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Abstract We sketch the evolution of station trajectory

models used in crustal motion geodesy over the last sev-

eral decades, and describe some recent generalizations of

these models that allow geodesists and geophysicists to para-

meterize accelerating patterns of displacement in general,

and postseismic transient deformation in particular. Mod-

ern trajectory models are composed of three sub-models

that represent secular trends, annual oscillations, and instan-

taneous jumps in coordinate time series. Traditionally the

trend model invoked constant station velocity. This can be

generalized by assuming that position is a polynomial func-

tion of time. The trajectory model can also be augmented

as needed, by including one or more logarithmic transients

in order to account for typical multi-year patterns of post-

seismic transient motion. Many geodetic and geophysical

research groups are using general classes of trajectory model

to characterize their crustal displacement time series, but few

if any of them are using these trajectory models to define and

realize the terrestrial reference frames (RFs) in which their

time series are expressed. We describe a global GPS reanaly-

sis program in which we use two general classes of trajec-

tory model, tuned on a station by station basis. We define

the network trajectory model as the set of station trajectory

models encompassing every station in the network. We use

the network trajectory model from the each global analysis

to assign prior position estimates for the next round of GPS

data processing. We allow our daily orbital solutions to relax

so as to maintain their consistency with the network poly-

hedron. After several iterations we produce GPS time series

expressed in a RF similar to, but not identical with ITRF2008.
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We find that each iteration produces an improvement in the

daily repeatability of our global time series and in the pre-

dictive power of our trajectory models.
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1 Introduction

The problems of realizing a terrestrial reference frame (RF),

and expressing the position and displacement history of geo-

detic stations in that frame are very strongly coupled (e.g.

Bevis et al. 2012a). In this work, we focus on one partic-

ular coupling: the mathematical models used by geodesists

and geophysicists to characterize the position of geodetic sta-

tions as a function of time. We refer to purely kinematical

models of this kind as station trajectory models, or trajectory

models for short. For the geodesist, these models are useful

because they provide a simple and compact means to pre-

dict the position of a given station on a given day. This task

constitutes the very essence of RF realization: constraining

the coordinates of some stations at a given epoch in order to

determine, via measurements of relative position, the coordi-

nates of other stations at that same epoch. The more precisely

and more consistently (over time) one can predict the geom-

etry of a reference network, the more consistent and stable

the associated RF becomes. This is a major concern for most

geodesists. Geophysicists are usually more concerned about

station trajectories because of the insights they give into the

dynamical behavior of the solid earth. But everyone ben-

efits from improved RF stability, since daily ‘jitter’ of the

frame (or, more properly its realization) increases the scatter

or noise in station coordinate time series, thus diminishing
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our ability to resolve and characterize the phenomenology of

station displacement.

Geophysicists will go to great lengths to examine, ana-

lyze and model crustal motion time series, following Play-

fair’s (1802) dictum that it is wiser to inquire into nature’s

secrets than to guess at them. A geophysical research group

might spend a year analyzing in exhaustive detail the pre-

cise nature of the crustal displacements observed in a given

region in the aftermath of a single great earthquake, and what

can be inferred from those observations. It is not surprising

then, that geophysicists have driven much of the recent inno-

vation in trajectory models. Not all of these innovations will

be widely adopted by geodesists, especially those engaged

in operational analysis, because for geodesists a station tra-

jectory model is really useful only if it is easy to deploy,

computationally inexpensive, and fairly widely applicable.

Although many geodetic and geophysical research groups

are using ‘modern’ trajectory models to characterize their

crustal displacement time series, very few if any of them are

using these trajectory models to define (or refine) and real-

ize the frames in which their time series are expressed. We

have been incorporating modern, rather general classes of

trajectory model into the ‘upstream’ as well as the ‘down-

stream’ segments of our geodetic workflow for more than

3 years. Upstream we use them to generate the prior sta-

tion coordinates required by our GPS data processing engine

GAMIT/GLOBK (Herring et al. 2010), thereby influencing

our daily solutions for the GPS satellite orbits and for the

geometry of the global GPS network. After each global analy-

sis or reanalysis is completed, we update the station trajectory

models for each station in the network. After several itera-

tions the prior coordinates being injected to the GPS process-

ing engine are no longer consistent with the predictions of

ITRF2008 (Altamimi et al. 2011). The differences are mod-

est but they are systematic, and therefore our network time

series are actually expressed in a slightly different RF that

we call OSU08.

There are two main themes in this paper. First, we wish

to review the topic of station trajectory models in a man-

ner that is easily accessible to non-specialists and to students

entering our field. This review—perhaps tutorial would be a

better term—is not exhaustively comprehensive, and it does

emphasize the classes of trajectory model we use at Ohio

State University (OSU). Towards the end of this survey, we

discuss our experience incorporating the logarithmic tran-

sient formula, now widely used to characterize postseismic

transients, into our trajectory models. Unlike most discus-

sions of this topic, our approach is pragmatic and focused

primarily on the geodetic utility of this class of trajectory

model, not its geophysical significance.

We then develop our second theme—the potential impact

of modern trajectory models on the way in which we define

and realize reference frames (RFs). At high school we learned

that a set of axes allows us to give coordinates to a set of

points. But for geodesists, it is the giving of coordinates to

a set of reference stations that, in effect, defines the axes.

Therefore, when a RF is to operate not just at a single epoch,

but continuously over an extended period of time, we have to

invoke this axis system by specifying the coordinates of the

reference stations as functions of time. That is, we must spec-

ify the trajectories of these reference stations. If we define a

network trajectory model as a set of station trajectory models

for every station in a network, then, in its operational con-

text, a RF is a network trajectory model for a set of reference

stations. It follows that if modern station trajectory models

are improving our ability to characterize displacement time

series expressed in standard RFs, then these improved tra-

jectory models should also allow us devise and realize more

consistent (and ‘stable’) RFs.

Again, we hope to develop this theme in a fashion eas-

ily understood by non-specialists. We will invoke the con-

cept of inner geometry, meaning RF-independent geome-

try. This fundamental idea pervades modern space geodesy,

but its ubiquity is sometimes obscured by the variety of lan-

guage in which it is expressed. To understand the potential

impact of modern trajectory models on the RF and the time

series expressed in these frames, it is crucial to distinguish

between the geometrical alignment or stacking of a network

time series, and the subsequent transformation of the aligned

time series into a target RF. This two-stage approach is widely

used in the space geodetic community, but its nature some-

times proves difficult for non-specialists to grasp. Therefore,

we seek to explain the posterior approach to RF realization,

and its nexus with trajectory modeling, using consistent and

easily understood language.

2 The evolution of station trajectory models

About 50 years ago, before Alfred Wegener’s theory of conti-

nental drift (or plate tectonics) was widely accepted, and well

before modern space geodetic techniques had been devel-

oped, geodesists realized their RFs and described their geo-

detic networks by assigning three spatial coordinates to each

geodetic station. In principle, these coordinates were con-

stant over time. Static coordinates are best suited to a static

earth, but also serve on a dynamic earth so long as extant posi-

tioning methods lack the precision to detect tectonic motions

over extended periods of time (say, one decade). But with the

advent of very long baseline interferometry (VLBI), satellite

laser ranging (SLR), and global positioning system (GPS)

geodesy, plate motions were easily resolved over a year or

two, and eventually over even shorter periods of time. This

level of positioning accuracy rendered static global coordi-

nate systems permanently obsolete. The simplest conceiv-

able reference system for a dynamic earth invokes a constant
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velocity model (CVM) in which the geocentric Cartesian

coordinates (X, Y, Z) for each geodetic station are expressed

as a linear function of time, thus

X (t) = XR + Vx (t − tR)

Y (t) = YR + Vy(t − tR)

Z(t) = ZR + Vz(t − tR)

(1)

or in vector form

x(t) = xR + v(t − tR) (2)

where tR is a reference time (adopted by convention), xR =

x(tR) = [XR YR ZR]’ is the reference position, and v =

[Vx Vy Vz]’ is the station velocity. In this model, the trajec-

tory of each station, i.e. its position as a function of time,

is completely described by its reference position, xR, and

its velocity, v. That is, six parameters are used to describe

each station, instead of three as before. Some groups and

services, e.g. the International Earth Rotation and Reference

Systems Service (IERS), adopt a single reference time for all

stations used to define a given reference frame, while others

(including us) prefer station-specific reference times set by

convention to the mean epoch (measurement time) of the time

series used to estimate the six parameters of the CVM. This

convention minimizes the statistical correlation between the

reference position and velocity estimates.

As networks of continuous GPS (CGPS) stations prolifer-

ated around the world in the late 1980s, it very soon became

clear that the CVM was of limited utility in that it could not

accommodate the sudden offsets or ‘jumps’ observed in many

geodetic time series. In some cases these jumps were coseis-

mic displacements produced by local or large regional earth-

quakes. But most coordinate jumps were caused by changes

in the GPS hardware, especially the antenna or its radome,

and thus were artificial discontinuities in the time series since

the ground itself had not really moved. Artificial or not, these

sudden jumps in coordinates must be accounted for. One way

to do this is to rename the station so as to establish a new ref-

erence position. But the more elegant and more manageable

approach is simply to model each jump using a Heaviside

function, sometimes referred to as the ‘unit step’ function,

defined thus

H(t) = 0 for t < 0

H(t) = 1/2 for t = 0

H(t) = 1 for t > 0

(3)

The CVM was modified to accommodate one or more jumps

at specified times {t j }, j = 1 : nJ , thus:

x(t) = xR + v(t − tR) +

nJ
∑

j=1

b j H(t − t j ) (4)

where b j characterizes the jump which occurs at time t j as

an instantaneous displacement vector specified in geocentric

Cartesian coordinates. That is, the three components of b j

are the jumps that occur in the X, Y , and Z coordinates of the

station at the instant of the j th jump. The velocity v remains

constant. This model (Eq. 4) is also referred to as the CVM,

but it can be called the ‘CVM with jumps’, if the distinction

from Eq. (2) is important.

This modified trajectory model (Eq. 4) was widely adopted

by the international geodetic community by the late 1980s,

and it provided an adequate description of the great major-

ity of geodetic CGPS time series until the late 1990s, when

geophysicists and geodesists began to resolve annual oscil-

lations in their geodetic time series. These oscillations were

usually much larger in the vertical direction than in the hor-

izontal. With the notable exception of Dr. M. Murakami in

Japan, who argued they were real, these seasonal cycles were

largely ignored or dismissed as artifacts (e.g. due to mis-

modeling of atmospheric delays) until Heki (2001) vividly

demonstrated that they were actual oscillations of the ground

manifesting earth’s elastic response to seasonal changes in

the loads imposed upon the lithosphere by the overlying

environment—especially the loads associated with surface

water, snow and ice (see also Mangiarotti et al. 2001; Van

Dam et al. 2001; Blewitt et al. 2001). Dong et al. (2002)

demonstrated that for most GPS stations these annual oscil-

lations could be well approximated by a four-term Fourier

series consisting of two annual and two semi-annual terms.

They also argued that it was desirable to include this truncated

Fourier series in the trajectory model so as to prevent non-

integer numbers of displacement cycles affecting, or “leaking

into” estimates of a station’s reference position and velocity.

They implied that this could, in principle, improve the sta-

bility of the terrestrial RF. Today, many, if not all, crustal

motion geodesy groups routinely include annual displace-

ment cycles in their station trajectory models, which usually

take the form:

x(t) = xR + v(t − tR) +

nJ
∑

j=1

b j H(t − t j )

+

nF
∑

k=1

[sk sin(ωk t) + ck cos(ωk t)] (5)

where nF is the number of frequencies used to model the

annual displacement cycle, and

ωk =
2π

τk

, and τ1 = 1 year,

τ2 = 1/2 year, τ3 = 1/3 year, etc.

