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Abstract. In this paper, a walking in-pipe robot is studied. The robot has six legs, each consisting of 3 links 
connected via rotary joints. The legs are attached to the robot’s body. The work is focused on the problem 
of generating desired position and orientation for the robot’s body, using a given footstep sequence. An 
iterative geometric algorithm for generating orientation sequence is proposed. The problem of finding the 
desired position of the center of mass of the robot’s body is formulated as a problem of minimizing 
stretching of the robot’s legs during steps. Also, an analytical solution for inverse kinematics problem has 
been given. All proposed algorithms do not require extensive calculation and use basic algebraic operations. 

1 Introduction 
The main use of in-pipe robots is the transport of 
specialized equipment, which, in its turn, is used for 
diagnostics and maintenance of the pipeline [1, 2]. 
Having the equipment inside the pipeline is sometimes 
the only option other than excavation of the pipe, which 
is associated with significant costs. Additionally, being 
able to access the inner surface of the pipe can provide 
for a better detection of defects that occur there. It also 
provides a direct way to monitor the deposits on the 
inner surface of the pipe. Sensor systems employed in 
such inspection tasks are discussed in paper [3]. The use 
of in-pipe robots for cleaning the pipelines was also 
proposed in [4]. 

There are several types of in-pipe robots. Many of 
the proposed classifications distinguish seven or more 
different types [5, 6]. Paper [7] is devoted to the study of 
motion of worm-like robot; the work [8] describes the 
parallel-link robot with flexible structure. Papers [9,10] 
present the results of numerical simulations in-pipe robot 
based on the vibration principle of movement. All of the 
above robots are used for inspection of pipelines. In this 
paper we focus on walking in-pipe robots. This type of 
robots is particularly interesting because of its ability to 
“step over” obstacles, potentially allowing such robots to 
navigate pipelines with branches, matter deposits and 
other types of obstacles.  

Some of the walking robot designs are shown in 
papers [11-17]. In works [11-13] an eight legged in-pipe 
robot and its sensory system are studied. In paper [14] a 
six legged in-pipe robot designed for motion in spatially 
curved pipes is discussed. Articles [15-17] focus on 
planar in-pipe robots with four legs, considering designs 
with a solid and segmented main link. 

We should note that there are a number of problems 
associated with controlling walking in-pipe robots. That 

includes step sequence generation, trajectory generation, 
inverse kinematics, controller design that takes into 
account information about contact with the inner surface 
of the pipe, observer design and others. This is similar to 
the set of problems associated with other types of 
walking robots. Many of the solutions for these problems 
found for different types of walking robots are viable for 
in-pipe walkers as well; this is discussed in paper [14] in 
more detail. 

Some of the listed above problems have been studied 
specifically for the case of in-pipe walking robots. In 
papers [14,15] step sequence generation algorithms are 
proposed for planar and spatial in-pipe walking robots. 
In work [15] an analytic solution for inverse kinematics 
problem is given for a 9 link planar robot. In [16] a 
quadratic programming-based controller design for an 
in-pipe walking robot is proposed, able to take into 
account actuator torque limits and mechanical 
constraints, preventing loss of contact and slipping of the 
leg. Additionally, inverse kinematics algorithms, control 
designs and state-estimator designs were studied in [18] 
for a bipedal walking robot, using approaches that can be 
translated to in-pipe robots. 

In this paper we focus on trajectory generation 
problem for the robot’s body (the main link that all 
robot’s legs are connected to). Knowing position and 
orientation of robot’s body and robot’s footstep sequence 
allows us to solve inverse kinematics problem for each 
leg individually, obtaining all joint angles. If there are 
three joints in each leg and the end effector of the leg (its 
foot) has three translational degrees of freedom when the 
robot’s body is fixed, then in this case the inverse 
kinematics problem has a finite number of solutions that 
may be found analytically. For such a case, it should be 
possible to write an efficient inverse kinematics 
algorithm that can be executed using on-board computer 
without producing excessive computational load. Also, 
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knowing robot’s body position and orientation allows us 
to estimate the feasibility of the robot’s trajectory with 
respect to the geometry of the pipeline. 

This paper can be considered a follow-up on the 
work [15], where the problem of body position and 
orientation generation was solved for a planar robot. The 
goal of the paper is to derive a systematic approach for 
generating center of mass trajectory for the robot’s main 
link, as well as time functions defining its orientation. 

