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Anovelmission concept based on ahybrid low-thrust propulsion system is proposed anddiscussed.A solar electric

propulsion thruster is coupled with an auxiliary system providing an inverse square radial thrust. In this way the

spacecraft is virtually subjected to a reduced gravitational solar force. The primary purpose of this paper is to

quantify the impact of the reduced solar force on the propellant consumption for an interplanetary mission. To this

end the steering law that minimizes the propellant consumption for a circle-to-circle rendezvous problem is found

using an indirect approach. The hybrid system is compared with a conventional solar electric thruster in terms of

payload mass fraction deliverable for a given mission. A tradeoff between payload size and trip time is established.

Nomenclature

A = sail area
fm = auxiliary function [see Eq. (26)]
H = Hamiltonian
H0 = Hamiltonian that explicitly depends on the control

vector
J = performance index
m = mass
r = sun–spacecraft distance
T = thrust
t = time
u = radial velocity
u = control vector
v = circumferential velocity
vc = circular velocity
ve = electric thruster exhaust velocity
vesc = escape velocity
x = ratio between the orbital radii
� = electric thruster direction angle
�� = dimensionless sail loading
~�� = weighted dimensionless sail loading
�V = total variation of velocity
� = ratio of the auxiliary system thrust force to the solar

gravitational force
� = polar angle
� = adjoint variable
� = gravitational parameter
� = sail loading
� = electric thruster switching parameter
�a = solar sail switching parameter
� = sail optical efficiency

Subscripts

a = auxiliary
e = solar electric propulsion system
f = final
max = maximum
pay = payload
prop = propellant

sail = sail assembly
0 = initial
* = critical
� = sun
♀ = Venus
♂ = Mars

Superscripts

� = time derivative

Introduction

N EW mission concepts are increasingly considering the use of
low-thrust propulsion for efficient navigation in deep space.

The employment of low-thrust propulsion technologies is especially
interesting for those missions requiring large changes in orbital
energy [1,2]. The closely related problem of trajectory optimization
is also highly attractive from a theoretical viewpoint due to the
inherent difficulties in finding optimal trajectories characterized by
continuous thrust over long time periods.

Several deep-space missions have been identified that can be
performed using solar electric propulsion (SEP) so as to significantly
reduce the total mission costs. These missions include Venus surface
sample return, Saturn ring observer, Titan explorer, Neptune orbiter,
and various Mars sample return options [3]. Other low-thrust
propulsion systems, such as solar sails and minimagnetospheric
plasma propulsion, have been considered for primary propulsion
systems in interplanetary missions, for example, see [4,5].

The choice among the different propulsion concepts is driven by
various mission requirements and constraints, among which the total
mission cost has a central role. The purpose of this paper is to
investigate the potentialities introduced by integrating two different
low-thrust propulsion concepts and to highlight the tradeoff between
costs and flight time.

The starting point of our analysis is that heliocentric transfers
could benefit from a reduced gravitational solar force acting on the
spacecraft. In a recent paper McInnes [6] introduced the concept of
generalized orbits, that is, orbits obtained through a modulated
inverse square radial thrust. In essence, the idea consists of studying
the motion of a spacecraft under the effect of a gravitational force
whose magnitude is reduced with respect to the solar gravity. The
size of this reduction, quantifiable through a dimensionless
parameter that will be referred to as �, is, to some extent, variable and
capable of being modulated as a function of time. With such a model
different families of orbits can be generated, and the problem of
calculating open escape orbits and transfers between circular
coplanar orbits can be approached.

The maximum orbit radius attainable using an inverse square
radial thrust is r� r0=�1 � �max� [6], where �max is the maximum
value of �. There are at least two types of low-thrust propulsion,
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namely, solar sail and minimagnetospheric plasma propulsion, that
can generate thrust-induced forces varying as the inverse square of
the heliocentric distance. For both propulsion types, however, the
current and near term technology can guarantee only small � values.
Assuming for instance �max � 0:5 (which is well beyond the current
technology), the maximum orbit radius attainable using an inverse
square radial thrust is only 2r0. This result substantially limits the
practical applicability of such a transfer technique, the more so for
escape orbits.