This trajectory model, which superimposes both Heaviside

jumps and an annual cycle on a constant velocity trend, is lin-

ear with respect to its parameters or coefficients, which num-

ber 3∗(2 nF +nJ +2) in all. That is, (2 nF +nJ +2) trajectory
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Fig. 1 Daily displacement time series (blue dots) at CGPS station

POVE in Puerto Vehlo, Brazil, and its best-fit trajectory model (red

curves). The three plots depict the east (E), north (N) and up (U) compo-

nents of displacement in meters. Annual displacement cycles at POVE

are driven by seasonal variations in the mass of water residing in the

Central Amazon Basin (e.g. Bevis et al. 2005). The vertical cycle has

a peak to peak amplitude close to 40 mm, about an order of magnitude

larger than the horizontal cycles. Note that interannual variations in the

vertical cycle can be correlated with droughts or unusually wet rainy

seasons. The five numbers above the left side of each plot are the veloc-

ity in mm/year and coefficients (s1, c1, s2, c2) of the truncated Fourier

series in mm. The WRMS misfit of data and model is given in mm at

top right. The super-label at the top of the page specifies the structure

of the SLTM. All displacements are expressed in a RF attached to the

stable core of the South American plate

parameters are needed to describe the temporal evolution of

each station coordinate X, Y , or Z . In our experience, it is

only rarely necessary to set nF > 2, but setting nF = 2 usu-

ally produces a significantly better fit to the observed time

series than does setting nF = 1. Figures 1 and 2 depict rather

striking examples of seasonal oscillations at GPS stations

POVE, in Brazil, and NETT, in New Zealand.

While this trajectory model (Eq. 5) is well known and

fairly widely employed, it has never, to our knowledge, been

used to define a RF. Before focusing on this issue, we describe

two further generalizations of the station trajectory model

that we frequently use in our work at OSU. The first gen-

eralization allows us to model stations whose displacement

trends involve significant and sustained accelerations. The

second generalization allows a trajectory model to follow the

displacements of stations affected by post-seismic transients.

3 Incorporating non-steady displacement trends

The trajectory model presented in Eq. (5) is composed of

three sub-models:

x(t) = xtrend + xjumps + xcycle (6)

with the first sub-model, which accounts for the multi-

year trend in position, being the CVM (Eq. 2). How-

ever, sustained accelerations are being observed at increas-

ing numbers of CGPS stations, especially near or within

active ice sheets (Khan et al. 2010; Jiang et al. 2010;

Bevis et al. 2012b), but also in other settings such as

active volcanoes. We can accommodate such behavior by

replacing the CVM (Eq. 2) with the polynomial trend

model

xtrend =

nP+1
∑

i=1

pi (t − tR)i−1 (7)

where nP is the order or maximum power of the polynomial.

If nP = 1, then this model reduces to the CVM, with p1 =

xR and p2 = v. If nP = 2, it becomes the quadratic trend

or ‘constant acceleration’ model in which the acceleration

vector a = 2 p3. No matter what value is assigned to nP , p1

always corresponds to the reference position xR. In practice

nP should not be set larger than 5 or 6, unless the trend model

is reformulated to use orthogonal polynomial functions. In

our experience it is only rarely necessary to set nP > 3. For a

very large majority of CGPS stations, it is perfectly adequate

to set nP = 1.

Having made this substitution we obtain the trajectory

model known at OSU as the standard linear trajectory model

(SLTM):
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Fig. 2 The CGPS station NETT in the Southern Alps of New Zealand

exhibits one of the largest horizontal displacement cycles observed any-

where on earth. This cycle is much stronger in the E component of dis-

placement (shown) than in the other components (not shown). Note that

the SLTM incorporates a single Heaviside jump which accommodates

an artificial displacement associated with an antenna change. This time

series is expressed in ITRF2008

x(t) =

nP+1
∑

i=1

pi (t − tR)i−1 +

nJ
∑

j=1

b j H(t − t j )

+

nF
∑

k=1

sk sin(ωk t) + ck cos(ωk t) (8)

This vector equation can be thought of as a system of three

scalar equations describing the temporal evolution of the

X, Y , and Z coordinates, respectively. Indeed, operationally

it is most practical to work with the three scalar equations

one at a time, because, in analyzing the displacement history

at a given station, we can solve for the three sets of trajectory

parameters independently, given that the X, Y, and Z axes are

orthogonal. Note that the trajectory model for each Cartesian

coordinate involves a total of (2 nF +nJ +nP +1) parameters

or coefficients. In estimating the parameters of this model by

inverting a station position time series {ti , xi }, i = 1 : m, it

is useful to keep the architecture of the model (Eq. 6) in mind.

For instance, we build the design matrix (which we partition)

from the individual design matrices associated with each sub-

model, and, after the inversion, we frequently decompose the

trajectory model into its component parts.

By way of an example, we show a trajectory model fitted

to our coordinate times series for the West Greenland CGPS

station KELY at Kellyville. This time series, and all others

shown in this paper, were obtained using GAMIT/GLOBK

software (Herring et al. 2010) at OSU. We fit this time series

with a trajectory model composed of a quadratic trend (by

setting nP = 2), one Heavyside jump (nJ = 1), and the

standard four-term Fourier series (nF = 2). As usual, it is

instructive to transform the data and the trajectory model

into the local (topocentric) cartesian axis system [E, N, U] in

which E is east, N is north and U is ellipsoid-normal up. We

then see that the jump, the annual oscillations and the accel-

erations are all larger in the vertical direction (Fig. 3). The

jump, which occurred at 17:18 Z on 2001/09/14, was associ-

ated with a change of receiver, antenna and radome as well

as a change in the antenna reference point. This produced an

apparent downward jump of 61.1 mm, and horizontal jumps

of 3.5 mm W and 3.4 mm S. Since this jump is artificial in the

sense that the earth’s crust did not really jump at this time,

it is useful to remove the Heaviside jump from the data and

the trajectory curves so as to isolate actual crustal motion

(Fig. 4). Clearly, KELY has reversed the direction of its ver-

tical movement during the course of its lifetime (Jiang et al.

2010).

We quantify these rate changes in Fig. 5, which shows the

‘velocity trend’, that is the station velocity history once the

oscillatory velocity changes associated with the seasonal dis-

placement cycle have been excluded. This is achieved by tak-

ing the first derivative of the polynomial model for displace-

ment trend. We see that the U component of velocity changed

from about −2.8 mm/year in 1996.0 to about +4.1 mm/year

in 2010.4. The acceleration estimate is 0.49±0.02 mm/year2.

The accelerations are much smaller in the E component

(−0.10 ± 0.01 mm/year2) and negligible in the N compo-

nent (−0.04 ± 0.02 mm/year2). As KELY has accelerated

upwards in response in accelerating ice loss to its east (Khan

et al. 2010; Jiang et al. 2010), it also accelerated horizon-

tally, nearly westwards. This ‘up and away’ acceleration is

the classic ‘Boussinesq response’ for a point located outside

of a region of accelerating mass loss (Becker and Bevis 2004;

Bevis et al. 2012b).

It is possible to characterize accelerating patterns of dis-

placement without using polynomial trend models. Some

recent works have invoked a linear spline or polyline trend

model instead (e.g. Khan et al. 2010). This divides the total

time span encompassing a station time series into two or more

adjoining intervals, and invokes a CVM in each time interval,

but requires these line segments to connect at the boundaries

between time intervals. The resulting polyline is continuous,

but its gradient can be and usually is discontinuous at the

boundaries of the time intervals.

Note that the linear spline model is distinct from the piece-

wise constant velocity model (PCVM) sometimes invoked by

the ITRF, since the line segments in this case are not required
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Fig. 3 The crustal

displacement time series at

station KELY in West

Greenland, and a standard linear

trajectory model invoking a

quadratic trend, a single

Heavyside jump, and a four-term

Fourier series (red curve). The

WRMS misfit of data and model

is shown (in mm) on the top

right side of each plot. This time

series is expressed in a frame

that minimizes horizontal

motion at long-lived CGPS

stations within Greenland
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Fig. 4 The displacement time

series and trajectory model

shown in Fig. 3 after the

Heaviside jump has been

removed from the data and the

model. The location of the jump,

which was an artifact of an

antenna and radome change, is

shown by the dashed red line.

These plots now depict the

actual motion of the ground.

Clearly the direction of vertical

motion has reversed during the

course of KELY’s lifetime
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to join at the boundaries between time segments, and so the

PCVM often produces a discontinuous representation of a

secular trend. Indeed, ITRF sometimes invokes the PCVM

using time segments that overlap, or which are separated by

gaps in which the station position is undefined. See Sect. 6.2

for further discussion of the PCVM.

Yang et al. (2013) model both secular trends and annual

cycles recorded in Greenland using a more complicated

approach than any discussed so far. Their approach uses a

spline model to address how annual ‘cycles’ might vary from

year to year. This is perhaps the most specialized trajectory

model devised to date for use in tectonically stable areas: its

structure reflects the authors’ understanding of climate cycles

and climate change in a polar ice sheet. It is probably too

specialized for wholesale adoption by geodesists and geo-

physicists engaged in global GPS analysis. We shall make

no further reference to this interesting class of trajectory

model.
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Fig. 5 The E, N and U components of the velocity trend at KELY

(solid red line) and their nominal 95 % confidence intervals (dashed

red lines). Since this station was modeled using a quadratic trend, this

is a ‘constant acceleration trajectory.’ The dashed blue line represents

the lifetime average station velocity. Strongly accelerating patterns of

displacement in Greenland cannot be explained in terms of postglacial

rebound (PGR). They manifest instantaneous elastic rebound driven by

accelerating rates of ice loss (Bevis et al. 2012b)

4 Accommodating postseismic deformation

A significant fraction of CGPS stations worldwide are located

in seismogenic areas, and therefore, over the last 15–20 years,

many CGPS stations have recorded coseismic jumps fol-

lowed by pronounced postseismic transients. This produces a

significant challenge for groups engaged in designing or real-

izing global RFs valid from the early 1990s to the present day,

because there are numerous regions of the world, e.g. west-

ern South America, Indonesia, Turkey, California, Japan,

Taiwan, Alaska and the Southwest Pacific, in which many

or even all long-lived CGPS stations have recorded one or

more episodes of vigorous postseismic deformation. Unless

the trajectories of these stations can be approximated using a

suitably modified trajectory model, then these stations can-

not easily be used to define or realize a RF, and the remaining

global reference stations will have a significantly poorer spa-

tial distribution. Polynomial trend models (Eq. 7) are not well

suited to this task, because postseismic transients often begin

‘in the middle’ of a time series, with the fastest accelerations

of all just after the earthquake, and no transient acceleration

at all immediately before the earthquake.

Postseismic deformation is widely thought to be driven by

some combination of

(1) poroelastic rebound, which is deformation caused by

pore fluids flowing in response to the stress perturba-

tions produced by the earthquake (Peltzer et al. 1998;

Wang 2000; Masterlark and Wang 2002; Jónsson et al.

2003; Fialko 2004; Wang et al. 2004),

(2) afterslip on the fault or plate boundary that generated

the earthquake (Smith and Wyss 1968; Bucknam et al.

1978; Marone et al. 1991; Heki et al. 1997; Marone 1998;

Perfettini and Avouac 2007; Perfettini et al. 2010, Lin et

al. 2013), and

(3) bulk viscoelastic relaxation of material surrounding (in

map view) and beneath the fault (e.g. Thatcher and Run-

dle 1979; Wahr and Wyss 1980; Deng et al. 1998; Pollitz

et al. 2000; Freed 2007; Freed et al. 2007; Wang et al.

2012).

While poroelastic rebound may not always be a strong

contributor to postseismic deformation, when it is clearly

present, it is distinct from the other two mechanisms in that

it is relatively short-lived (often being weak or even unre-

solvable after a few weeks), and it is best expressed in the

near-field of the main event. Afterslip and viscoelastic relax-

ation persist for many years, and they may affect a much

wider region. Many geophysical theorists believe that vis-

coelastic relaxation persists much longer than does afterslip

(e.g. Wang et al. 2012), and that present day postseismic

deformation near the rupture areas of the giant 1960 Chile

and 1964 Alaska megathrust earthquakes can be explained

purely in terms of viscoelastic relaxation (Wang et al. 2007).

