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ABSTRACT

This paper presents a novel control approach for a knee exoskeleton to assist individuals with lower 
extremity weakness during sit-to-stand motion. The proposed method consists of a trajectory 
generator and an impedance controller. The trajectory generator uses a library of sample trajectories 
as the training data and the initial joint angles as the input to predict the user’s intended sit-to-stand 
trajectory. Utilizing the dynamic movement primitives theory, the trajectory generator represents 
the predicted trajectory in a time-normalized and rather a �exible framework. The impedance 
controller is then employed to provide assistance by guiding the knee joint to move along the 
predicted trajectory. Moreover, the human-exoskeleton interaction force is used as the feedback for 
on-line adaptation of the trajectory speed. The proposed control strategy was tested on a healthy 
adult who wore the knee exoskeleton on his leg. The subject was asked to perform a number of 
sit-to-stand movements from di�erent sitting positions. Next, the measured data and the inverse 
dynamic model of the human-exoskeleton system are used to calculate the knee power and torque 
pro�les. The results reveal that average muscle activity decreases when the subject is assisted by the 
exoskeleton.
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1. Introduction

Sit-to-stand and stand-to-sit movements are essential 

parts of daily human activity. Standing up is a prerequi-

site for most human activities, such as walking, running, 

climbing stairs, etc. Although this maneuver is an easy 

and routine activity for young and healthy people, it may 

present considerable di�culty for an older person and 

for those with a pathology that a�ects the lower limbs.[1]

Recently, there has been a growing interest in applica-

tions of robotic exoskeletons as a solution to assist physically 

weak people in everyday activities.[2–5] An exoskeleton is a 

wearable robot, typically with an anthropomorphic con�g-

uration that provides a direct transfer of mechanical power 

to assist or augment the wearer’s movement. Lower limb 

exoskeletons can help elderly and physically dependent 

people perform their daily activities without the physical 

assistance of others. Moreover, they can be employed as a 

rehabilitation device in the recovery period of patients with 

nervous system and muscular diseases.

When an exoskeleton is utilized to facilitate the wear-

er’s movement, a human intention identi�cation process 

is o�en performed during the control process. A common 

method for human intention identi�cation is to measure 

biological (e.g. electromyographical) signals.[6,7] However, 

in these methods, special sensors need to be connected to 

the user’s body, which is not convenient for daily applica-

tions. Another strategy for human movement prediction is 

oscillator-based methods, which are inspired by the rhythm 

generator inside the spinal cord of humans and other ver-

tebrates (the central pattern generator).[8–10] Zhang and 

Hashimoto [11] suggested a synchronization-based con-

trol strategy that utilizes a neural oscillator model for a 

motion assistance device. In another study, Ronsse et al. 

[12] deployed an adaptive oscillator-based controller to 

provide assistance for a lower-limb exoskeleton, using 

the learned information from previous motion cycles. 

Although oscillator-based approaches are successful in esti-

mating the user’s intended movement while performing a 

periodic motion task, they are not suitable for non-periodic 

motions, such as sit-to-stand and stand-to-sit movements.

Ijspeert et al. [13] proposed a di�erent bio-inspired 

approach for motion representation and prediction, 

© 2016 Taylor & Francis and The Robotics Society of Japan

CONTACT Ali Akbar Akbari  akbari@um.ac.ir

D
o
w

n
lo

ad
ed

 b
y
 [

P
u
rd

u
e 

U
n
iv

er
si

ty
 L

ib
ra

ri
es

] 
at

 0
3
:5

5
 0

7
 J

u
n
e 

2
0
1
6
 

mailto:akbari@um.ac.ir


ADVANCED ROBOTICS  847

(4)  Use of the human-exoskeleton interaction forces 

as feedback for on-line adaptation of the trajec-

tory speed.

�e rest of this paper is organized as follows. In 

Section  2, the structure of the knee exoskeleton is 

described, and a 2D dynamic model of the human body 

and the exoskeleton is presented. Section 3 introduces 

the trajectory generation method. �e application of the 

method proposed in Section 3 for prediction of the human 

sit-to-stand motion is discussed in Section 4. Section 5 

provides a description of the controller implementation 

and the experimental setup. Experimental results and dis-

cussion are presented in Section 6. Finally, conclusions 

and future works are given in Section 7.

2. Dynamic model of the human-exoskeleton 

system

A prototype powered knee exoskeleton (FUM-KneeExo) 

has been designed and developed at the Ferdowsi 

University of Mashhad robotic laboratory (FUM Robotic 

Lab) to assist human subjects during sit-to-stand move-

ment (Figure 1(a)). �is device is powered by a linear 

series elastic actuator (LSEA), which was constructed in 

FUM Robotic lab (Figure 1(b)). �e LSEA provides rela-

tively low output mechanical impedance in the exoskele-

ton actuation system, which results in more accurate and 

robust control of human–robot interaction forces. �is 

actuator transfers the rotary movement of the servo motor 

to the linear movement using a ball screw. Power is then 

transmitted to the output through a spring set. A magnetic 

linear encoder measures the de�ection of the spring set, 

which is used to estimate the output force of the LSEA.