For these reasons we investigate a hybrid low-thrust propulsion
(HLTP) system in which a system capable of providing an inverse
square radial thrust is coupled with a SEP system. The idea of
combining different low-thrust propulsion systems has been
introduced by Leipold and Götz [7]. In their preliminary study [7],
the HLTP concept was used to assess the feasibility of the idea and
roughly estimate the performance enhancements, in terms ofmission
time, of a solar sail combined with a SEP system with respect to a
pure solar sail.

The primary purpose of this paper is to systematically quantify the
impact of the control parameter � on the propellant consumption for a
transfer circle-to-circle problem. To make a meaningful comparison
between a HLTP and a conventional SEP system, these two options
are compared in terms of payload mass fraction deliverable for a
given mission. Also, the tradeoff between payload size and trip time
is established.

Quasi-Hohmann Transfer

To better appreciate the potentialities of a hybrid propulsion
system, we begin our discussion by considering a biimpulsive
transfer between circular coplanar orbits for a spacecraft with an
auxiliary inverse square radial thrust, capable of providing a constant
value � � �max < 1. In particular, we investigate the mission
performance, in terms of required �V and transfer time tf, for an
elliptical transfer orbit tangent to both the initial and final circular
orbits with radii r0 and rf, respectively. This analysis extends the
familiar Hohmann results to a quasi-Hohmann transfer, charac-
terized by a spacecraft subject to a gravitational attraction equal to
�1 � �max� times that it would experience without the presence of the
auxiliary propulsive system.

Introducing the ratio x≜ rf=r0 between the two orbital radii, the
energy equation yields

�V��������������
��=r0

p � sgn�x � 1�
�
�x � 1�

������������������������
2�1� �max�
x�x� 1�

s
� 1���

x
p � 1

�
(1)

where sgn��� is the signum function. The flight time divided by the
parking orbit period is equal to one-half the transfer orbit period and
is given by [6]

tf

2	
��������������
r30=��

p �
���������������������������
�1� x�3

32�1 � �max�

s
(2)

Figure 1 shows that the�V saving with respect to a case without an
auxiliary propulsion system (�max � 0) is an increasing function of
�max. Correspondingly, the mission time tends to increase as �max

grows large. Figure 2 specializes the preceding results for an Earth–
Venus and Earth–Mars rendezvous mission.

Problem Statement

Assume that the spacecraft has a HLTP system, constituted by a
primary SEP system and an auxiliary system capable of generating a
modulated purely radial thrust (that is, parallel to the sun–spacecraft
direction) and variable according to the inverse square law with the
distance r from the sun.At a generic time instant the thrust by the SEP
and the auxiliary system are referred to as Te and Ta, respectively.
While Te is constant, the auxiliary system produces a thrust in the
form

Ta �m�
��
r2

(3)

wherem is the (time variable) spacecraftmass, and� 2 	0; �max
 is the
ratio of the auxiliary thrust force to the solar gravitational force. The
main effect of the auxiliary system, which, by assumption, has a null
propellant consumption, is to reduce the gravitational acceleration by
a factor of �1� ��.
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Fig. 1 �V and mission time required for a quasi-Hohmann transfer.
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The heliocentric equations of motion for a spacecraft in a polar
inertial frame T ��r; �� are

_r� u (4)

_�� v

r
(5)

_u� v2

r
� �1 � ����

r2
� �Te

m
cos� (6)

_v�� uv

r
� �Te

m
sin� (7)

_m�� �Te

ve
(8)

where � ismeasured counterclockwise from some reference position,
� � �0; 1� is the electric thruster switching parameter, and � 2
	0; 2	
 is the electric thruster direction angle (in the orbital plane)
measured counterclockwise from the radial direction. Clearly, the
system of differential equations (4–8) is similar to that describing the
two-dimensionalmotion of a spacecraft equippedwith a SEP system,
and widely studied in the literature (see, e.g., [8,9]), with the addition
of the further control parameter � that accounts for the presence of the
auxiliary propulsive system.