Of the three mechanisms identified above, only the second

mechanism is easy to model using a simple mathematical

formula. Afterslip is known to generate transient displace-

ments that are well approximated over several years by the

logarithmic transient formula A log(1 + �t/T ) suggested

by rate-and-state friction models (Marone et al. 1991; Per-

fettini and Avouac 2007; Perfettini et al. 2010). In contrast,

poroelastic effects and bulk viscoelastic relaxation are typ-

ically modeled using complicated numerical methods (e.g.

finite element models), and there are no closed-form, analyt-

ical expressions for the transients generated at each geodetic

station.

Given that multiple, quite distinct mechanisms contribute

to postseismic deformation, it does not seem likely, at first

glance, that we could develop a simple means of augmenting

the SLTM so as to account for postseismic transient motion.

But we will show that it is possible to achieve this goal, pro-

vided that (1) we focus directly on the trajectories of the

geodetic stations affected by postseismic deformation, not

on the causative phenomena taking place underground, and

(2) we accept that this simple model often fails to account

for the especially rapid deformation that takes place in the

first few weeks or months following the main event. We

achieve this apparently unlikely outcome by assuming that

the logarithmic transient formula can model postseismic tran-

sient displacement at any GPS station, even though this for-
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mula is theoretically associated with the afterslip mechanism

alone. The frequent failure of this formula to account for the

first few weeks or months of postseismic deformation might

arise because actual short-term deformation is produced in

large part by a mechanism other than afterslip, most likely

poroelastic deformation. (We should keep in mind that the

fluctuations of well water levels sometimes observed imme-

diately following nearby earthquakes, provides direct evi-

dence of postseismic pore-pressure transients, e.g. Jónsson

et al. 2003; Wang et al. 2004.) However, the inability of the

logarithmic transient formula to fit the entire time series could

also arise because GPS station displacement caused by after-

slip is sensitive to spatial variation of the frictional properties

of the fault or plate boundary engaged in afterslip. While the

logarithmic transient formula might be a valid expression for

afterslip in every small patch of the fault, the value of para-

meter T might vary from patch to another, and since all such

patches contribute to displacement at a given GPS station, it

is not really valid to assume that station displacement follows

the logarithmic form with a single value of T . That is, the

logarithmic formula may be overly simplistic when applied

to a single GPS station as opposed to a small fault patch

undergoing afterslip.

However, as we shall see, if we exclude (or downweight)

the several week to several month period immediately follow-

ing the earthquake, the subsequent success of the logarithmic

transient formula in accounting for GPS station displacement

is so striking that it suggests to us that afterslip nearly always

dominates viscoelastic relaxation even a decade or more after

the primary seismic event, and not just for a several years, as

is already widely acknowledged—see Lin et al. (2013) for a

brief review of the relevant literature.

Indeed, the claim we shall make below is rather more

remarkable than what we have suggested so far. The logarith-

mic transient formula has two parameters, A and T , the sec-

ond of which appears inside the logarithm, and thus implies a

nonlinear inversion will be required to estimate the parame-

ters or coefficients for each station. But we will demonstrate

that a useful first approximation is obtained simply by set-

ting T = 1 year, and estimating A alone, in which case the

inversion is purely linear. We do recommend tuning the T

parameter by station, usually one station at a time, but only

as a non-urgent refinement undertaken as time permits, and

not in the context of global time series analysis and RF real-

ization. The insensitivity to T is such that, having refined the

estimate of T at some later date, using a station-specific non-

linear estimation procedure, it is not necessary to repeat this

refinement process very often, at least once the postseismic

transient has been measured for ∼2 years or longer.

We are not suggesting that geophysicists engaged in the

study of earthquake physics, fault mechanics, and crustal and

mantle rheology, could consider such a simplistic approach

sufficient or adequate. Rather, we are suggesting that a very

simple augmentation of the SLTM, based on the logarithmic

transient formula, provides an adequate means for geodesists

to predict the positions of almost any geodetic station sub-

ject to postseismic transient deformation, for all but a few

months at worst, with centimeter or sub-centimeter accu-

racy. This is much preferable to eliminating all such stations

from the set of reference stations used to realize a RF (at

least for all epochs after the first earthquake that produces

a postseismic transient at that station). Modeling such tran-

sients allows many more long-lived CGPS stations to be used

in RF realization (specifically in the time series alignment

step discussed in Sect. 6.3), including stations in regions that

would otherwise be almost devoid of representation. This

promotes a ‘stiffer’ RF and less noisy estimates of station

motion (including postseismic transients) within that frame

(see Sect. 6.4). Indeed, such an approach ultimately benefits

the geophysicist who will analyze station displacements in

a much more sophisticated way, because it will largely sup-

press the RF jitter and RF drift that is often precipitated by

very large earthquakes. Even so, our immediate interest here

is in predicting the station trajectory, not in understanding its

physical causes.

5 Adding logarithmic transients to the standard linear

trajectory model

In this section, we will discuss how we augment the SLTM

(Eq. 8) by adding one or more logarithmic transients, as

needed, in order to accommodate postseismic deformation,

at least in an approximate sense.

5.1 Some preliminary considerations

A logarithmic transient displacement has the form

d = A log(1 + �t/T ) (9)

where �t is time since the earthquake occurred. Since this

formula applies only after the earthquake has occurred, we

are restricted to the domain �t ≥ 0. The scalar d might refer

to any one of the geocentric Cartesian coordinates (X, Y , or

Z ) or topocentric Cartesian coordinates (E, N , and U ) used

to describe a geodetic time series.

In Appendix 1, we demonstrate that the SLTM augmented

with the logarithmic transient formula (Eq. 9) is surprisingly

insensitive to the value of the nonlinear parameter T in the

sense that if one assigns a moderately erroneous value to T ,

and allows A to adjust accordingly, one can retain a very good

fit to the great majority of the data. There is a subtlety here in

that this insensitivity is not inherent to the logarithmic tran-

sient formula itself, but arises when it is used in conjunction

with the SLTM (Eq. 8). That is, the coefficients of the SLTM,
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as well as the linear coefficient A, all adjust so as to permit

a good fit to the data even when T is assigned an inaccurate

value (though A usually adjusts the most). If one’s goal is

fitting or characterizing an observed station trajectory, rather

than isolating the individual physical contributions to station

displacement, this trade-off between the various coefficients

is highly beneficial. It also provides the geodesist with a use-

ful option, further discussed below, i.e. to simply assign a

‘reasonable’ or default value for T , and fit an augmented tra-

jectory model using a completely linear LS approach. The

value of T can be refined later, on a station by station basis,

using a nonlinear estimation approach. The practical advan-

tage of this option is that during the global process of time

series analysis and reference frame realization, one is not

engaged in estimating many dozens or even hundreds of non-

linear parameters simultaneously. This task can be deferred,

and later undertaken in a non-global context. It is often prefer-

able to estimate say 100 non-linear parameters one or two at

a time, in separate inversions, than to estimate all of these

parameters simultaneously (along with thousands of linear

parameters) in one large inversion.

5.2 The extended trajectory model: nomenclature and

patterns of usage

We define the extended trajectory model (ETM) as the com-

bination of a SLTM and one or more logarithmic transients.

Explicitly, the ETM is

x(t) =

nP+1
∑

i=1

pi (t − tR)i−1 +

nJ
∑

j=1

b j H(t − t j )

+

nF
∑

k=1

sk sin(ωk t) + ck cos(ωk t)

+

nT
∑

i=1

ai log(1 + �ti/Ti ) (10)

where nT is the number of logarithmic transients. For each

transient caused by an earthquake at time tEQ, we define �t =

0 for t < tEQ, and otherwise �t = t − tEQ. This is one way to

ensure that the transient is restricted to the time period after

the primary or causative seismic event.

When we engage in station trajectory analysis and refer-

ence frame realization using a global time series involving

>1,200 GPS stations and a combined or total timespan of

∼18 years (e.g. Bevis et al. 2012a), we are typically model-

ing ∼100 stations affected by postseismic transients. We rou-

tinely perform a provisional analysis for any newly observed

transient in which Ti is treated as a known constant (metadata

for a particular station and earthquake), so that the amplitude

coefficients, ai , can be estimated using a linear LS approach.

In this case we call the model (Eq. 10) the extended linear

trajectory model (ELTM). We rarely fail to obtain a useful

first approximation by assigning T a default value of 1 year.

We have modified our global ‘jump table’, which was pre-

viously used to indicate the timing of Heaviside jumps at each

station, and nothing else, so that following the station code

and the jump time there is now a third, numerical entry. If

this entry is set to zero, it indicates that no logarithmic tran-

sient is invoked. (This is always the case for artificial jumps

associated with equipment changes.) If this entry is set to

any positive number, it indicates that a logarithmic transient

should be ‘attached to’ the Heaviside jump, and that the value

of this entry should be assigned to the parameter T . By con-

vention, T = 1 is the (default) value entered when a transient

has been recognized for the first time, and its optimal value

is unknown. If any value other than 1 is found in the jump

table, it indicates that this value that has already been ‘tuned’

by a non-linear analysis of this station’s time series, usually

in the calm aftermath of a large global analysis or ‘rerun’.

As noted above, in our experience, this tuning does not need

to be revisited very often, unless one is truly focused on T

as a geophysical quantity, rather than just as a means to pre-

dict station position. (The exception is for those stations for

which little time has passed since an earthquake initiated a

transient. Until the transient is characterized by about 2 years

of postseismic observations, the best fit value of T may

change significantly with each new increment of postseismic

data.)

Non-linear estimation of T implemented on a single sta-

tion basis is particularly simple if (as usual) the ETM invokes

only a single transient. In this case T can be estimated using

an iterative one-dimensional grid search. It is also possible to

estimate an optimal shared value of T for a group of CGPS

stations that all record the postseismic transient deformation

produced by a single earthquake. This level of detail is of

more interest to a geophysicist studying earthquake source

physics than to a geodesist whose immediate interest is to be

able to predict the coordinates of a given station on a given

day.

5.3 Case studies

We now present some examples of postseismic transients and

the extent to which we can model them using the ETM or the

ELTM. We shall include the latter approach, because we wish

to demonstrate that remarkably good results can be obtained

even without estimating the parameter T using a nonlinear

inversion.

We first consider the case of the Mw 7.6 ‘Centennial’

earthquake that occurred near the South Orkney islands on

4 August 2003 (Plasencia 2007; Smalley et al. 2007). The

epicenter of this shallow, transtensional event was located

about 76 km from the GPS station BORC at Base Orcadas.

So far, the postseismic transient at BORC has been observed
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Fig. 6 The displacement time

series at station BORC, in the

South Orkney islands, fit with

an ELTM with T at its default

value of 1 year. Note that the

first few months after the

earthquake, the E time series is

systematically down-weighted

by our robust inversion

algorithm. The down-weighted

points are shown in orange. The

down-weighting factor, s, is

largest in the first few days of

the transient, but progressively

weakens as the transient is better

modeled by the ELTM.

Eventually, down-weighting

ceases. In contrast, most of the

orange ‘outliers’ visible in the N

and U time series have been only

gently down-weighted. They

represent noisy measurements,

not model problems
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for a total of 8.5 years (Fig. 6). It is most strongly developed

in the E component of displacement. The best fit ELTM,

with T defaulting to 1 year, is shown in Figure 6. A sec-

ond, nonlinear analysis finds T = 0.283 years, leading to

a modestly improved fit (Fig. 7). In both cases our iterative

reweighting scheme, which is designed to reduce the impact

of unusually noisy measurements (i.e. outliers), systemati-

cally downweights the observations during the early portion

of the transient (Fig. 8). Note that model problems rather than

data problems are responsible for this misfit. However, even

the ELTM with T defaulting to 1 year, produces a very good

fit to the observations for the last ∼8 years of the time series.

Our second example is the postseismic transient observed

by GPS station AREQ in Arequipa, Peru (Fig. 9). This tran-

sient was precipitated by an Mw 8.4 megathrust earthquake

which occurred on June 23, 2001 about 230 km from the

GPS station. We present the best fit ELTM obtained when

T was set to its default value of 1 year. We accounted for

a Mw 7.6 aftershock which occurred on July 7, 2001, by

adding a second Heaviside jump, but we did not invoke a

second logarithmic transient. The observed time series are

well fit by the resulting trajectory curve, except in the first

few weeks following the main event. In this particular case,

subsequent tuning of the value of T produced only a very

minor improvement to the fit.