FUM-KneeExo consists of three articulated links and 

the LSEA. �ese links are connected by one revolute joint 

for the knee �exion/extension motions and a passive rev-

olute joint for ankle plantar/dorsi-�exion motions. An 

encoder measures the rotation of the ankle joint, which 

is used as an input for the trajectory prediction system. 

�e LSEA is connected to the upper (thigh) and middle 

(shank) links to provide the required power for assisting 

the knee �exion–extension movement. One strap on each 

link of the exoskeleton is used to attach the mechanism to 

the user. �e foot link is designed to transfer the human 

and exoskeleton weight to the ground. Additionally, four 

force sensors are embedded in the foot part to measure the 

ground reaction forces. Table 1 shows the speci�cations 

of the LSEA that is utilized in this study.

Dynamic analysis of the human-exoskeleton model 

is essential for the exoskeleton’s trajectory generation 

termed dynamic movement primitives (DMPs). DMPs 

are systems of autonomous nonlinear di�erential equa-

tions with the ability to create complex periodic and 

non-periodic trajectories. �e DMP equations are capa-

ble of dealing with perturbations. Furthermore, they are 

independent of timing; thus, the speed of the generated 

motion is adjustable.[14] Later, Ude et al. [15] proposed 

a task-speci�c generalization approach for generating a 

new trajectory from a database of training trajectories. 

�ey labeled each of the training trajectories with a vector 

that describes the goal of the task. Next, they used DMP 

equations to encode the new trajectory based on the avail-

able training trajectories and the task goal. Using the task 

goal as input, the method is able to generate a wide range 

of complex motions; however, it cannot handle training 

trajectories with di�erent initial conditions.

In this paper, Ude’s approach is extended to allow 

prediction of new trajectories based on a library of non- 

periodic training trajectories with di�erent initial condi-

tions. �e proposed method is then employed to predict 

human sit-to-stand movement for a given initial sitting 

position. �e predicted trajectory is used as the refer-

ence trajectory of the knee exoskeleton. An impedance 

controller is designed to calculate the required torques 

for assisting the wearer to move along the predicted 

trajectory while allowing him/her to partly control the 

speed of the sit-to-stand movement. �e trajectory gen-

eration method introduced in this paper needs to obtain 

training data from the same subject who wants to use 

the exoskeleton. In this study, it is assumed that, with the 

supervision of a physiotherapist, the training data and 

the body dimension data of the subject can be obtained 

under controlled conditions. In this way, the training data 

will be the best trajectories for the speci�c user. Although 

this procedure requires a number of training sessions, it 

makes the exoskeleton to e�ciently work for the speci�c 

user for his/her whole life.

�e contributions of this paper include:

(1)  Introduction of a trajectory generation method 

for synthesizing new trajectories from a library 

of training trajectories using a desired initial 

condition vector as the input.

(2)  Utilization of the DMP theory in the trajectory 

generation process to represent the predicted 

trajectory in a time-normalized and rather a 

�exible way.

(3)  Employment of the proposed method to gener-

ate the reference trajectory of the knee exoskel-

eton for sit-to-stand movement based on the 

human joint angles in the sitting position.
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and control system. According to [16,17], humans com-

monly rise from sitting in an essentially sagittal symmetric 

manner; consequently, using a two-dimensional model 

is rational for sit-to-stand movement. During sit-to-

stand movement, the human body can be approximated 

structurally by three rigid links: shank, thigh, and HAT 

(Head–Arms–Trunk).[18] �e robot moves in parallel 

to the skeleton of the subject; therefore, the exoskeleton 

links are considered to be rigidly connected to the human 

limbs. �e shank link of the model is representative of the 

shanks of the human body. �e thigh link represents the 

human thighs. �us, the mass of each thigh and shank 

link of the model is considered double of each thigh and 

shank of the human body.

�e combination of the human body and FUM-

KneeExo, can be modeled as a six-link mechanism with 

a close chain in the sagittal plane. �e mechanism has 

four degrees-of-freedom (DOFs) including ankle rota-

tion, knee rotation, hip rotation, and one DOF inside of 

the LSEA mechanism. �e kinematic model of the entire 

system is shown in Figure 2. Moreover, Figure 3 illustrates 

the kinematic model of FUM-KneeExo.

�e Lagrangian formulation is used to derive the 

dynamic equations of motion of the system. �e con�g-

uration of this dynamic system can be described by �ve 

generalized coordinates, qk(k = 1,… , 5), as follows,

 

where l
b
 represents the linear movement of the ball screw, 

and �
s
 is the de�ection of the spring in the LSEA. �is 

system is subject to one geometric constraint and thus 

possesses 5–1 = 4 DOFs. �erefore, one of the generalized 

coordinates is dependent. Here, the spring de�ection (q
5
) 

is considered as the dependent generalized coordinate. 