Our aim is to evaluate the impact of the auxiliary system on the
spacecraft trajectories for a rendezvous mission between helio-
centric, circular, and coplanar orbits of given radii r0 (starting orbit)
and rf (target orbit). To establish a meaningful comparison, we
investigate optimal trajectories in terms of minimum propellant
consumption necessary to accomplish the mission. From a
mathematical standpoint the problem is that of finding the optimal
control law u�t� (where t 2 	t0; tf
) that minimizes the propellant
mass necessary to transfer the spacecraft from the initial to the final
orbit. Equivalently, the performance index

J �mf (9)

must bemaximized, wheremf is the spacecraft mass at the final time.

Optimal Steering Law

From Eqs. (4–8), the Hamiltonian associated with the problem is

H � �ru� ��

v

r
� �u

�
v2

r
� �1 � ����

r2
� �Te

m
cos�

�

� �v

�
� uv

r
� �Te

m
sin�

�
� �m

�Te

ve
(10)

where �r, ��, �u, �v, and �m are the adjoint variables associated with
the state variables r, �, u, v, andm, respectively. The time derivatives
of the adjoint variables are provided by the Euler–Lagrange
equations

_� � � 0 (11)

_� r �
��v

r2
� �u

�
v2

r2
� 2�1� ����

r3

�
� �v

uv

r2
(12)

_� u ���r � �v

v

r
(13)

_� v ����

r
� 2

�uv

r
� �vu

r
(14)

_� m � �Te

m2
��u cos�� �v sin�� (15)

Assuming that the final time is left free, the boundary conditions for
the differential problem described by the equations of motion (4–8)
and the Euler–Lagrange Eqs. (12–15) are initial boundary conditions

r�t0� � r0; ��t0� � u�t0� � 0 (16)

v�t0� �
��������������
��=r0

p
; m�t0� �m0 (17)

and final boundary conditions

r�tf� � rf; ���tf� � u�tf� � 0 (18)

v�tf� �
��������������
��=rf

q
; �m�tf� � 1 (19)

The preceding conditions are representative of a spacecraft leaving
the sphere of influence with zero hyperbolic excess velocity. From
Eqs. (11) and (18) it follows that �� � 0.

Invoking the Pontryagin’s maximum principle, the optimal
control law is obtained by maximizing that portion H0 of the

Hamiltonian that explicitly depends on the control vector u≜
	�; �; �


H0 ≜ �u

�
�� � 1���

r2
� �Te

m
cos�

�
� �v

�Te

m
sin� � �m

�Te

ve
(20)

As far as � is concerned, the optimal control law is well known [8,9]
and is given by

cos�� �u�����������������
�2
u � �2

v

p ; sin�� �v�����������������
�2
u � �2

v

p (21)

As a result, the optimal thrust vector direction provided by the SEP
system coincides with that of the primer vector [8] whose radial and
transverse components are �u and �v, respectively. The optimal
control law for � is found by observing thatH0 depends linearly on �.
As a result, a bang-bang control is optimal [9]

� �

8>>><
>>>:
1 if

�����������������
�2
u � �2

v

p
m

� �m

ve
> 0

0 if

�����������������
�2
u � �2

v

p
m

� �m

ve
� 0

(22)

A similar situation occurs with �, whose optimal control law is
simply given by

��
�
�max if �u > 0

0 if �u � 0
(23)

Numerical Simulations

A set of canonical units [11] have been used in the integration of
the differential equations to reduce their numerical sensitivity. The
differential Eqs. (4–8) and (12–15) have been integrated in double
precision using a Runge–Kutta-fifth-order schemewith absolute and
relative errors of 10�12. The boundary value problem associated with
the variational problem has been solved by means of a hybrid
technique that combines gradient-based and direct methods [12].