Our last case study, which focuses on the displacements

recorded by GPS station SAMP in Sumatra, is unusual in that

this station has recorded three distinct postseismic transients

to date. The first transient followed the Mw 9.1 Sumatra–

Andaman earthquake of 2004/12/26, which produced the

highly destructive Indian Ocean Tsunami that killed over

230,000 people in 14 countries. The epicenter of this megath-

rust event was located about 305 km from the GPS station.

This earthquake may have triggered the Mw 8.6 megathrust

event which occurred on 2005/03/28 off the Sumatran island

of Nias, about 246 km from SAMP. Finally, this GPS station

recorded the Mw 7.8 event off the Banyak islands near Suma-

tra on 2010/04/06. Our trajectory model for SAMP invokes

three Heaviside jumps and three logarithmic transients. The

fit obtained in Fig. 10 was obtained with refined estimates for

T for the first two events (0.45 and 1.45 years, respectively),

but because we did not have much data available after the

third event, we allowed T to retain its default value of 1 year.

Note that the RMS misfit of the data and model is higher

but not greatly higher than what we attain at many tropical

stations—and most of those are not undergoing postseismic

deformation. The largest misfit at SAMP occurs in the Y

component, which almost corresponds to the local up (U)

direction.

6 Trajectory models and reference frame design and

realization

In this section we discuss the ways in which utilizing general

trajectory models impacts the design, definition or realiza-

tion of terrestrial RFs. The designing and defining of RFs is

a specialized activity performed by a very small segment of
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Fig. 7 The same displacement

time series for station BORC as

shown in Fig. 6, but now fit by

an ETM with an optimized

value for T (0.283 years). Far

fewer of the E measurements

immediately following the

earthquake are down-weighted

in this analysis, as seen in Fig. 9
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Fig. 8 A detailed comparison

of the fits already seen in Figs 7

and 8, which zooms in on the

time period immediately

following the earthquake. a

When T takes it default value of

1 year, the ELTM significantly

and systematically misfits the

observed transient for a little

over 90 days. b When T is

optimized by non-linear

estimation, the period of poor

model fit is reduced to ∼3 weeks
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the geodetic community. But RF realization is a routine step

for anyone engaged in the analysis of GPS networks, since

station positions and velocities are almost always desired

and stated with respect to a given or target RF. We discuss

RFs in the context of ‘pure GPS’ networks because (i) we,

like the majority of geophysicists, geologists, glaciologists,

meteorologists, etc., engaged in applied geodesy, and even

many ‘pure’ geodesists, analyze geodetic networks consist-

ing only of GPS stations, and (ii) this allows us to simplify

our discussion, because we have already demonstrated that
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Fig. 9 The displacement time

series at station AREQ in

Arequipa, Peru, fit with an

ELTM with T at its default

value of 1 year. This accounts

for the logarithmic transient

produced by the Mw 8.4

earthquake of 2001/6/23. The

Mw 7.6 aftershock of 2001/7/7

(which was closer to the GPS

station) is accommodated with a

pure Heaviside jump, because it

too closely followed the main

event to warrant a separate

transient. The inset figures show

the period before and after the

second earthquake in greater

detail
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Fig. 10 The station SAMP in

Sumatra has recorded jumps and

seismic transients associated

with two great and one major

megathrust earthquakes. The

time series is modeled using

three logarithmic transients, the

last of which assumes the default

value (1 year) for T , since there

is not enough data following this

event to warrant nonlinear

estimation of this parameter
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there is no evidence for significant temporal changes in the

scale associated with GPS measurements, provided that the

entire time series is analyzed using modern satellite antenna

models, and geodetic software and processing protocols are

not changed during the course of the analysis (Bevis et al.

2012a). This allows us to invoke a single and time-invariant

metric or scale. As a result, the coordinate transformations

associated with a change of RF can be completely described

in terms of the three translations and the three rotations that

relate one RF (or axis system) to another one. These are the

parameters of the 6-parameter Helmert transformation H6

(see Appendix 2 for additional discussion).

6.1 Basic concepts

We often refer to a GPS network as a polyhedron, meaning

that the GPS stations of the network constitute the vertices

of this polyhedron. Typically we quantify the geometry of

a polyhedron by assigning coordinates (X, Y, Z) to each of

its vertices. Those coordinates refer to a specific RF that

we normally think of as a particular, right-handed Cartesian

axis system [X, Y, Z]. Most scientists and engineers were

trained, when young, to think of a Cartesian axis system

as an entity that allows us to assign coordinates to points.

But operationally, the reverse is true. In space geodesy, it is

the assigning of coordinates to points that, in effect, defines

the axes. A terrestrial RF such as ITRF2008 (Altamimi et

al. 2011) is a conventional model (Appendix 2) that can be

used to predict the coordinates of a certain set F of GPS

stations at any given epoch or time t , and thereby invoke a

specific axis system. We view the term ‘reference frame’ as

having two distinct meanings: (i) a particular and named axis

system, and (ii) a model that predicts the coordinates for a

global set of GPS stations, allowing us to use these stations

to invoke or realize this axis system. When we wish to refer

to a RF in this second, operational sense, we can call it a RF

model. A RF model is a network trajectory model consisting

of a set of station trajectory models (i.e. including the values

of the parameters of these models)—one for each reference

station incorporated into the definition of the RF. When we

use a RF model to predict the coordinates of a network (or

subnetwork) at a single epoch t , we call this prediction the

model polyhedron at time t . As we shall explain below, model

polyhedra are often used as alignment targets in geodetic time

series analysis.

Suppose we wish to position a general set or network N

of GPS stations, some subset C of which are also members

of the frame-defining station set F. (F is the set of reference

stations used to define a given RF). The stations in C are

common to N and F. Because GPS geodesy is a differential

positioning technique, it determines the inner geometry of a

polyhedron (i.e. its size and shape) much more accurately that

it can directly determine its location or orientation. But we

can use the RF model to predict the coordinates of the com-

mon stations (in subset C), and arrange for the GPS solution

(polyhedron) to be re-positioned and re-oriented so as to con-

form with the predicted coordinates for the common stations,

or very nearly so. Since the shape and size of the polyhedron

is very strongly constrained by the GPS measurements, the

entire polyhedron is now positioned and oriented in the target

frame, and the coordinates of all stations (including those in

N but not in F) are determined. In other words, we transform

the coordinates of polyhedron N so as to express it in the

target RF by aligning the observed (GPS) sub-polyhedron C

with the model sub-polyhedron C.

We invoked above the concept of ‘inner’ geometry—i.e.

the geometry that can be defined purely in terms of the lengths

between points, such as the vertices of a polyhedron. The

inner geometry of a polyhedron makes no reference to axis

systems, and is entirely independent of them. Inner geome-

try depends only on the scale or metric associated with mea-

surements in physical space. A physicist might say that inner

geometry is invariant under rotation and/or translation of

the RF. Those readers not familiar with the concept of inner

geometry (or our terminology) are referred to Appendix 2

for an extended discussion.

We use the 6-parameter Helmert transformation, H6, to

shift and reorient a polyhedron in space so that some subset

of its vertices take on the coordinates predicted by a given

RF (or very nearly do). We can certainly think of this trans-

formation as a general, rigid-body motion of the polyhedron

relative to the axes. But in geodesy we usually adopt the

opposite but equivalent point of view that it is the axes that

are moving rather than the polyhedron. Imagine that a pre-

liminary solution for the polyhedron has the correct inner

geometry but is expressed in an arbitrary RF rather than the

target RF. All we must do is estimate the 6-parameters of an

H6 transformation that changes the coordinates for the sta-

tions in C so that they correspond as closely as possible to the

coordinates predicted by the target RF. That is we transform

the GPS polyhedron by aligning some subset of its stations

with a model polyhedron generated using the network trajec-

tory model that defines the RF in the operational sense. We

then use those H6 parameter values to transform the coordi-

nates of the entire GPS polyhedron, which is then expressed

in or referred to the target frame.

A RF model is most useful if the inner geometry of its

predictions are consistent (or very nearly consistent) with

the actual inner geometry of the corresponding GPS stations

over an extended period of time. This is a key means of

characterizing the ‘geometrical consistency’ of a RF. This

is because the inner geometry of a polyhedron is in some

deep sense its most fundamental and irreducible geometry.

Two very different sets of station coordinates might refer to

exactly the same polyhedron because they differ only in the

choice of the RFs used to express the coordinates. But two
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sets of station coordinates that imply quite different inner

geometries do not and cannot refer to the same polyhedron

(Appendix 2).

In practice, when an H6 transformation is used to align

or re-align a GPS polyhedron as closely as possible with a

model polyhedron, this alignment will almost never be per-

fect. A measure of the residual misfit that characterizes the

lengths of the deviation or residual vectors between the two

sets of vertices is said to characterize their inner coordinate

misfit or inner coordinate scatter (Appendix 2). This is a

RF-independent or ‘frameless’ measure of the geometrical

inconsistency of the polyhedra. If a GPS network time series

composed of one estimated polyhedron per day is aligned

with the model polyhedra predicted by two distinct RFs

and the inner coordinate scatter (for the entire time series)

associated with RF#1 is smaller than that associated with

RF#2, then RF#1 is said to be more consistent with the

GPS measurements, and it would normally be preferred over

RF#2.

Standard RFs such as ITRF2008 normally use equa-

tion (4)—i.e. the CVM augmented, as necessary, by jumps—

to predict the position coordinates of the great majority of

GPS stations incorporated into their definition. For the rest

of this paper we use the abbreviation CVM whether the model

invokes no, one or more jumps. This has long been the favored

station trajectory model for ITRF. For GPS stations at which

postseismic transient deformation produces large changes in

velocity over time, ITRF2008 invokes the PCVM instead.

The PCVM is further discussed and illustrated in Sect. 6.2.

The key point we wish to make here is that to be operationally

useful, a RF must be associated with a network trajectory

model which can predict the model polyhedra used as align-

ment targets, and it is highly desirable that these predictions

are geometrically consistent with the GPS measurements (i.e.

have very similar inner geometries), but there is no reason

why these station trajectory models should be limited to par-

ticular classes of model such as the CVM or the PCVM. We

prefer to employ more general classes of trajectory models—

i.e. the SLTM and the ETM or ELTM—because they produce

more consistent predictions of station geometry, as illustrated

in Sect. 6.2, and this leads to a more consistently realized RF,

as discussed in Sect. 6.3.

In our view, the RFs we produce in this way are mod-

est refinements of an existing parent frame. In recent years

our parent frame is ITRF2008 (from which we inherit our

GPS scale), and we designate our variant as OSU08. Loosely

speaking, OSU08 has been aligned as closely as possible

with ITRF2008, both in position space and in rate or velocity

space. Indeed, for many practical purposes, such as mapping

and engineering surveys, the differences between the two

frames are insignificant. We prefer OSU08 over ITRF2008

because the time series that we express in OSU08 have lower

levels of coordinate scatter.

6.2 Contrasting general station trajectory models with those

employed by ITRF

We begin by noting that even if we position a network N

consisting only of stations which are well characterized by

the CVM, and even if we invoked only the CVM in our

own geodetic analysis, should we use a longer time series

than that available to Altamimi et al. (2011) to formulate

and define ITRF2008, then our estimates of station velocity

and reference position would almost certainly differ from the

canonical predictions of ITRF2008 RF model, and therefore

our realization of ITRF2008 would not be completely con-

sistent with ITRF2008 as it was originally defined. This is

sometimes referred to as ‘reference frame realization error’

(Dietrich et al. 2001)—a very useful term, though perhaps

the word ‘error’ is rather harsh if the dataset being used to

realize ITRF2008 is several years longer than that used to

design and define it, and the extended GPS times series is

now less consistent with the predictions of ITRF2008.