2 Robot description 
In this paper, we consider a six legged in-pipe robot with 
19 individual links. Each leg includes three links 
connected via rotary joints and is attached to the robot’s 
body. The construction of the robot is shown in Figure 1. 

 

Fig. 1. Construction of the six-legged walking in-pipe robot: 
1 – robot’s body, 2 – robot’s legs. 

In Figure 1 point C denotes the center of mass of the 
body link, Fi, Ei and Di denote robot’s joints and points 
Ki denote contact pads on the end of the robot’s legs, 

6,1=i . We denote the position of these points as Cr , 

Fir , Eir , Dir  and Kir  accordingly. The orientation of 
the body is defined by a directional cosines matrix T . 

If Cr  and T  are given, then we can determine Fir  
using the following expression: 

)0()1()0(
CFiFi rTrr += , (1) 

where the superscript denotes the reference frame, )0(r  
means the vector is expressed in world frame Oxyz and 

)1(r  means it is exressed in local frame Cx1y1z1. 
Furthermore, we assume that links FiEi have such 

shape, that rotations in joints Fi don’t change the 
positions of points Ei. 

3 Determining desired position and 
orientation of the robot’s body 
The algorithm described in this section discretizes 
robot’s trajectory and aims to find T  and Cr  for every 
discrete point in time jt . We assume that we are given 

vectors )( jKi tr  for the current time point jt , and we are 

given matrix )( 1−jtT  and vector )( 1−jC tr  for the 

previous time point 1−jt . The algorithm for generating 

footstep sequence )( jKi tr  is described in detail in [14]. 
The algorithms includes two steps. First, we find the 
desired orientation of the robot’s body, and then the 
position of its center of mass. 

3.1. Determining desired orientation 

First, we define directional vector Kσ  for the footsteps 

Kir  as follows:  

iKiK

iKiK
iK

,3,

,3,
, rr

rr
−

−
=

+

+
σ , (2) 

3,2,1,

3,2,1,

KKK

KKK
K

σσσ

σσσ
σ

++

++
= , (3) 

Then, using )( 1−jtT  and formula (1) we can find 

)( 1−jFi tr , the positions of the body joints during the 

previous step. We define directional vector Fσ  for 
robot’s body the same way as we defined Kσ , only 
instead of )( jKi tr  we use )( 1−jFi tr . 

Finally we can find rotation matrix that takes Fσ  to 

Kσ . To do this we find axis of rotation FKe  and angle 
of rotation FKα : 

KF

KF
FK

σσ

σσ

×

×
=e , (4) 

)(cos 1
KFFK σσα ⋅= − . (5) 

The directional cosines matrix )( jtT  is then given 
by the following expression: 

)(),()( 1−= jFKFKj tt TeTT α , (6) 

where ),( FKFK αeT  is the matrix representing rotation 
around axis FKe  by angle FKα  [19]. 

We should note that this method can accumulate 
error associated with roll angle (in roll-pitch-yaw 
representation of rotations). This can be avoided by 
performing an additional rotation, using Kσ  as an axis. 

3.2. Determining desired position 

To find desired position of the center of mass )( jC tr  we 
find the vector p  that shifts the previous its position 

)( 1−jC tr  to the new one, such that the resulting new 
positions of points Fi minimize the distance between 
them and points Ki. This condition aims at minimizing 
stretching of the robot’s legs, allowing them to stay 
further away from kinematic singularities. 
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Then the vector p  given by the following 
expression: 
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This can be formulated as a quadratic program or can 
be solved directly using least squares method. To do the 
latter, we define a difference vector d  and matrix C : 
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where I  is a 3 by 3 identity matrix, and both C  and d  
have 18 rows. Then the solution for least squares can be 
found as: 

dCCCdCp Τ−Τ+ == 1)( . (9) 

Thus, the new position of the center of mass is given 
as: 

prr += − )()( 1jCjC tt . (10) 

3.3. Generating continuous trajectories 

In order to generate continuous trajectories from the 
obtained sequence of positions and orientations, we can 
use interpolation. Sequence )( jC tr  can be directly 
interpolated using splines. In order to interpolate 
orientations, they need to be converted to a different 
representation, because interpolating sequence of 
directional cosines matrix can produce matrices that 
would not be orthonormal and thus would require 
orthogonalization. Instead, we can replace matrices 

)( jtT  with quaternion )( jtq  describing equivalent 
rotations [19]. This sequence of quaternions can then be 
interpolated using special algorithms, such as Slerp [20]. 
This interpolation can be used to recover rotation 
matrices T  for any moment in time, or directly, by 
modifying formula (1) and other kinematics expressions 
accordingly. 