The control laws described earlier have been applied to study the
rendezvous trajectories towardsVenus (rf � r♀ � 0:72333199 AU)
andMars (rf � r♂ � 1:52366231 AU) for values of �max ranging in

the interval [0, 0.5]. The characteristics of the SEP system and the
launch mass are consistent with that of the European SMART-1
spacecraft, and the corresponding data have been taken from [13]. In
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particular, a SEP thrust Te � 73 mN, an exhaust velocity
ve � 16:4 km=s, and an initial spacecraft mass m0 � 350 kg have
been assumed.

To better highlight the role of the auxiliary system on the mass
necessary to accomplish the mission, the following two cases have
been considered.

Case a: The parameter � is held fixed for thewhole trajectory using
a value coincident with its maximum attainable value � � �max�
const. This case is representative of a situation in which Ta cannot be
modulated nor zeroed. The optimal control law for the other two
control variables � and � is given by Eqs. (21) and (22).

Case b: the parameter � 2 	0; �max
 is actually a control variable
and its steering law is provided by Eq. (23).

Figures 3 and 4 show the simulation results, for the two
rendezvous test missions, as a function of different values of �max. To
better quantify the impact of the auxiliary system over the mission
performance, the two figures also display the case corresponding to
the employment of a SEP thruster with no auxiliary system (Ta � 0)
during the whole mission.

As expected, the performance in terms of final mass and mission
time are much worse in case a than in case b (in fact, the latter
coincides with the optimal condition). There are other points worth
noting. First, the performance in case a is alsoworse (except for small
values of �max) than that corresponding to a pure SEP thruster.
Moreover, the performance in case a tends to degrade quickly as �max

is increased. This is a counterintuitive behavior because one might
expect that a decrease in the solar gravitational attraction (as happens
when the auxiliary system is turned on) could increase the
effectiveness of the SEP system, at least as long as missions towards
outer planets are considered. However, this is a wrong conclusion. In
fact, the presence of a significant and constant value of � forces the
spacecraft into an initial highly elliptic trajectory [6], setting in this
way the aphelion well beyond the radius of the target orbit, see Fig. 5
(continuous lines represent case a). As a result, the electric thruster in
the initial mission phase is not used to accelerate but rather to
decelerate the spacecraft, so as to counteract the negative effect of the
auxiliary system. This characteristic is clearly seen in Fig. 6 in which
the time histories of �, corresponding to case a, are shown for an
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Earth–Marsmission using four different values of �max. For example,
when �max � 0:4 and �max � 0:5, the electric thruster direction angle
is���100 deg in the initial mission phase. Figure 5 also shows the
ballistic trajectories (dotted lines) that the spacecraft would follow

without the engagement of the SEP system. Note that when
�max � 0:5, the trajectory turns into a parabola, that is an escape
trajectory. In fact, from the conservation of energy, the ratio of the
spacecraft escape velocity vesc at instant t0 to the initial circular

velocity vc �
��������������
��=r0

p
is found to be

vesc��������������
��=r0

p �
������������������������
2�1� �max�

p
(24)

Equation (24) shows that when �max � 0:5, vesc=vc � 1, which
corresponds to attaining an escape condition.

Another interesting point emerging fromFigs. 3 and 4 is that case b
offers, for Mars and Venus missions and for any values of �max, a
better performance than that obtainable from apure SEP system, both
in terms of propellant consumption and mission time. The mass and
the transfer time saving are shown in Fig. 7 where the termsmfe

and
tfe refer to the final mass and flight time of a pure SEP based mission
(�max � 0).