(1)

⎧
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎩

q
1
= �

1

q
2
= �

2
− �

1

q
3
= �

3
− �

2

q
4
= lb

q
5
= �s

Figure 1. (a) FUM-KneeExo, the powered knee exoskeleton developed in the FUM Robotic Lab; (b) the LSEA.

Table 1. Specifications of the LSEA.

Gear ratio (linear movement/motor 
rotation) 2.5 mm/rot

Spring stiffness 50,000 N/m
Max output force 1000 N
Max linear speed 125 mm/s

Figure 2. Kinematic model of the human-exoskeleton system in 
the sagittal plane.

Figure 3.  (a) Solid model and (b) kinematic model of FUM-
KneeExo.
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where �
ankle

, �
knee

, and �hip are the torques applied by the 

human on the ankle, knee and hip joints of each leg, 

respectively. F
b
 represents the applied force by the linear 

actuator (ball screw) in the LSEA. �e spring force (F
s
) is 

associated with the dependent generalized coordinate q
5
 

and can be obtained by the following relation,

 

where k
s
 is the spring sti�ness. In this study, the exoskele-

ton is only worn on one leg of the subject. Although it may 

induce some undesirable asymmetric motion, the errors 

are negligible and the sit-to-stand movement still can be 

considered as a planar movement.

3. Generalization of non-periodic movements 

using DMPs

As mentioned earlier, Ude et al. [15] introduced a task- 

speci�c generalization approach for non-periodic and 

periodic movements based on the DMP theory. �is 

approach uses a database of training trajectories to syn-

thesize a new trajectory according to the desired task goal. 

To this end, they labeled each training trajectory with 

parameters that describe the characteristics of the task 

(goal of the task). In Ude’s approach, the entire training 

trajectories are supposed to start from the same initial 

position. In this section, the above-mentioned method is 

additionally extended to take into account di�erent initial 

conditions of the training trajectories.

3.1. Theoretical fundamentals of DMPs

�e theoretical fundamentals of the DMPs are introduced 

by Ijspeert et al. [13,19] �ey de�ned the DMPs as a set 

of autonomous di�erential equations having well-de�ned 

attractor properties. As a basic point-attractive system, 

Schaal et al. [14] proposed a second-order system of dif-

ferential equations as follows,

 

 

For simpli�cation, only a single DOF (y) is considered in 

the above equations. �e parameters ygoal and η are �nal 

destination and the time constant of the trajectory, respec-

tively. Selecting the proper value for the constant parame-

ters α
z
, β

z
, and � > 0(e.g. α

z
 = 4β

z
) will lead this system to 

a particular attractor point at z = 0, y = ygoal. �roughout 

the paper, the values of �
z
= 25and �

z
= 25∕4 are used. 

�e function f (x) is a linear combination of radial-basis 

(9)F
s
= k

s
�
s

(10)�ż = �z

(

�z

(

ygoal − y
)

− z
)

+ f (x)

(11)�ẏ = z

�e time derivative of the geometric constraint can be 

presented by the following equation,

 

Using the constraint equation coe�cients α
k
, the equa-

tions of motion of this system can be formulated based 

on Lagrange’s equations,

 

 

where L is the Lagrangian, K is the kinetic energy, and 

V is the potential energy of the system. �e generalized 

non-conservative force/torque associated with q
k
 is indi-

cated by 
(

F
k

)

nc
, while � is the Lagrange multiplier related 

to the constraint equation. For this system, the kinetic 

energy and potential energy functions can be obtained 

as follows,

 

 

where �
i
, h

i
, and ω

i
 are the velocity vector, the height, and 

the angular velocity of the ith link, respectively. Moreover, 

m
i
 and J

i
 indicate the mass and inertia of the ith link.

Solving the complete set of the constraint equation, 

Equation (2), and Equation (3) leads to the inverse dynam-

ics equations of the entire exoskeleton-human system as 

follows,

 

where �a
= [q

1
,… , q

4
]
T is the independent generalized 

coordinates vector. �(�) is a 4  ×  4 inertia matrix and 

�(�, �̇) is a 4 × 4 Coriolis and centripetal matrix. �(�) is a 

4 × 1 vector representing gravitational forces. � is the 4 × 1 

generalized force vector associated with the independent 

generalized coordinates, which is de�ned as,

 

(2)

5
∑

k=1

�kq̇k = 0

(3)
d

dt

(

�L

�q̇k

)

−
�L

�qk
=
(

Fk
)

nc
+ ��k, (k = 1,… , 5)