A similar situation arises if the secular trend of many sta-

tions in N was truly constant-velocity, but we inferred these

velocities using Eq. (5) rather than the Eq. (4). We would do

this because, for stations with fairly short time series in par-

ticular, not estimating annual oscillations (as part of the tra-

jectory model) can cause them to alias to ‘leak into’ geodetic

estimates of station velocity (Dong et al. 2002; Collilieux et

al. 2012). Adding cycles to all our station trajectory models

improves the geometrical consistency of our velocity esti-

mates, but may slightly degrade our post-alignment fits with

the predictions of ITRF.

A more dramatic version of this problem arises when we

wish to process a station manifesting large accelerations (i.e.

very significant changes in velocity over time). By mid-2013,

we could clearly resolve accelerations at about half of the

GPS stations in Greenland. In Fig. 11 we show a recent solu-

tion for the upwards (U) component of vertical displacement

at station THU3 in N.W. Greenland, and the best fitting SLTM

(with nP = nF = 2), both expressed in OSU08. We also show

the CVM for THU3 predicted by ITRF2008. The CVM fits

our solutions reasonably well within the time-span of the

THU3 dataset available to Altamimi et al. (2011) when they

designed and defined ITRF2008, although the CVM clearly

does not fit the data as well as the SLTM (or even just the

quadratic trend component of this SLTM). Beyond the time

span of the data available to Altamimi et al. (2011), i.e. after

2009.51, the CVM trajectory (indicated by the dotted line)

systematically diverges from the actual trajectory of this sta-

tion. The key point is that the actual trend of U (t) is curved,

whereas the CVM invoked by ITRF2008 is not. In other

words, the ITRF2008 prediction for THU3 becomes increas-

ingly inconsistent with reality as time passes. We have found

it necessary to invoke polynomial trends to adequately model

stations subject to volcanic deformation, and even ground
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Fig. 11 The vertical

component of the GPS time

series for station THU3 in N.W.

Greenland, plus the associated

trajectory model, both expressed

in OSU08, and the CVM

provided for this station in

ITRF2008. We invoked an

SLTM with a quadratic trend,

which better accounts for the

evident curvature of the secular

trend

water withdrawal as well as elastic displacements driven by

accelerating changes of ice mass in nearby glaciers or ice

sheets.

For some stations, particularly those affected by postseis-

mic transients, Altamimi et al. (2011) accommodate pro-

nounced changes in station velocity by invoking a PCVM

rather than their usual CVM. For example, their SINEX file

entries for station AREQ in Arequipa, which we discussed in

Sect. 5.3, provides predictions for 6 time segments by invok-

ing a CVM model for each segment (Table 1). In Fig. 12a, we

focus on what this RF model implies for the east (E) compo-

nent of displacement at AREQ, and compare it with our GPS

measurements referred to OSU08. Since our model is the

ELTM (with a default value for T ), the non-cyclical part of

the E trajectory model is determined by just 3 coefficients. In

contrast, the PCVM requires 2×6 = 12 coefficients. A mod-

est difference between the ITRF velocity prior to the Mw 8.4

earthquake, and the velocity implied by our GPS solutions

and ELTM in this time period (Fig 12b), probably manifests

the non-identity of ITRF2008 and OSU08. At the other end

of the time series, beyond the end date of the AREQ data

originally available to Altamimi et al. (2011), the ITRF2008

prediction progressively diverges from our GPS solutions

and our SLTM model, and these discrepancies are far larger

than those that occur prior to the Mw 8.4 event. This is

because even after 2010.0, when the postseismic transient

has been decaying for more than 8 years, velocity is still

changing too rapidly to allow the prediction produced using

the sixth CVM to be projected for much more than about

1 year. The ITRF2008 PCVM does out-perform our ELTM

in the several month period immediately following the two

earthquakes—indeed, it concentrates about half of its degrees

of freedom in this time period for that very purpose. But apart

from that limited period, the ELTM model does rather better,

despite having far fewer degrees of freedom, and after about

2011.5 it does much better than the ITRF2008 prediction.

We are well aware that it is in some sense unfair to compare

the predictions of ITRF2008 and those we achieved using our

favored trajectory models, because our data set was larger

than that available to Altamimi et al. (2011), and our fit used

all of our data, whereas the predictions of ITRF had access to

less data per station. But almost everyone analyzing a data set

using a RF such as ITRF2008 has longer if not much longer

time series for many of the GPS stations that they have in

common. We must express our more up-to-date time series

in some frame, and it is reasonable to use or produce a variant

of ITRF2008 rather than ITRF2008 itself if this leads to a

more consistently-realized RF and less ‘noisy’ time series.

In the next section we point out that using more general

trajectory models than those used by the designers of ITRF

is not just about improving the way in which we characterize

the stations our network has in common with those used

to define ITRF, but rather improving the way in which we

characterize the displacements occurring at all GPS stations

in our networks.

6.3 The advantage of imposing the RF after fitting the

trajectory models

Geodesists and geophysicists can realize a target RF in a vari-

ety of ways. It is useful to distinguish between two general

approaches that we refer to as prior versus posterior impo-

sition of the RF.

6.3.1 Prior imposition of the RF

Suppose, as before, that we are analyzing a set N of GPS

stations, some subset C of which were also used to define

a target RF such as ITRF2008. Perhaps the simplest of all

approaches to RF realization, which we call ‘prior imposi-

tion’ of the frame, is pursued during the daily geodetic analy-

sis of the network N. GPS data processing software requires

the user to specify a prior position estimate (X, Y, Z) for

each station in the polyhedron (for each and every epoch or

day), and associated prior position constraints, i.e. the stan-

dard errors (σX , σY , σZ ) indicating the extent to which the
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Table 1 Model parameters for CGPS station AREQ (in Arequipa, Peru) extracted from the SINEX file describing ITRF2008 (Altamimi et al. 2011)

ITRF-2008 piecewise constant velocity model for AREQIPA station AREQ

SEG# Starts Ends Mean epoch

AREQ 1 96:363:00000 01:176:00000 99:087:00000

AREQ 2 01:188:00000 01:225:00000 01:206:43200

AREQ 3 01:223:00000 01:260:00000 01:241:43200

AREQ 4 01:258:00000 02:231:00000 02:062:00000

AREQ 5 02:264:00000 07:337:00000 05:117:43200

AREQ 6 07:342:00000 09:187:00000 08:265:00000

Th TREF XREF (M) Sigma (M) XVEL (M/Y) Sigma (M/Y)

AREQ 1 05:001:00000 1942826.8243 0.72953E−03 0.012736 0.80417E−04

AREQ 2 05:001:00000 1942825.4645 0.84181E−01 −0.238831 0.24440E−01

AREQ 3 05:001:00000 1942825.8945 0.53804E−01 −0.113263 0.16017E−01

AREQ 4 05:001:00000 1942826.1127 0.36669E−02 −0.046701 0.11804E−02

AREQ 5 05:001:00000 1942826.2123 0.63327E−03 −0.003089 0.64376E−04

AREQ 6 05:001:00000 1942826.1976 0.98817E−03 0.002727 0.20859E−03

Th TREF YREF (M) Sigma (M) YVEL (M/Y) Sigma (M/Y)

AREQ 1 05:001:00000 −5804070.2300 0.11404E−02 0.001613 0.16782E−03

AREQ 2 05:001:00000 −5804070.3802 0.18773E+00 −0.031151 0.54510E−01

AREQ 3 05:001:00000 −5804070.4999 0.11958E+00 −0.065838 0.35602E−01

AREQ 4 05:001:00000 −5804070.3063 0.79765E−02 −0.007141 0.25927E−02

AREQ 5 05:001:00000 −5804070.3120 0.81051E−03 −0.006449 0.13747E−03

AREQ 6 05:001:00000 −5804070.3145 0.18335E−02 −0.005281 0.44987E−03

Th TREF ZREF (M) Sigma (M) ZVEL (M/Y) Sigma (M/Y)

AREQ 1 05:001:00000 −1796893.8460 0.75175E−03 0.013794 0.74854E−04

AREQ 2 05:001:00000 −1796894.8069 0.74558E−01 −0.171979 0.21648E−01

AREQ 3 05:001:00000 −1796894.5339 0.47409E−01 −0.091980 0.14114E−01

AREQ 4 05:001:00000 −1796894.3207 0.31852E−02 −0.026622 0.10178E−02

AREQ 5 05:001:00000 −1796894.2552 0.67426E−03 0.002723 0.62008E−04

AREQ 6 05:001:00000 −1796894.2632 0.93833E−03 0.007518 0.18162E−03

The first block describes the six time intervals invoked by the PCVM for this station. The next three blocks provide the parameters of the CVM

invoked for each time interval (1–6), for the X, Y and Z coordinates, respectively. This PCVM is also depicted in Fig. 12

An M 8.4 EQ occurred on 2001/06/23 at 20:33:14 UTC. Jump time is 01:174:73994 in YY:DOY:SOD format

An M 7.6 EQ occurred on 2001/07/07 at 09:38:43 UTC. Jump time is 01:188:34094 in YY:DOY:SOD format

Time format YY:DOY:SOD = year:day of year:second of day

posterior position estimate is expected, desired or ‘allowed’

to deviate from the prior estimate. If we very tightly constrain

the daily prior positions for all stations in C to the positions

predicted by the target RF model by setting the associated

constraints to something very small, such as 2–3 mm, while

allowing much looser constraints (perhaps 20–30 cm) for

the remaining stations (i.e. those in N but not in C), then

each daily polyhedron solution is automatically ‘aligned’ to

the target frame, and the velocities obtained by analyzing the

time series of coordinates for each station are in consequence

tied to that same frame. This is the general approach favored

most surveyors.

6.3.2 Posterior imposition of the RF

Most GPS geodesists, including us, use an alternative

approach to geodetic time series analysis involving posterior

imposition of the RF. All stations appearing in the daily GPS

analysis (including the stations in set C) are only loosely con-

strained to the prior coordinates predicted by the target RF.

We then manipulate this time series of loosely constrained

or ‘loose’ polyhedron solutions in two stages, which we call

time series alignment or just alignment for short, followed by

post-alignment imposition of the RF. The alignment process

unfolds in an arbitrary and drifting axis system. The target
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Fig. 12 Contrasting the PCVM

invoked by ITRF2008, and our

GPS solutions and the ELTM

(expressed in OSU08), for the

east component of displacement

at AREQ. a Shows the entire

time series, allowing the 6 time

segments (see Table 1) to be

resolved. b The interseismic

period prior to the Mw 8.4 event.

c The end of the time series,

emphasizing the inability of the

CVM adopted for the 6th time

segment to accurately predict

the displacement trend after

about mid 2010
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frame is invoked only after alignment is complete. Both of

these stages involve the use of Helmert transformations that

rigorously preserve the inner geometry of each daily solu-

tion for the GPS polyhedron, while manipulating their outer

coordinates. The first and most time-consuming stage, align-

ment, involves a great many H6 transformations and repeated

estimation of the parameters of all station trajectory models.

The second stage simply transforms these results into the

target RF using a single 12-parameter Helmert transforma-

tion, H12. This can be thought of as two H6 transformations

operating in concert—one in position space and the other in

velocity space (Appendix 2).

In implementing this two-stage approach, we could use the

CVM favored by the authors of ITRF, or the more general

trajectory models that we favor. No matter what trajectory

models are used, time series alignment is accomplished in an

inversion that (i) estimates the 6-parameters of each daily H6

transformation which align each loose polyhedron solution

with the daily predictions of the network trajectory model,

and (ii) estimates the coefficients of the trajectory models so

as to produce the closest possible agreement of these models

with the aligned time series. We do this by minimizing the

inner coordinate scatter (i.e. collective misfit length) of the

time series of transformed polyhedra about the correspond-

ing series of model polyhedra. We emphasize that both the

outer coordinates of the aligned time series of GPS poly-

hedra, and the parameters of the various station trajectory

models change with each iteration of the inverse algorithm.

This process stops (typically after 7–12 iterations) only when

the inner coordinate scatter ceases to decline by a significant

amount. Because we take this approach, the station reference

positions and station velocities estimated by this algorithm

are ultimately expressed in no particular reference frame.