The mission trajectory and the time history of the control angle �
for case b are shown in Fig. 8 for �max � 0 and �max � 0:5. We note
that the auxiliary system is only engaged in the early transfer phase
(thick line of Fig. 8b) and that a similar behavior is found in all of the
analyzed trajectories. Observe that, as long as the auxiliary system is
operating, �� �max, as implied by Eq. (23).

Figure 7 shows that both the propellant mass and the flight-time
saving are increasing functions of �max. In particular, when �max �
0:5 the mass saving is about 10 and 5% for Earth–Mars and Earth–
Venus missions while the corresponding time saving is 95 and
45 days, respectively. Figure 7 also shows a steep growth ofmass and
time savings for small values of �max, whereas the curve slopes tend
to quickly decrease as �max is increased. This behavior implies that it
would not be a good idea to choose auxiliary systems with high
values of �max. Anyway, the fundamental information about the
effectiveness of a HLTP system over a pure SEP system is ultimately
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given in terms of payload mass deliverable for a given spacecraft
mass. This subject is addressed in the next section.

Payload Mass Fraction

So far, we have quantified the advantages of an auxiliary system in
terms of �max, a parameter useful to define the performance of the
system. However, the additional thrust system increases the
spacecraft mass so that the question arises whether there exists a
benefit in terms of payloadmass fraction deliverable.We need tofind
a relationship between the value of �max and the mass of the auxiliary
system. To this end, we assume the following mass breakdown
model for the spacecraft

m0 �me �mprop �ma �mpay (25)

where me is the mass of the SEP system, mprop �mprop��max� is the
propellant mass (related to the SEP system) necessary to accomplish
the mission,ma �ma��max� is the mass of the auxiliary system, and
mpay is the sum of the payload mass and the mass of the remaining
subsystems.

For a given SEP system (that is,me is fixed) and for a given value
of the initial spacecraft mass m0, the impact of the auxiliary
propulsive system on the value ofmpay can be estimated through the
function fm � fm��max� defined as [see Eq. (25)]

fm��max�≜
mpay �me

m0

� 1�mprop��max�
m0

�ma��max�
m0

(26)

Clearly, fm�0� represents the case in which a pure SEP system is
available. Equation (26) allows one to quantify the relative “weight”
of the auxiliary system, once a reasonable expression for the mass
fractionma=m0 is found. This can be done by introducing the type of
auxiliary system. Although, in principle, different systems may be
found capable of generating a modulated radial thrust (variable
according to an inverse square law with the distance from the sun) in
the following, we concentrate on solar sail-based applications.

Solar Sail Application

Assume that the auxiliary propulsive system is constituted by a
solar sail whose effective surface A is kept constant. The solar sail is
capable of generating a pure radial thrust provided its reflector is kept
perpendicular to the sunlight direction. Of course, the sail may be
employed more efficiently by using its capability of supplying a
tangential thrust component if tilted away from the radial direction.
Nevertheless herewe assume a pure radial thrust to be consistentwith
the previously discussed model. Also, it should be noted that the
possible interference of the SEP exhaust plumewith the reflectormay
vary the optical characteristics of the sail. This complex effect is
neglected for the sake of simplicity.

We make use of the so-called nonperfect reflection model [14],
which takes into account the optical coefficients of the real sail film.
The thrustTa provided by a flat sail whose surface is perpendicular to
the sun–spacecraft line is given by

Ta � �am���

��
r2

(27)

where �� is referred to as dimensionless sail loading, similar to that
introduced in [14], �a � �0; 1� is the solar sail switching parameter,
and � � 1 is a positive coefficient depending on the optical
characteristics of the sail film (�� 1 in the ideal case of specular
reflection). For example, the optical coefficient for a sail with a
highly reflective aluminum-coated front side and a highly emissive
chromium-coated back side is�� 0:90815 [15]. The dimensionless

sail loading is defined as �� ≜ ��=�, where �� ≜ 1:539 g=m2 is the

critical solar sail loading parameter (see [16], p. 40) and� ≜m=A is a
generalized sail loading. In fact, � is defined as a function of the
whole spacecraft mass and not of the sail mass alone (as is usually
done): as such, � is not constant with time. Note that

�� � ��0

m0

m
(28)

where

��0
≜ ��=�m0=A� (29)

is the initial (constant) dimensionless sail loading. It represents a
technological parameter that quantifies the limits of the current
technology.

