp. 97-107.

CANNON, R. H., JR, and SCHMITZ, E., 1986, Initial experiments on the end-point control of
flexible one-link robot. International Journal of Robotics Research, 3 (3), 62-75.

CHEN, C. T, 1984, Linear Systems Theory and Design (New York: Holt, Rinehart, and Winston).
CRAIG, J. J., 1986, Introduction to Robotics: Mechanics and Control (Reading, Mass: Addison

Wesley).
DE LUCA, A., 1988, Dynamic control of robots with joint elasticity. Proceedings of the I.E.E.E.

International Conference on Robotics and Automation, Philadelphia, Pennsylvania,
pp. 152-158.

DE LUCA, A., LUCIBELLO, P., and ULlVI, G., 1988, Inversion techniques for open- and closed
loop control of flexible robot arms. Proceedings of the 2nd International Symposium on
Robotics and Manufacturing Research, Albuquerque, New Mexico, pp. 529-538.

DE LUCA, A., and SICILIANO, B., 1988, Joint-based control of a nonlinear model of a flexible
arm. Proceedings of the American Control Conference, Atlanta, Georgia, pp. 935-940;
1989, Inversion-based nonlinear control of robot arms with flexible links. A.I.A.A.
Journal of Guidance and Control, submitted for publication.

ENGELBERGER, 1. F, 1980, Robotics in Practice (London: Kogan Page).
HASTINGS, G. G., and BOOK, W.1., 1985, Experiments in optimal control of a flexible arm. Pro

ceedings of the American Control Conference, Boston, Massachusetts, pp. 728- 729.
HIRSCHORN, R. M., 1979, Invertibility of multivariable nonlinear control systems. I.E.E.E.

Transactions on Automatic Control, 24, 855-865.
ISIDORI, A., and MOOG, C. H., 1987, On the nonlinear equivalent of the notion of trans

mission zeros. Modeling and Adaptive Control, edited by C. I. Byrnes and K. H.
Kurszanski (Berlin: Springer-Verlag).

MEIROVITCH, L., 1967, Analytical Methods in Vibrations (New York: Macmillan).
NICOSIA, S., TOMEI, P., and TORNAMBE, A., 1989, Nonlinear control and observation algorithms

for a single-link flexible robot arm. International Journal of Control, 49, 827-840.
SICILIANO, B., and BOOK, W. J., 1988, A singular perturbation approach to control of light

weight flexible manipulators. International Journal of Robotics Research, 7 (4), 79-90.
SICILIANO, 8., YUAN, B. S., and BOOK, W. 1., 1986, Model reference adaptive control of a one link

flexible arm. Proceedings ofthe 25th I.E.E.E. Conference on Decision and Control, Athens,
Greece, pp. 91-95.

SINGH, S. N., and SCHY, A. A., 1984, Robust torque control of an elastic robotic arm based
on invertibility and feedback stabilization. Proceedings of the 24th I.E.E.E. Conference
on Decision and Control, Las Vegas, Nevada, pp. 1317-1322.

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
B
l
a
c
k
m
o
r
e
,
 
R
o
b
e
r
t
]
[
i
n
f
o
r
m
a
 
i
n
t
e
r
n
a
l
 
u
s
e
r
s
]
 
A
t
:
 
1
5
:
3
4
 
2
2
 
A
p
r
i
l
 
2
0
0
9