(Though, because the daily transformations and infinitesimal

rotations associated with the daily Helmert transformations

(H6) produce only small changes in daily station coordinates,

the final reference position and velocities are stated in an arbi-

trary frame that still lies ‘fairly close to’, or is weakly aligned

with the target RF model used to generate the prior position

estimates during GPS data processing.)

Once the alignment process discussed above is complete,

we move on to the next step, and transform the RF-sensitive

coefficients of the station trajectory models and the associ-

ated time series of (aligned) polyhedra, by estimating the 12-

parameters of a generalized Helmert transformation (H12)

consisting of three translations, three translation rates, three

rotations and three rotations rates that specify the relative

motion of the arbitrary frame and the target frame (Appen-

dix 2). Those interested in why we utilize the H6 and H12

transformations, rather than the H7 and H14 transformations

that also include scale change and scale change rate parame-

ters, are referred to Appendix 1 of Bevis et al. (2012a).

At first look, this two-step approach may seem to be

unnecessarily complicated relative to the simpler approach,

described earlier, when the RF was imposed (‘upstream’) on

a day-by-day basis during daily GPS data processing. Indeed,
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if every station in the network N is also included in the def-

inition of the target RF (so that set C = set N), then one

might expect a similar result. But when, as is typical, many

stations in N are not included in C, then the two approaches

are not, in fact, equivalent. This is because during the align-

ment process, the daily Helmert parameters used to align

polyhedra onto the network trajectory model, are estimated

using all stations in N, and not just those in C. That is,

we are exploiting the fact that we know the general form of

the station trajectory at every station, not just those stations

incorporated in the definition of the target RF. This leads to

better and sometimes much better constrained estimates for

the Helmert parameters, and this is reflected in the quality of

the final solution.

6.4 Trajectory prediction error and RF instability

The ‘up front’ approach to RF realization discussed in

Sect. 6.3.1 provides a simple context in which to explain

the concept of RF jitter. Suppose we have produced GPS

solutions for a sparse regional network or polyhedron for 7

days in a row. Suppose our network of 20 stations contains

four of the reference stations associated with our favorite RF.

Suppose we tightly constrained the positions of these four sta-

tions at the 2 mm level in order to invoke our target RF. Since

very little plate motion occurs in 7 days, the prior coordinates

adopted for these reference stations changed very little from

day to day. Suppose the RF model we use to generate the

prior position estimates for our reference stations was for-

mulated using the CVM (Eq. 4). Suppose that 3 of these RF

stations are very well characterized by the CVM, but the 4th

is not, because it is located next to the Amazon river and it

experiences a very large annual vertical displacement cycle

(Bevis et al. 2005) that is not incorporated into its trajectory

model. Let us suppose that this cycle happens to be near its

maximum during our study period, and the station location

is actually 25 mm above the long term secular displacement

trend invoked by the RF’s CVM. The entire GPS network

solution will be very strongly influenced by this Amazonian

station since it will tend generate a far larger residual vector

than the other three reference stations, and any least squares

process seeks to balance the square of the magnitude of the

normalized residual vectors. If we had used the other 3 ref-

erence stations alone we might have obtained nearly perfect

‘alignment’ of prior and posterior position estimates. But

when the Amazonian reference station is included, the align-

ment parameters estimated internally by the GPS processing

package produce a much-degraded fit at these three stations

so as to reduce the enormous residual at the Amazonian sta-

tion. The entire alignment process will have been biased by

this one station. But suppose the Amazonian station had a

technical problems on days 4 and 5, its data were not avail-

able, and do not appear in our time series. Then this bias

in the alignment process would not have occurred on these

days. That is the alignment process on days 1, 2, 3, 6 and 7

would be distinct from that on days 4 and 5. This effect would

generate artificial scatter in the coordinates of each and every

station in the time series. We can think of this as the polyhe-

dron jerking about, but actually it was the realization of the

RF that was jerking or jittering.

RF jitter is a stochastic process (think of Brownian motion)

in which day-to-day variations in the (inner geometrical) mis-

fit between the GPS polyhedron and the model polyhedron

(for the reference stations) produce statistical fluctuations in

the alignment process associated with RF realization. These

variations are often modulated by the presence or absence

of poorly modeled stations in the time series. Temporal vari-

ability in trajectory model error can also arise in response

to the model not capturing rapidly changing displacements

such as postseismic displacement in the days or weeks fol-

lowing a great earthquake, or unrecognized jumps in station

time series.

Returning to our thought experiment, it is fairly obvious

that the RF realization error (jitter) precipitated by the uneven

appearance of the Amazonian station could be reduced by

(i) using more realistic trajectory models (so as to reduce the

number of large station-day residuals), and/or (ii) using many

rather than fewer reference stations to control the alignment

process, so that one or two highly problematic stations do

not have so great an influence (this is the defendit numerus

strategy advocated by Bevis et al. 2012a).

Of course, the prediction errors generated by oversimpli-

fied trajectory models can also develop slowly over months

or years, slowly but relentlessly distorting the alignment

process, producing RF drift rather than high frequency RF

jitter. If ‘RF realization error’ (Dietrich et al. 2001) is not a

constant bias, but a time varying error or discrepancy, then

RF jitter relates or refers to its high frequency component

and RF drift refers to its low frequency component. Fail-

ure to incorporate significant and sustained accelerations in

a trajectory model, as discussed in Sect. 6.2 and illustrated

in Fig. 11, can lead to RF drift. For example, suppose two

GPS groups (A and B) analyze another sparse regional net-

work, mostly located in North America, over more than one

decade, using the same target RF. Suppose both groups use

five reference stations to realize this frame, but they have

only four of these stations are in common. Let us suppose

that these four reference stations are well characterized by

the CVM invoked in the definition of the target frame, as is

the fifth reference station invoked by geodesy group A. But

let’s suppose geodesy group B chooses a Greenland station

for its fifth reference station, and this station has been subject

to a large and nearly constant rate of acceleration through-

out its lifetime, but the target RF definition invokes a CVM

for this station. As discussed earlier, the inconsistency of this

CVM and the actual trajectory means that the inner geometry
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of the model polyhedra used as alignment targets by group

B will be inconsistent with the actual inner geometry of this

sub-network, and this inconsistency will vary systematically

over time. As a result, the two GPS groups will find that their

‘aligned’ time series have different velocities at nearly every

station, and will probably conclude that despite their best

intentions, their results are expressed in somewhat different

RFs. We call this RF drift, in contrast to RF jitter, because it

derives from a discrepancy whose impact systemically grows

over time.

6.5 The broader context: repeated reanalysis

For the last ∼3 years we have processed and reprocessed

>1,200 unique CGPS stations (up to 700 per day) for a

15–18 year time period (Bevis et al. 2012a). We perform

the daily GPS data analysis using GAMIT/GLOBK soft-

ware (Herring et al. 2010). In the first processing pass of

our most recent series of solutions, all prior coordinates

were similar to those used by IGS analysis centers, based

on the ITRF2008 standard, and we used IGS orbital solu-

tions expressed in ITRF2008. We then fit each station time

series using an SLTM or ETM/ELTM. Once the alignment

step was completed, we transformed our trajectory models

(and the associated GPS time series) into a frame that was as

closely aligned as possible with ITRF2008, while preserving

the inner geometry of the aligned time series and the net-

work trajectory model. We then used our trajectory model to

generate the prior coordinate estimates for the next iteration

(or ‘rerun’) of GPS data processing. Because the prior posi-

tions are no longer completely consistent with ITRF2008,

we allowed the orbits to relax so as to maintain consistency

with the global polyhedron. We stacked or aligned the new

GPS time series, transformed the aligned time series and the

associated network trajectory model so as to nearly match the

predictions of ITRF2008, and then used the updated network

trajectory model to generate the prior coordinates for the next

processing iteration, etc. During the early iterations we used

fairly loose constraints (∼30 cm) even for the ‘best’ of the sta-

tions used to define ITRF2008, and in subsequent iterations

we gradually tightened these constraints, but always ensured

that the station constraints (i.e. the (σX , σY , σZ ) discussed in

Sect. 6.3) remained 5–10 times larger than the WRMS scatter

levels produced by the previous analysis for the correspond-

ing stations. What we noticed during this iterative process

was that the inner coordinate scatter of the entire GPS time

series around the network trajectory model declined with

each new iteration. This includes the last iteration, so our

reanalysis effort has yet to converge.

The trajectory models produced by our fifth and most

recent global rerun in May 2013 can model the GPS time

series (expressed in OSU08) at almost every station with

a daily WRMS misfit of 1–3.5 mm in the horizontal, and

2–7 mm in the vertical, once something like 0.5–2% of the

observations were down-weighted by our robust inversion

algorithms. The WRMS misfit levels for all stations and all

epochs combined were 2.3, 2.2 and 4.7 mm in E, N, and U

respectively. These scatter levels represent a>50 % reduction

from those achieved in the first iteration. The posterior re-

alignment of our daily polyhedra and trajectory models with

the predictions of ITRF2008 was achieved using 84 common

stations rather than all common stations. These stations were

selected on the basis of (a) high solution quality, (b) a very

long time series uninterrupted by any jumps, and (c) no sug-

gestion that velocity is changing significantly as a function of

time. The WRMS difference between the velocities assigned

to these stations in ITRF2008 and in our solution (i.e. in

OSU08) was 0.55, 0.64 and 0.55 mm/year in the X, Y and Z

directions respectively. The WRMS differences in the pre-

dicted positions of these stations at the ITRF2008 reference

epoch was 5.9, 4.3 and 8.2 mm, respectively.

It is said that ‘the proof of the pudding is in the eating’, and

we are persuaded of the utility of our overall approach by the

steady reduction of the WRMS scatter levels associated each

iteration of our global analysis. Only recently, for example,

have we observed WRMS misfit levels in the horizontal com-

ponents of displacement fall to the ∼1 mm level, or better, at

many higher latitude stations—a recent solution for KAGA in

Greenland (Fig. 13) provides an example. Since (data-model)

misfits reflect both measurement error and mis-specification

(usually oversimplification) of the trajectory model, then the

random component of our horizontal GPS positioning error

is probably rather better than this. (Water vapor dynamics

still prevents us reaching this level of repeatability at mid

and low latitudes).

7 Discussion

Geodesists engaged in daily GPS data processing tradition-

ally resist or avoid the application of tight prior constraints

on station position because this might inject mis-information

into the analysis of satellites orbits and the global polyhedron.

(One might tightly constrain stations to incorrect or incon-

sistent sets of prior coordinates. Tight constraints would be

justified if we knew the ‘correct’ solution in advance, but in

this case we would not need to engage in geodetic measure-

ment!). Because we avoid tight prior constraints, the GPS-

estimated coordinates (outer geometry) of the polyhedron

scatters much more, from day to day, than does the implied

inner geometry. That is, the daily solutions for the polyhe-

dron have nearly the correct shape and size, but are nearly

randomly displaced and reoriented by noise which differs

from one day to the next. The alignment process suppresses

this outer coordinate noise, by re-aligning the time series of

polyhedra. We could approach this task by aligning each GPS
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Fig. 13 The displacement

history at GNET station KAGA,

fit with an ELTM that invokes a

quadratic trend. Plots a–c show

the U, E and N components of

displacement, respectively. Plot

d depicts the implied temporal

variation in uplift rate. e shows

the location of station KAGA
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polyhedron onto the polyhedron for the previous day. We do

not do so because the station trajectory model is typically

a better predictor of the polyhedron’s inner geometry at a

given epoch than is the inner geometry estimated (using just

one day’s data) the day before. The beauty of the iterative

alignment process is that well-tuned station trajectory mod-

els lead to better alignment of the GPS time series, and better

aligned time series lead to improved station trajectory mod-

els. This alignment or stacking-in-time process is the central

task of geodetic time series analysis, and posterior imposition

of a target RF is a relatively minor post-process. The greatest

benefit of more realistic trajectory models is improvement of

time series alignment.