In Eq. (27), the solar sail switching parameter �a models the
possibility of zeroing the sail thrust by orienting the sail area parallel
to the incident solar rays, thus obtaining �� 0. Accordingly, �a may
be thought of as a sort of solar sail activation parameter. The presence
of �a in the mathematical model guarantees the possibility of
realizing an on/off control over � (recall that A is assumed to be
constant). On the other hand, the feasibility of a continuous variation
of � between suitable limits by changing the effective sail area (as
suggested in [6]) appears to be of difficult practical implementation.

Substituting Eq. (28) into Eq. (27) and comparing the latter with
Eq. (3), the following expression for � is found:

�� �a���0

m0

m
� �a ~��0

m0

m
(30)

where ~��0
≜���0

is the initial dimensionless sail loading, weighted
by the coefficient �. Equation (30) states that � depends on the

switching parameter �a, on the constant coefficient ~��0
(that defines

the maximum performance of the auxiliary system), and on the
instantaneous mass ratio through the term m0=m. In particular, the
presence of the instantaneous mass ratio into the expression of �
renders the optimal control problem substantially different from that
previously analyzed. In fact, although both the equations of motion
(4–8) and theHamiltonian (10) are still formally valid, when Eq. (30)

is substituted into the Hamiltonian, the new control vector u≜
	�a; �; �
 nowmust be optimized. It is a simplematter to verify that the
Euler–Lagrange Eqs. (11–14) remain unchanged, whereas the
differential equation involving the mass costate �m becomes

_� m � �Te

m2
��u cos�� �v sin�� � �a�u

~��0

��
r2

m0

m2
(31)

Equation (31) replaces Eq. (15). As a result, both the optimal control
law for the electric thruster direction angle � and for the electric
thruster switching parameter � are still given by Eqs. (21) and (22),
respectively. On the other hand, because the Hamiltonian is linear
with respect to �a, the following bang-bang control law is obtained
for the solar sail switching parameter

�a �
�
1 if �u > 0

0 if �u � 0
(32)

The performance of aHLTP system, using a solar sail as the auxiliary
propulsion system, has been investigated for Earth–Mars and Earth–
Venus rendezvous missions. The differences with respect to a pure
SEP system, in terms of percentage mass ratio and mission time

savings, are shown in Fig. 9 as a function of the parameter ~��0
.

Comparing the results of Fig. 9 with those obtained in the previous
section and summarized in Fig. 7, one discovers an almost exact

equivalence between the two figures (when �max and ~��0
are

interchanged). This is an interesting circumstance as the results refer
to two distinct optimal control problems.

The explanation of such a behavior comes from the analysis of the

time history of the control variable �a. In fact, for all the values of ~��0
in the range [0, 0.5], �a happens to be different from zero in the early
mission phase only. This amounts to saying that the auxiliary
propulsive system is operating for a fraction of the whole mission
time (on the order of 10–15%) when the spacecraft mass is about its
initial valuem0. Recalling the optimal control law for � [see Eq. (23)]
and bearing inmind that�, similarly to �a, is different from zero in the
first mission phase only (see, for example, Fig. 8b), one has
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� ≠ 0 ) �� �max; �a ≠ 0 ) �a � 1 (33)

so that from Eq. (30) one concludes that �max � ~��0
�m=m0� 
 ~��0

.
In other terms, it turns out that there is a substantial equivalence

between �max and ~��0
, and Fig. 7 can be used to quantify the

performance of a HLTP system with a solar sail as the auxiliary
system.