Figures 2 and 3 shows a sequence of positions of 
robot’s body inside a pipeline (legs are not drawn, 
pipeline is opaque in Figure 2 and transparent in Figure 
3). Figure 2 shows that the proposed method allows 
generating a sequence of positions of the center of mass 
of the robot. The robot always stays roughly at the center 
of the pipe, and keeps its orientation “parallel to the 
pipeline’s direction”. 

4 Inverse kinematics algorithm 
Having )(tT  and )(tCr  we can find )(tFir  using (1). 
Furthermore, we can find )(tEir  with the next formula: 

)0()1()0(
FiFiEiEi rTrr += , (11) 

where FiEir  is vector drawn from point Fi to Ei. Figure 4 
shows the leg of the robot. In the Figure 4, l1 and l2 and 
lengths of the links EiDi and DiKi and ψi, φi,1 and φi,2 are 
joint angles. 

 

Fig. 2. Spatially curved pipeline with robot in it; 1 – initial 
robot’s position, 2 – pipeline, 3 – points where the robot steps 
to. 

 

Fig. 3. Sequence of positions for robot’s body inside a pipeline; 
1 – initial robot’s position, 2 – pipeline, 3 – points where the 
robot steps to, 4 – intermediate positions. 

 
Fig. 4. Construction of the robot’s leg. 

Let us consider vector EiKir  drawn between points Ei 
and Ki. Using formula (11) and the given sequence 

)( jKi tr  (or its continuous version) we can find the value 
of this vector. Then we can calculate the length of this 
vector iL  and the azimuth angle ψi in the following way: 
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Then we rotate the vector EiKir  so it would lie 
parallel to Ozx plane : 

EiKixEiKi rTTr 1* )( −= ψ ,  (13) 

With this we can consider a simple planar inverse 
kinematics problem, illustrated in Figure 5. 

 
Fig. 5. Inverse kinematics diagram. 

The solution for the planar inverse kinematics 
problem is given by the next expressions: 
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Using these expressions we can solve for ψi, φi,1 and 
φi,2 triplets for each leg, thus solving inverse kinematics 
problem for the robot. Figure 6 shows the result of 
applying these algorithms, demonstrating obtained 
orientations of robot’s legs while it moves through a 
curved pipe. 

 

Fig. 6. Robot with legs drawn, their orientation found by the 
inverse kinematics algorithm (the pipe is not shown). 

We can see that the robot bends its “knees” in the 
same direction, which is the result of the chosen 
approach. This can be controlled by changing signs in 

the expressions (14) and (15). Similar problem was 
discussed in [15, 21]. 

We should note that this algorithm does not handle 
singularities, and it would fail in the case when a point 
can’t be reached. There are easy ways to check if the 
algorithm will fail, for example by using the following 
condition: 

21 llLi +≤ . (16) 

If the leg segments are not of equal length, we can 
add another condition, requiring that the length of the 
longer segment would be less or equal to the length of 
the other segment plus iL . If the conditions are not 
satisfied, then the inverse kinematics problem for the leg 
has no solution. 

6 Conclusions 
In this paper a six legged in-pipe walking robot was 
studied. The aim of the study was to provide an efficient 
algorithm for generating positions and orientations of the 
robot’s body, and to show how it can be used to derive 
an analytic solution for inverse kinematics problem. 

The proposed method for generating center of mass 
trajectory is based on interpolation of the sequence of 
positions of the center of mass. That sequence is in its 
turn found by considering the problem of minimizing the 
distance between the footsteps locations (points of 
contact where the robot needs to step to) and the bases of 
robot’s legs. This problem can be solved algebraically 
for the case when robot’s orientation is fixed. 

The orientation is found by a heuristic-based 
approach, which uses so-called directional vectors, 
which indicate where the robot should be orientated. The 
procedure of generating a sequence of orientations is 
iterative and requires initialization, although the initial 
orientation supplied to the algorithm does not need to be 
very accurate. Then the sequence of orientations can be 
represented as a sequence of quaternions and 
interpolated. 

The proposed inverse kinematics solution is based on 
simple geometric manipulations. The advantage of this 
approach, same as with the other methods proposed in 
this paper, is its low computational requirements. 
 
This work is supported by the Presidential grant MK-
2577.2017.8. 
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