Our course, improved trajectory models also generate

improved geophysical insight. Five years ago and more, geo-

physicists routinely plotted GPS-derived vertical velocity

vectors on maps of Antarctica, Greenland and elsewhere, and

then attempted to explain them in terms of glacial isostatic

adjustment. Recently it has been recognized that uplift rates

in Greenland and in parts of Antarctica are so variable in time

that the lifetime average uplift rate is a limited representation

of what is happening, and it is much more fruitful to think in

terms of accelerations as well as average rates of uplift (Khan

et al. 2010; Jiang et al. 2010; Bevis et al. 2012b). The vertical

time series at KAGA provides a particularly striking exam-

ple. Here the uplift rate has increased from ∼7.5 mm/year

in mid-2006 to ∼32 mm/year at the end of 2012. It should

be obvious looking at Fig. 13 (and Fig. 4) that as technical

improvement in the alignment process reduces the level of

scatter of the GPS measurements about the trajectory model,

this improves our ability to resolve curvature in the trend

component of this model.

Although many geodetic and geophysical research groups

are using the more general classes of trajectory models to

characterize their crustal displacement time series, very few

of them are using these trajectory models to estimate orbital

solutions or realize (and modify) the frames in which their

network time series are expressed. Because a RF is, for

operational purposes, a network trajectory model, and our

RF model now differs from that of ITRF2008 for the sta-

tions we have in common, our final RF—in which we esti-

mate orbital solutions as well as the network time series—

is no longer identical to ITRF2008. Our final RF inherited

its GPS scale from ITRF2008, and is not intended to serve

as a shared, general purpose RF. Indeed, as OSU08 varies

from one iteration of our global analysis to the next one, it

can hardly be thought of as ‘standard’ RF in the traditional

sense.

We believe that the steady improvements we are attain-

ing as we repeat and refine our global analyses mainly result

from (i) the increasing geometrical consistency between our

network time series, our trajectory models, the prior position

estimates we inject into GPS data processing, and our orbital

solutions, and (ii) ongoing refinement of our trajectory mod-

els for each station we process. Lowering the scatter levels

in each new solution often helps us identify small and previ-

ously unidentified jumps in the time series, usually traceable

to an overlooked change in the antenna or radome, or pre-
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viously unresolved phenomenology such curvature (accel-

eration) in the secular trends. This causes us to change the

number of parameters available to a trajectory model, or even

invoke a new class of trajectory model. For example, newly

resolved jumps are accommodated by adding another Heavi-

side jump to the trajectory model, and newly resolved curva-

ture might be accommodated by invoking a quadratic rather

than a linear secular trend.

Although OSU08 plays a special role in our reanalysis

effort because the prior coordinates injected to daily GPS

data processing are always stated in that frame (so as to ‘stay

close’ to ITRF2008), in the scientific studies that utilize the

products of our latest reanalysis, we nearly always transform

into other frames, typically on a project by project basis, as

previously discussed by Bevis et al. (2012a). This is because

as geophysicists we place no particular importance on the

no-net-rotation (NNR) aspect of ITRF, nor any other purely

conventional aspects (Appendix 2) of this RF. Some readers

may be worried about our apparent disinterest in monitoring

the position and motion of Earth’s center of mass (CM) in

our frame. But, this is because we choose to estimate relative

frame motion later on, in the context of specific compar-

isons between GPS uplift rate, model GIA (or PGR) rates, or

observed rates of sea level rise (Bevis et al. 2012a,b).

There is still a lot of interesting research to be done with

regard to trajectory models. In addition to devising and test-

ing new classes of trajectory model, there are open questions

as to how best to deploy or utilize extant models. When we

invoke a SLTM with a polynomial trend, for example, how

should we select the value we assign to the maximum power

nP and thus the number of degrees of freedom available to

our trend sub-model and the SLTM? Obviously the more

degrees of freedom one assigns to the polynomial trend, the

better it can fit a given station position time series, but at

some point one begins to model ‘noise’ rather than ‘signal’.

The stability and thus the predictive power of a model will

fall given too many degrees of freedom simply because it

has started to model the noise. Given the role of a trajectory

model in providing prior coordinates in GPS data process-

ing, etc., we are very concerned with the model’s predictive

power—each global re-analysis tends to include a significant

amount of ‘new’ GPS data. A graph of the WRMS misfit

of data and trajectory model versus the number of degrees

of freedom assigned to the model can help one assess this

trade-off between resolution and reliability (Jackson 1972;

Lawson and Hanson 1974). One approach is to increase nP

until the WRMS misfit matches ones expectation for the stan-

dard deviation of the measurement noise at that station. But in

practice, one has no exact prior knowledge of this statistic. As

a result, there is a lot of work in the numerical analysis com-

munity associated with identifying natural ‘break points’ in

this or related trade-off curves such as the ‘L-curve’ (Lawson

and Hanson 1974; Hansen 1992).

If the analyst is prepared to assume that the noise is drawn

from a Gaussian distribution, it is also possible to use a formal

statistical hypothesis test to determine if each increment in

the value of nP produces a statistically significant reduction

in the scatter of the data about the model. In order to imple-

ment this hypothesis test one must adopt a given confidence

level. Changing the confidence level at which the hypothesis

accept/reject decision is made can change the value finally

selected for nP . Thus the decision on the best value of nP

remains somewhat arbitrary. We do not use this approach

because we do not believe that the noise process in GPS

positioning is Gaussian (Bevis et al. 2012a) or corresponds

to any other named statistical distribution. Indeed, we do not

believe that the GPS positioning noise process is stationary

in space or time.

Our approach to choosing nP for each station trajectory

model tends to be heuristic and conservative. We are very

reluctant to increase nP from 1 to 2, and even more reluctant

to increase it from 2 to 3. When we fit an SLTM to a time

series, we usually plot the E, N and U residuals as a func-

tion of time. Only when these residuals suggest strong and

systematic structure, do we consider increasing the value of

nP . The great majority of the station models in our global

analysis have nP = 1, and the great majority of those with

nP > 1 have nP = 2. We prefer to ‘under-model’ the data

rather than ‘over-model’ it. This is a subjective decision, if

a conservative one. But the ‘regularization’ of inverse prob-

lems and empirical trend analysis of almost any kind tends

to be something of an art (Hanke and Hansen 1993).

We admit to a rather pragmatic attitude towards our trajec-

tory models. As geodesists we tend to deploy them oppor-

tunistically, focusing on improving the consistency of our

frame, our orbital solutions and the daily repeatability of

our time series, with a blithe disregard to physical meaning.

But subsequently, as geophysicists, we feel no compunction

in abandoning a trajectory model (as a mere first approxi-

mation) as we seek to probe the physical causes of crustal

displacement and deformation.

Geophysicists and geodesists typically play complemen-

tary roles in crustal motion geodesy. Geophysicists use

crustal motion geodesy—often in combination with addi-

tional observations—to study a wide range of geodynamic

phenomena. Their progress in discerning and explaining the

phenomenology of crustal motion, will sometimes help geo-

desists better formulate their station trajectory models. Bet-

ter trajectory models will lead to better predictions of station

position, improved orbital solutions, more stable reference

frames and less noisy times series of crustal displacement.

These ‘cleaner’ displacement time series would then lead

geophysicists to resolve new dynamic phenomena (e.g. the

2010 ‘uplift anomaly’ in Greenland, Bevis et al. 2012b) or

improve their characterization of already recognized phe-

nomena, allowing this synergetic cycle to continue. Up to
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now, however, new classes of trajectory models have had

very little impact on the way in which standard or named

RFs are designed and defined. The trajectory models used

to define the ITRF, in particular, have not changed for more

than a decade. We expect this to change in the next few years.
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8 Appendix 1: The insensitivity of the ELTM to the

transient timescale parameter T

Here we demonstrate our contention that the SLTM aug-

mented with the logarithmic transient formula is surprisingly

insensitive to the value of the nonlinear parameter T in the

sense that if one assigns a moderately erroneous value to T ,

and allows A to adjust accordingly, one can retain a very good

fit to the great majority of the data. As we shall show here,

this insensitivity is not inherent to the logarithmic transient

formula itself, but arises when it is used in conjunction with

the SLTM (Eq. 8).

We begin by generating a simulated data set that we can

then analyze in several different ways. Suppose a transient

displacement is given by Eq. (9), where �t is time since

the earthquake occurred, T = 1 year and A = 100 mm.

Note that this formula applies only after the earthquake has

occurred, so we are restricted to the domain �t ≥ 0. The

scalar d might refer to any one of the geocentric Cartesian

coordinates (X, Y , or Z ) or topocentric Cartesian coordinates

(E, N , and U ) used to describe a geodetic time series. We

computed the value of d, using this formula, once per day

for the first 5 years of the transient, and then added zero-

mean Gaussian noise with sigma = 3 mm so as to simulate

observations incorporating positioning noise (the blue dots

in Fig. 14).

First, we invert this data set using the transient formula

alone, or in isolation. If we invert for A under the (correct)

assumption that T = 1 year, our least squares (LS) estimate

for A = 100.03 mm, which produces the dotted black curve

passing through the middle of the data (Fig. 14a). The RMS

deviation of the data about this curve is 2.99 mm, closely

matching the designed level of noise. Next we ‘erroneously’

set T = 3 years, and obtained a LS estimate A = 196.4 mm,

producing the dashed red curve (Fig. 14a). The RMS devia-

tion of the data about this curve is 9.2 mm. Finally, we erro-

neously set T = 1/3 years, and estimated A = 60.0 mm,

producing the solid magenta curve (Fig. 14 a) and an RMS

misfit of 9.7 mm. We twice assigned a value for T that was

off by a factor of 3 (either too big, or too small), and resulting

approximation to the transient behavior was rather poor, and

the RMS misfit was more than three times larger than the

measurement noise.

However, we will rarely estimate the parameters of the

transient model (Eq. 9) in isolation, since any station record-

ing a postseismic transient is almost certain to have recorded

a coseismic jump as well, and this jump would be mod-

eled using a Heaviside function. This means our transient

model, operating in conjunction with the SLTM (Eq. 8), can

‘misappropriate’ part of this jump, so as to reduce the misfit

of the combined model to the transient displacement data.

Therefore in our second set of inversions we invoke a two-

parameter model in which we estimate both A and a constant

offset, or d-axis intercept, d0, that mimics the impact of the

Heaviside function. This offset parameter has very little effect

when T is assigned its correct value of 1 year, but when T is

assigned values of 3 and 1/3 year, the estimates of A are mod-

ified to 172.4 and 70.8 mm, respectively, and the RMS misfit

is reduced to 5.8 and 5.6 mm, respectively. The improved fit

to the data (Fig. 14b) was achieved using curves that now

predict d values of 16.8 and −23.7 mm when �t = 0. These

offsets correspond to that portion of the Heaviside jump being

used to improve any imperfectly formulated transient model

rather than represent a coseismic offset.

When we use logarithmic transients operationally, we

are prepared to down-weight the observations occurring in

the first few weeks or even the first few months after the

earthquake (either a priori, or via an iterative re-weighting

approach, Holland and Welsch 1977) because we believe that

short-lived poroelastic rebound (should it occur) is unlikely

to produce a logarithmic transient. This down-weighting

can also impact our fit to the transient when T has been

assigned an incorrect value, since much of the misfit asso-

ciated with an incorrect T value is concentrated early in the

time series (Fig. 14b). We illustrate this effect by repeating

our LS analysis, without using the simulated displacement

data when �t < 1 month. Down-weighting or eliminating

these early observations has very little impact to our fit when

T is assigned its correct value, but if T is assigned a value

of 3 or 1/3 year, the resulting estimates for A change to

169.9 and 72.1 mm, respectively, and the RMS deviations

(for �t > 1 month) are further reduced to 5.2 and 5.1 mm,

respectively. The modified curves now predict d values of

18.4 and −26.6 mm, respectively, when �t = 0.