(4)L = K − V

(5)K =

6∑

i=1

1

2
J
i
�

2

i
+

6∑

i=1

1

2
m

i
||�2

i
||

(6)V =

6
∑

i=1

mihig +
1

2
k ⋅ �2s

(7)� = �(�) �̈a + �(�, �̇) �̇a +�(�)

(8)� =

⎡
⎢
⎢
⎢
⎢
⎣

�ankle × 2

�knee × 2

�hip × 2

F
b

⎤
⎥
⎥
⎥
⎥
⎦

,
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where T is the number of the sample points on the trajec-

tory. Considering the following equations:

 

 

 

they indicated that minimizing the term �� − �target 

leads to the optimum shape parameters w
i
 of the DMP 

equations that �t the training trajectory (o�-line train-

ing). �erefore, the least-squares method can be used to 

calculate the shape parameters w
i
.

3.1.1. Illustrative example of o�-line training of a 

DMP system

In this section, an illustrative example of o�-line train-

ing of a one-dimensional DMP system is presented. A 

three-segment ��h-order polynomial trajectory is con-

sidered as the training trajectory (ys) as follows,

(15)�target =

⎡
⎢⎢⎢⎣

ftarget
�
t1
�

⋮

ftarget
�
tT
�
⎤
⎥⎥⎥⎦

(16)� =

⎡
⎢
⎢
⎢
⎣

w
1

⋮

w
M

⎤
⎥
⎥
⎥
⎦

(17)� =

⎡
⎢⎢⎢⎢⎣

Ψ
1(x1)∑M

i=1
Ψ

i(x1)
x
1

…
Ψ

M(x1)∑M

i=1
Ψ

i(x1)
x
1

⋮ ⋮ ⋮

Ψ
1(xT)∑M

i=1
Ψ

i(xT)
x
T

…
Ψ

M(xT)∑M

i=1
Ψ

i(xT)
x
T

⎤
⎥⎥⎥⎥⎦
,

functions [14], which makes it possible to approximate 

any non-periodic trajectory by integrating Equations (10) 

and (11). In this paper, f (x) is de�ned as,

 

where c
i
, i = 1,… ,M are the centers of the M radial basis 

functions that are distributed along the x-axis in the range 

of 0 to 1, and σ
i
 > 0. �e parameter x is used as a phase 

variable in Equation (12), instead of time, to make the 

equations independent of time. �is variable is generated 

through the following dynamic equation,

 

�is equation is called ‘leaky integrator’ [14], which is a 

basic dynamic system for creating a point attractor. In 

this study, the constant value of �
x
= 25∕3 and the initial 

condition of x(0) = 1 is considered for the above equation. 

An on-line or o�-line optimization should be undertaken 

to determine the shape parameters w
i
 so that the produced 

trajectory by integrating Equations (10), (11), and (13) 

can accurately �t the training trajectory. Trajectory speed 

can be tuned on-line by modifying η without a�ecting 

the trajectory shape. It should be considered that, for all 

DOFs, the time constant η must be the same.

Schaal et al. [14] proposed a supervised learning 

method to �nd w
i
. In this method, it is supposed that 

a sample trajectory ys, ẏs, and ÿs, is given. Based on this 

information, they proposed the following target for f:

 

(12)f (x) =

∑M

i=1 wiΨi(x)
∑M

i=1 Ψi(x)
x, Ψi(x) = exp

�

−�i(x − ci)
2
�

(13)�ẋ = −�
x
x

(14)

ftarget

(

tj

)

=�2 ÿs

(

tj

)

+ �z� ẏs

(

tj

)

− �z�z

(

ygoal−ys

(

tj

))

, j = 1,… ,T

Figure 4. Approximation of a three-segment fifth-order polynomial trajectory with the DMP equations.
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To specify a DMP equation set that synthesizes the desired 

trajectory corresponding to the desired vector of the initial 

condition, the desired shape parameter vector �
d
and time 

constants η
d
 need to be estimated. �erefore, the function 

ℑ(Z) can be de�ned as a relationship between the initial 

condition vector and both the shape parameter vector � 

and the time constant η as follows,

 

�e relation ℑ(Z) can be found via an optimization proce-

dure. �e optimization goal is to determine the optimum 

shape parameter vector (�
d
) and time constant (�

d
)of the 

DMP equations so that the solution trajectory is as similar 

as possible to those training trajectories that their initial 

condition (�
k
)is near to the desired initial condition (�

d
).  

Here, locally weighted regression [19] is employed to 

determine the optimum DMP parameters by minimizing 

the following �tness function,

 

with respect to � and η. In this equation, N represents the 

number of training trajectories, and the functions k and 

d are de�ned as,

 

 

where γ
i
 is a normalization coe�cient, which is de�ned as,

 

�e kernel function k which is used here is proposed by 

Ude et al. [15]. �is function determines the in�uence of 

each training trajectory on the estimation of the synthe-

sized trajectory. �is kernel function ignores the training 

trajectories which their initial conditions are too far from 

the desired initial condition. �is reduces the computa-

tional complexity of the generalization problem. Here, a 

cubic norm is chosen to have continuous �rst and second 

derivatives.