Having expressed the mass fraction mf=m0 as a function of the

design parameter ~��0
(or, equivalently, as a function of �max), it is

now possible to study the function fm defined through Eq. (26). To
this end it is necessary to establish a suitable expression for the mass
fractionma=m0 associated with the auxiliary system, that is, with the

solar sail. First, introduce the sail assembly loading [17,18]

�sail ≜ma=A, i.e., the mass of the sail assembly (comprising the sail
film and the required structure for storing, deploying and tensioning
the sail) per unit area. Then, Eq. (29) yields

ma

m0
� �sail

�� ��0
� �sail

��
~��0

�
(34)

The value of �sail depends on the technology employed to build the
sail and, in particular, is closely related to the value of the density of
the sail film. Currently, admissible values are on the order of
25–30 g=m2, even if near-term andmidterm technology [18,19] will
hopefully allow values of 5–10 g=m2. However, future outer solar
system missions will require an assembly loading of the order of

1 g=m2, see [16], p. 95. Figure 10 shows the dependence of ~��0
on

the assembly loading �sail as a function of the mass fraction ma=m0.
The figure also shows the corresponding value of the sail

characteristic dimension (
����
A

p
). The latter coincides with the side

length for a square sail configuration. Assuming, for example, an
assembly loading of 25 g=m2 and a mass fraction equal to 0.5,

Fig. 10 shows that ~��0

 0:028 (recall that this value is approxi-

mately equal to �max).
Bearing in mind Eqs. (26) and (34) one has

fm �mf

m0

� �sail
��

~��0

�
(35)

The function fm has been drawn in Fig. 11 for some values of the sail
loading. Figure 11 shows that, with the exception of very high-
performance solar sails, function fm is always decreasing with

respect to ~��0
. More precisely, @fm=@ ~��0

< 0 if �sail > 2 g=m2 for
both the analyzed missions. These results indicate that, for current
and near-midterm technology, the use of a solar sail as an auxiliary
propulsive system produces a decrease of the payload mass fraction
deliverable. In fact, the extra mass of the solar sail is greater than the
propellant mass that is saved with a pure SEP system (recall that the
latter is represented by the point fm�0� in Fig. 11). Nevertheless,

because an increase of ~��0
makes the mission time decrease (see

Fig. 9), a HLTP system can be usefully employed in the mission
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analysis to trade off the conflicting requirements between deliverable
payload mass fraction and mission time.

Conclusions

A novel concept of mission, based on a hybrid low-thrust
propulsion system, has been proposed and discussed. A solar electric
propulsion thruster has been coupled with an auxiliary system,
capable of providing an inverse square radial thrust. The idea is that,
by virtue of this additional thrust, the spacecraft “senses” a reduced
gravitational solar force. As a result, the propellant expense for a
given heliocentric mission is typically decreased. To quantify this
effect on a rigorous basis the problem has been cast into an optimality
framework. In particular, the steering law that minimizes the
propellant consumption for a circle-to-circle rendezvous problem
has been found using an indirect approach. Exploiting the size of the
reduction of the gravitational acceleration as a control parameter, it
has been shown that an increase of that parameter provides not only
better performance in terms of propellant consumption but also in
terms ofmission time (which decreases as long as the value of the net
gravitational acceleration decreases). To make a meaningful
comparison between a hybrid and a conventional electric propulsion
system, these two options have been compared in terms of payload
mass fraction deliverable for a given mission. To illustrate such a
comparison, a solar sail has been used as an auxiliary system. It has
been shown that the advantage of a hybrid system is subordinated to
the employment of high-performance solar sails. Nevertheless, the
reduction inmission times (whatever the solar sail characteristics be)
of the new hybrid system makes this configuration attractive for
future planetarymissions.Other types of low-thrust hybridization are
possible, such as solar electric power and minimagnetospheric
plasma propulsion.
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