(21)ℑ(Z):� → (�, �)

(22) =

N
∑

k=1

(

�
k
� − �

2

k
+
(

� − �
k

)2
)

× k
(

d(�
d
, �

k
)
)

(23)k(d) =

{ (
1 − |d|3

)3
, if |d| < 1

0, otherwise

(24)d
(

�
d
, �

k

)

= � × (�
d
− �

k
), � = diag

(

1

�
i

)

, �
i
> 0

(25)�i = max
j=1, …, N

min
k=1, …, N

{
|||
Ij,i − Ik,i

|||

}

 

Figure 4 illustrates the o�-line training results of the 

DMP equations. �e goal is set to ygoal = 0, and the ini-

tial conditions are set to x(0) = 1 and y
t=0

 = –2. Moreover, 

the time constant is set to η  =  6. As is depicted in the  

Figure 4(f), the forcing term consists of M = 15 radial- 

basis functions, which are exponentially distributed 

along x. �e Figure 4(a–c) illustrates the position, velocity, 

and acceleration of the training and the approximated tra-

jectories, respectively. �e results reveal that the trajectory 

produced by the DMP equations (solid lines) mostly �ts 

the training trajectory (dashed lines). Figure 4(d and e) 

show the variables x and z vs. time.

3.2. Trajectory generation based on initial 

conditions

In some applications, such as sit-to-stand movement, 

di�erent initial conditions lead to di�erent shapes and 

timings of trajectories. In this section, a methodology for 

generalization of a library of training trajectories based on 

the initial condition vector is presented. In this regard, an 

optimization method is suggested to estimate the shape 

parameters and the time constant of the DMP equations 

for a given initial condition vector. �is DMP system syn-

thesizes a new trajectory starting from the desired initial 

condition vector.

Consider a set of training trajectories with the same 

goal but di�erent initial conditions. For generalization of 

these sample trajectories, �rst, the initial condition vec-

tor and the time constant of each trajectory should be 

extracted. �e set of training data associated with their 

initial conditions and timing can be de�ned as,

 

where yks

(

tk,j

)

, ẏks

(

tk,j

)

andÿks

(

tk,j

)

 are the positions (dis-

placements or angles), velocities, and accelerations of the 

kth training trajectory at the jth sample point, N is the 

number of training trajectories, and T
k
 is the number of 

sampling points on each trajectory. Moreover, �
k
 and η

k
 

indicate the initial condition and time constant of the kth 

trajectory, respectively. �e initial condition vector of the 

kth trajectory is de�ned as,
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, ÿks

(
tk,j

)
;(�k, �k)|k = 1,… ,N , j = 1,… ,Tk

}

(20)�k = [yks
(

tk,1
)

, ẏks
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considerably di�erent under various initial foot condi-

tions. �erefore, it is reasonable to utilize the proposed 

trajectory generation method to predict the sit-to-stand 

trajectories for a given initial sitting position.

As a case study, a set of experiments on a single adult 

male, with a mass of 70 kg and a height of 1.72 m, is con-

ducted. �e parameters specifying the sitting position are, 

in this case, the initial angles of the ankle and the knee 

joints, which correspond to the initial seat height and the 

foot positions. �e subject performed a sequence of sit-

to-stand movements for four descending seat heights. For 

each seat height, �ve sit-to-stand movements with �ve 

di�erent foot positions were performed. Multiple exper-

iments are performed for each sitting position. Among 

them, three best measurements are selected and averaged. 

�e experimental conditions including chair heights and 

feet positions are shown in Table 2. �e foot positions are 

measured relative to the vertical position of the shank. 

�e kinematic data of these experiments were collected 

in the motion laboratory of the Sport Science Research 

Institute of Iran, equipped with a Raptor-E Digital Real-

Time Motion Analysis System (Figure 6). During the 

experiments, two AMTI force plate were placed under-

neath the subject’s feet to measure the ground reaction 

forces. In the process of standing from a chair, when the 

buttocks lose contact with the chair, the horizontal com-

ponent of the foot–ground reaction force increases sud-

denly. �is instance is termed as seat-o�. �e subject is 

asked to rise from the chair with an approximately same 

speed for all initial sitting positions. �e measured sit-

to-stand trajectories are then synchronized based on the 

seat-o� instance. Figure 7(a) illustrates the paths of the 

shoulder, hip, knee, and ankle during the sit-to-stand task 

for four di�erent seat heights. �e collected motion data 

and the 2D kinematic model of the human body are used 

to calculate the ankle, knee, and hip joint angles during 

sit-to-stand movement. Additionally, the angular veloci-

ties and the angular accelerations are calculated from the 

time-derivative of the �ltered angular positions (a �rst- 

order Butterworth �lter with a 20-Hz cut-o� frequency). 

Figure 7(b–d) illustrate the trajectories of ankle, knee, and 

hip joint angles during the sit-to-stand interval for four 

di�erent seat heights and a same foot position.

�e subject’s knee and ankle angles do not change 

before the seat-o�. �erefore, it is reasonable to consider 

the instance of seat-o� as the initiation of the training 

trajectories. Because the initial hip angle cannot be meas-

ured during the control process, it is not considered as 

an element of the initial condition vector. Moreover, at 

the instance of seat-o�, angular velocity and acceleration 

of knee and ankle are negligible. Consequently, in this 

study, the initial condition vector of sit-to-stand (I) is a 

two-dimensional vector including the angles of the knee 

Using this training method, each training trajectory 

is weighted based on the distance between its initial con-

dition vector and the desired initial condition vector. 

�erefore, adjacent training trajectories a�ect the result 

more. �e optimization process of minimizing the  

function will lead to a least-squares problem that can be 

solved by standard algebra methods.

In Section 5, an adaptation strategy will be proposed 

that tunes the time constant of the predicted trajectory to 

be synchronized with the user’s intended moving speed. 

�e entire procedure of the proposed trajectory genera-

tion is described in Figure 5.

4. Generalization of sit-to-stand movement: a 

case study

Initial foot position and seat height are considered impor-

tant factors for ease of standing up. According to [20,21], 

human joint trajectories and muscle activity patterns are 

Figure 5. The procedure of the proposed trajectory generation.

Table 2. The experimental conditions for sit-to-stand generalization.

Chair height (cm) Foot positions (cm)

40 −10, −7, −4, 0, 4
43 −10, −7, −4, 0, 4
46 −10, −7, −4, 0, 4
49 −10, −7, −4, 0, 4
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each sample trajectory are extracted. Next, for any desired 

initial sitting position, the �tness function (Equation (22)) 

is minimized to calculate the desired shape parameters (�
d
)  

and time interval (�
d
) of the DMP model. �e results of 

generalization of seat-to-stand trajectories are illustrated 

in Figure 8. In this �gure, the initial conditions related to 

the training trajectories are indicated with small trian-

gles, and the initial conditions of the generated trajectories 

are represented with small squares. �e results reveal an 

and ankle joints at the moment of seat-o�. For both the 

dimensions value of x is set to x(0) = 1, and the forcing 

term consists of M = 25 radial-basis functions, which are 

exponentially distributed along x. �erefore, for each 

dimension a separate 25-dimentional vector of shape 

parameters (�) must be calculated. �e other constant 

parameters (�
z
, �

z
, and α

x
) are same as Section 3.1.

Following the trajectory generation algorithm (Figure 5),  

the goal, the initial condition (I), and time interval (η) of 

Figure 7. (a) Path of the shoulder, hip, knee, and ankle during the sit-to-stand task for four different seat heights; (b, c, d) angle profiles 
of the ankle, knee, and hip joints during sit-to-stand movements for four different seat heights.

Figure 6. Snapshots from the motion analysis procedure of sit-to-stand trials.
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854  K. KAMALI ET AL.

the same initial conditions as the initial conditions of the 

test trajectories. �e results show that the generated tra-

jectories practically �t the test trajectories. �erefore, the 

proposed method can e�ectively predict the sit-to-stand 

movements of human.

5. Controller implementation

FUM-KneeExo aims to help the wearer to move along 

the predicted sit-to-stand trajectory while letting him/

her, to some extent, conduct the movement. To this end, 

an impedance control is employed to apply the required 

driving force to the exoskeleton.

5.1. Impedance controller

�e controller used in this study is composed of an inner 

force feedback loop and an outer impedance control 

loop. Additionally, a gravity compensator and an inverse 

dynamic model are used to estimate the gravitational 

and dynamic forces/torques. �e force loop is designed 

to track the desired force at the output of the LSEA. �e 

outer control loop creates a relationship between the 

position of the LSEA and the force it applies. �e outer 

control loop calculates the reference force based on a 

desired impedance model, which characterizes a virtual 

outstanding similarity between the shape of the generated 

trajectories (solid lines) and the nearby training trajecto-

ries (dashed lines).

In Figure 9, quantitative evaluation of the predicted 

trajectory is presented. In this �gure, three trajectories 

(blue dashed lines) are used as the training and two tra-

jectories (red dashed lines) as the test trajectories. In order 

to evaluate the proposed trajectory generation method, 

the generated trajectories (solid lines) are calculated with 

Figure 8. Generalization of sit-to-stand movement. Graphs (a) and (c) illustrate the knee angle vs. the ankle angle for different foot 
positions and different seat heights, respectively. Graphs (b) and (d) illustrate the knee angle with respect to time for different foot 
positions and different seat heights, respectively.

Figure 9. Quantitative evaluation of the proposed generalization 
method.
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where ζ represents the adaptation rate. Figure 11 illustrates 

the complete architecture of the trajectory generation and 

control of FUM-KneeExo. �e trajectory generator block 

uses the training data and the initial value of the knee and 

ankle angles to generate the reference trajectory. Here, 

seat-o� is considered as the initiation of the sit-to-stand 

trajectories; therefore, the initial condition vector can be 

obtained from the value of the knee and ankle angle at 

this moment. In this regard, the ground reaction force, 

which is measured by foot force sensors, is used to detect 

the instance of seat-o�.

5.2. The hardware

�e control hardware of FUM-KneeExo consists of a host 

desktop PC, a real-time target desktop PC, a data acquisi-

tion I/O card, and the servo motor driver. �e controller 

algorithms are developed on the Host PC. �e xPC tool-

box of the MATLAB so�ware then creates an executable 

�le to be used for real-time control on the target PC. �e 

target PC is connected to the host PC and the data acqui-

sition I/O card through a LAN. �e I/O card used for 

this study is a multifunctional digital I/O, analog I/O, and 

spring sti�ness and a virtual damper. �e impedance con-

trol architecture is illustrated in Figure 10. In this �gure, 

(l
a
)pred. and l

a
 represent the predicted and measured length 

of the LSEA. Using kinematic model of the human and 

exoskeleton, (l
a
)pred. is calculated from the predicted knee 

angle. Moreover, the measured actuator force is depicted 

by (F
a
)
msr.

 which is approximately equal to the measured 

force of the LSEA’s spring ((F
s
)
msr.

= k
s
�
s
). �e inner force 

controller includes a PID controller which is tuned by 

Ziegler–Nichols method. In order to avoid instability a 

low pass �lter for the derivative term is used to limit the 

high frequency gain and noise.

An online adaptation process is used to synchronize 

the DMP trajectory speed with the user’s intended speed. 

In this process, the inverse dynamic model is used to esti-

mate the LSEA force ((F
a
)
est.

). �e force error e
F
 is then 

calculated by subtracting the estimated force from the 

measured force ((F
a
)
msr.

) of the LSEA. Negative values of 

e
F
 indicate the user’s intention to speed the movement up, 

and positive values represent the user’s intention to slow 

it down. �erefore, the following adaptation equation is 

suggested for on-line tuning of the time constant,

 
(26)�̇ = �e

F

Figure 10. The block diagram of the impedance controller implemented on FUM-KneeExo.

Figure 11. Overall structure of the proposed control architecture for FUM-KneeExo.
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856  K. KAMALI ET AL.

di�erent foot positions with the same seat height while 

wearing FUM-KneeExo on his leg (see Figure 13). In the 

second experiment set, the subject rose from four di�erent 

seat heights with the same foot position. For each sitting 

position, ten consecutive sit-to-stand movements were 

performed. During all of the experiments, the exoskel-

eton was operating under the proposed control system.

To assess the exoskeleton’s performance, the power 

and torque pro�les of the user’s knee for the condition of 

being assisted by the exoskeleton (assisted condition) are 

compared with the condition in which the user did not 

wear the exoskeleton (unassisted condition). �e inverse 

dynamic model introduced in Section 2 (Equation 7) 

counter card that has been created in the FUM Robotic 

Lab. Figure 12 depicts the overall architecture of the hard-

ware/so�ware of the control system.

6. Experimental results and discussion

To evaluate the proposed assistive control method, a set of 

experiments were adopted with the same individual who 

participated in the case study described in Section 4. �e 

collected kinematic data are used as the training data-

base for the trajectory generation process. Two sets of 

experiments were performed. In the �rst set, the subject 

was instructed to do sit-to-stand movements from �ve 

Figure 12. The experimental setup of the proposed controller.

Figure 13. Snapshots from the sit-to-stand movement trials with the assistance of FUM-KneeExo.
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is employed to calculate the torque pro�les, which are 

needed to realize the measured hip, knee, and ankle rota-

tions. For the unassisted condition, the actuator force and 

the mass and moment of inertia of the exoskeleton parts 

are set to zero in the inverse dynamics equation. �e mass 

and moment of inertia of the human model segments are 

estimated from the anthropometric data in [22].

�e torque and power pro�les of the 10 consecutive 

movements are averaged to obtain intrasubject mean 

torque and power pro�les for each initial sitting position. 

�e experiment results for one of the sitting position are 

presented in Figure 14. In this �gure, graphs (a) and (b) 

illustrate the torque and power pro�les of the knee joint 

for the assisted condition (dashed lines) and the unassisted 

condition (solid lines). �e thick lines represent the intra-

subject mean pro�les and the thin lines ±1 SD margins. 

�e vertical line indicates the seat-o� instant, which is 

considered to be when a sudden increase in the ground 

reaction force occurs, as can be observed in graph (d) of 

Figure 14. Graph (c) of Figure 14 shows the mean angle 

pro�les of the knee joint. Visual comparison of the torque 

and power pro�les of the knee joint indicates a signi�cant 

reduction in the power and torque values for the assisted 

condition with respect to the unassisted condition.

An interpretation of the performance can be pre-

sented based on the statistical analysis of the knee joint 

power applied by the user for the assisted and unassisted 

Figure 14. The intrasubject mean and ±1 SD profiles of (a) the knee torque; (b) the knee power; (c) the knee angle; (d) the ground 
reaction force during sit-to-stand movement.

Figure 15.  Average of knee power for assisted/unassisted 
conditions across (a) different foot positions and (b) different seat 
heights.
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858  K. KAMALI ET AL.

all initial sitting positions (Tables 3 and 4). Furthermore, 

Figure 16 compares the e�ect of di�erent foot positions 

and seat heights on the e�ciency of the exoskeleton. In 

this �gure, the average assistance level (A) is de�ned as:

 

where, P
knee

 is power applied by the human knee and 

Tf  is the interval time of sit-to-stand task. Statistical sig-

ni�cance was tested using one-way ANOVA on the assis-

tance level and the sitting position the main factors. �e 

ANOVA result shows no signi�cant di�erences between 

the di�erent experimental conditions (p-value = 0.959 for 

di�erent foot position and p-value = 0.688 for di�erent 

seat heights), which reveals that the assistance level was 

not a�ected by variation of the sitting position.

7. Conclusion and future works

In this paper, a novel approach for trajectory generation 

and control of a lower-limb exoskeleton for the application 

of sit-to-stand assistance is described. �e trajectory gen-

erator deploys DMP theory to predict the user’s intended 

movement based on a previously collected database of 

samples trajectories. An impedance controller is then used 

to move the exoskeleton along the predicted trajectory. 

�e controller provides assistive torques while it allows 

the user to control the speed of the movement. A set of 

experiments were conducted on a healthy adult to assess 

the performance and robustness of the proposed method. 

�e user performed several sit-to-stand movements from 

di�erent sitting positions with the assistance of the exo-

skeleton. �e results reveal that, using the proposed tra-

jectory generation and control strategy, the exoskeleton 

reduces the required user’s average knee power by about 

30%. Moreover, the ANOVA analysis results show that 

there is no signi�cant change in the performance of the 

controller under sitting position variations. To conclude, 

(27)A =

∫
Tf

0

(

P
knee

)

unassisted
− ∫

Tf

0

(

P
knee

)

assisted

∫
Tf

0

(

P
knee

)

unassisted

× 100

conditions across di�erent sitting positions. To do so, the 

time average and standard deviations (SD) of the power 

pro�les were calculated for all the initial sitting position 

under the two mentioned conditions. �e results of a 

side-by-side comparison of the assisted condition with 

the unassisted condition for �ve di�erent foot positions 

and four di�erent seat heights are illustrated in Figures 

15(a and b). In these diagrams, the bars represent mean 

values, and the error bars indicate the SD.

A two-tailed Student’s t-test analysis of the assisted con-

dition and the unassisted condition sets showed signi�cant 

di�erences between the two conditions (p-value < 0.05) for 

Table 3. Two-tailed student’s t-test results for unassisted/assisted knee power across five different foot positions.

Foot position (cm) −10 −7 −4 0 4

Assisted average knee power (W) (mean (SD)) 7.89(1.00) 6.03(1.34) 7.23(1.21) 7.52(1.16) 7.86(1.09)
Unassisted average knee power (W) (mean (SD)) 11.65(0.70) 9.85(0.66) 10.29(0.55) 10.05(0.67) 12.19(1.23)
p-value 1.77 × 10−8 2.54 × 10−5 2.16 × 10–5 6.23 × 10–5 9.78 × 10–5

Table 4. Two-tailed student’s t-test results for unassisted/assisted knee power across four different seat heights.

Seat height (cm) 40 43 46 49

Assisted average knee power (W) (mean (SD)) 7.72 (1.13) 5.77 (1.47) 6.48 (0.99) 6.8 (0.73)
Unassisted average knee power (W) (mean (SD)) 11.05 (1.17) 9.66 (0.91) 8.55 (1.44) 9.97 (1.24)
p-value 4.1 × 10−4 1.8 × 10−5 5.6 × 10−4 9.2 × 10−4

Figure 16.  Average assistance level across (a) different foot 
positions and (b) different seat heights.
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rehabilitation robotics), dynamics, kinematics, control, auto-
mation, optimization as well as design, and analysis of experi-
ments. He is also a founding member of the Center of 
Excellence on So� Computing and Intelligent Information 
Processing (SCIIP).
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