In practice, the trend component of a SLTM at most sta-

tions invokes constant velocity, so if we fit an SLTM aug-

mented with a logarithmic transient, it is also likely that the

presence of the transient will modify the velocity estimate
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Fig. 14 Modeling a

logarithmic transient with

correct and erroneous values of

T, using a the logarithmic

transient formula (LTF) alone,

b the LTF plus a constant offset

parameter, c LTF, offset and

velocity parameters
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to some degree so as to mitigate misfits of the transient that

arise when we assign an incorrect value to parameter T . If

that portion of the time series that precedes the earthquake

is several years long, the constant velocity estimate is proba-

bly quite tightly constrained by the pre-earthquake observa-

tions, so the velocity perturbation just discussed is likely to

be small. In the event that the earthquake occurred early in

the time series, however, a larger perturbation might occur.

We now simulate the extreme case in the constant velocity

estimate is entirely determined using data acquired after the

onset of the transient. We do this by assigning the value of T ,

as before, and fitting a three parameter model that estimates

an offset, a constant velocity and the parameter A of the loga-

rithmic transient. First we do this using all data, and then we

repeat the inversion using only the observations with �t > 1

month. When we invert all data while assuming the correct
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Table 2 Results of our

model-fitting experiments with

the simulated transient data

(Fig. 14)

Model parameters Value assigned to T (years) Time period of analysis WRMS misfit (mm)

A 1 (correct) All 3.0

A 3 All 9.2

A 1/3 All 9.7

A, �d 1 (correct) All 3.0

A, �d 3 All 5.8

A, �d 3 �t > 1 month 5.2

A, �d 1/3 All 5.6

A, �d 1/3 �t > 1 month 5.1

A, �d, v 1 (correct) All 3.0

A, �d, v 3 All 3.3

A, �d, v 3 �t > 1 month 3.1

A, �d, v 1/3 All 3.4

A, �d, v 1/3 �t > 1 month 3.2

value for T (i.e. T = 1 year), the addition of a velocity para-

meter to our model makes only a tiny change to the good-

ness of fit. However, it produces a dramatic improvement

to the RMS misfit when T is incorrectly assigned. Setting

T = 3 years produces an RMS misfit of 3.3 mm, whereas

setting T = 1/3 year results in an RMS misfit of 3.4 mm.

If we model the transient for �t > 1 month, the misfits are

further reduced to 3.1 and 3.2 mm, which is almost a perfect

fit, given that the design or constructed level of RMS mea-

surement noise is 3.0 mm. Whether or not we use the first

month of observations, the fits are remarkably good, only

3–13 % higher than the designed level of noise in the data.

The results of our experiments with this synthetic data set are

summarized in Table 2.

If one’s goal is fitting the actual station trajectory, rather

than isolating the individual components of this trajectory,

the trade-off between the coefficients of the SLTM and the

coefficient A of the transient model is highly beneficial if

one does not know the correct value of the parameter T .

This provides the geodesist with a useful option, discussed in

Sect. 5, i.e. to simply assign a ‘reasonable’ or default value for

T , and fit an augmented trajectory model using a completely

linear LS approach. The value of T can be refined later,

on a station by station basis, using a nonlinear estimation

approach.

9 Appendix 2: Inner geometry, outer geometry and

Helmert transformations

The theme of outer versus inner geometry appears quite fre-

quently in the literatures of classical mechanics and space

geodesy, but individual discussions are often framed using

different terminologies, e.g. ‘fiducial’ versus ‘fiducial-free’

analysis (Heflin et al. 1992), and this tends to obscure the

ubiquity and utility of these concepts. We use this appendix

to further explain our terminology, both to clarify our mean-

ing in the main text of this paper, and to help students and

non-specialists grasp these sometimes subtle but fundamen-

tal and very useful concepts.

Einstein once said that ‘all geometry is length’. He was

emphasizing the central role of the metric tensor in defining

and measuring both lengths and angles. But even in classi-

cal or Galilean mechanics, this statement remains valid and

profound.

Let us assume that we work in 3D physical space equipped

with a well-defined scale which is independent of position or

orientation (i.e. there is a single scalar metric for the whole

space), that this scale does not change over time, and that

we are concerned with the geometry of a set of points—

representing GPS stations—that constitute the vertices of a

polyhedron embedded in this space. The inner geometry of

the polyhedron addresses its shape and size, but not its loca-

tion or orientation. The outer geometry of the polyhedron

encodes or implies its inner geometry, but also addresses the

position and the orientation of the polyhedron relative to an

external reference frame, which we will normally think of as

a Cartesian axis system [X, Y, Z]. The outer geometry of a

polyhedron is expressed or defined by measuring or assigning

the 3n coordinates {X i , Yi , Zi }, i = 1 : n of the n stations

or vertices composing the polyhedron. The inner geometry of

the polyhedron is the geometry that can be measured or spec-

ified with reference to the polyhedron, but without reference

to (or access to) to an axis system or RF. If one knows the

lengths of all baselines (inter-vertex distances) in the poly-

hedron, then the inner geometry is completely determined.

Inner geometry is all about length, so, in principle, all one

really needs to discuss it or measure it is a length scale.

Since the inner geometry of a polyhedron is totally deter-

mined by measuring or specifying the lengths between the
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vertices of the polyhedron, this description is invariant with

respect to a change of axis system. But the coordinates

(X, Y, Z) of these vertices, i.e. the outer geometry of the

polyhedron, obviously depend on the particular choice of

axis system. It is because the inner geometry is invariant

with respect to the choice of axes (as long as the scale or

metric is fixed) that the inner geometry is often thought of

as being the deeper or more fundamental description of the

polyhedron’s geometry. (If we redefined the Z-axis so that it

passed through New York, the distance between New York

and Los Angeles would remain the same).

There is a subtlety of language that can cause confusion.

We can refer to the inner geometry of a polyhedron speci-

fied by listing its 3n coordinates. But we are referring to the

shape and size of the polyhedron implied by those coordi-

nates, and not the coordinates themselves. Indeed, one often

discusses the inner geometry of a polyhedron with reference

to its outer coordinates, because this is much simpler in prac-

tice than describing an independent set of baseline lengths.

One could specify the inner geometry with a set of lengths

and related metadata, and those lengths might be referred

to as inner coordinates. This is very rarely done in prac-

tice because formulating the metadata required to interpret

these lengths correctly is quite complicated. Nevertheless, the

concept of inner coordinates is a useful one. Let us suppose

we have aligned two very similar polyhedra (perhaps a GPS

polyhedron and a model polyhedron) as closely as possible,

and determined the remaining differences in the coordinates

of corresponding vertices {�X i , �Yi , �Zi }, i = 1 : n. We

might characterize total misfit of these polyhedra using the

statistic M2 = �i (�X2
i +�Y 2

i +�Z2
i ) which, at first sight,

might appear to be an outer coordinate description. But, since

�X2
i + �Y 2

i + �Z2
i = L2

i , where L i is the length of the

residual vector between the i th vertex of the two polyhedra,

then the global misfit measure M2 = �i (�L2
i ) is actually an

inner geometrical measure since it is depends only on length.

The measure M is independent of the RF. For this reason M

can be said to quantify the inner coordinate misfit or inner

coordinate scatter of the two polyhedra. If formal estimates

of the uncertainties attending each �X i , �Yi , and �Zi . are

available, they can be used to weight these quantities when

evaluating M .

One must specify the lengths of all six sides of a tetra-

hedron (which has 4 vertices) in order to render it ‘rigid’

or to completely specify its inner geometry. If we add one

new vertex to an already rigid polyhedron, it is necessary to

specify the distance between the new vertex and three (non-

collinear) existing vertices in order that the enlarged poly-

hedron remains rigid, and its inner geometry remains fully

determined. It follows that we must measure a total of (3n−6)

lengths to determine or define the inner geometry of a poly-

hedron composed of n GPS stations. (Note that if n > 4, this

is less than the total number of baselines or lengths associated

with a polygon, which number n (n − 1)/2 in all. This situa-

tion arises because not all baselines are linearly independent,

and the (3n − 6) lengths referred to above must be indepen-

dent.) We can specify the outer geometry of this polyhedron

with respect to a given set of [X, Y, Z] axes by measuring or

specifying the 3n coordinates {X i , Yi , Zi }, i = 1 : n of the

n stations in that coordinate system. The difference between

needing (3n − 6) parameters to determine the inner geom-

etry of a polyhedron and needing 3n parameters to spec-

ify its outer geometry amounts to 6 degrees of freedom.

These degrees of freedom correspond to the 3 translations

(tx , ty, tz) and 3 rotations (rx , ry, rz) that produce a length-

preserving (or isometric) but otherwise arbitrary displace-

ment of the axis system (or, equivalently, any possible rigid-

body displacement of the polyhedron relative to a fixed set

of axes). In space geodesy, coordinate transformation asso-

ciated with the RF change [X, Y, Z] => [X′, Y′, Z′] is

achieved by the 6-parameter Helmert transformation H6 con-

structed using these translational and rotational parameters

(see Bevis et al. 2012a, for a related discussion).

The H6 transformation can be represented in different

ways. For example, if some point P has the position or coor-

dinate vector xA in frame A, and xB in frame B, then

xB = t + R xA (11)

where t = [tx ty tz]
′ is the frame translation vector, and R is

the frame rotation matrix. The elements of R depend only

the frame rotation angles rx , ry , and rz , which correspond

to rotations about the X, Y, and Z axes, respectively. That

is, the rotation matrix R depends only on the elements of

the rotation vector r = [rxryrz]
′.When these angles are very

small, the rotations are said to be infinitesimal rotations, in

which case matrix R takes on the especially simple form, and

this equation can be restated in matrix form as

⎡

⎣

XB

YB

ZB

⎤

⎦ =

⎡

⎣

tx
ty

tz

⎤

⎦ +

⎡

⎣

1 −rz ry

rz 1 −rx

−ry rx 1

⎤

⎦

⎡

⎣

XA

YA

ZA

⎤

⎦ (12)

We can also represent the H6 transformation as a nonlinear

functional relationship

xB = H6(xA|t, r) = H6(xA|h6) (13)

where the symbol ‘|’ occurring between the parentheses

means ‘given’ the parameters that follow this symbol. This

formalism emphasizes that the H6 transformation is con-

trolled by the three translations and three rotations of the

frame, which can be thought of as the elements of a parame-

ter vector h6.

To apply this formalism to a polyhedron it is useful to

define the network position vector, xN, for a polyhedron com-
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posed of n vertices or GPS stations as the column vector of

length 3n built by stacking the n station position vectors

x1, x2, . . . xn . Then

xN
B =

⎡

⎢

⎢

⎣

x1

x2

·

xn

⎤

⎥

⎥

⎦

B

=

⎡

⎢

⎢

⎣

t

t

·

t

⎤

⎥

⎥

⎦

+

⎡

⎢

⎢

⎣

R 0

R

·

0 R

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎣

x1

x2

·

xn

⎤

⎥

⎥

⎦

A

(14)

or

xN
B = H6(xN

A |h6 ) (15)

These equivalent Eqs. (14 and 15) can be thought of as

expressing a forward problem: given knowledge of the frame

translation and frame rotation parameters (i.e. the vector h6),

transform the coordinates of a polyhedron (i.e. network posi-

tion vector) xN in frame A so to determine its coordinates in

frame B.

The problem of ‘aligning’ two polyhedra is actually the

inverse problem. Suppose we wish to align polyhedron A

with a ‘target’ polyhedron T. Then we seek a particular vector

h6—i.e., a particular change of RF—that minimizes some

measure of the (post-transformation) deviation or residual

vector, d, defined as

d = xN
T − H6(xN

A|h6) (16)

The obvious measure or penalty function is that discussed

earlier, i.e.

M2 = d′∗d =

n
∑

i=1

�X2
i + �Y 2

i + �Z2
i (17)

although, in practice, one typically uses a suitably weighted

version of this penalty function, such as d′∗C−1 ∗ d where

C is the covariance matrix for d. One can usually get a sim-

ilar result at less computational cost by minimizing d′∗W∗d

where W is the diagonal matrix whose i th. diagonal element

is the reciprocal of the estimated variance for the i th. ele-

ment of d. This second approach better lends itself to robust

least squares inversion via iterative re-weighting (Holland

and Welsch 1977).

If polyhedron A and the target polyhedron T had the same

inner geometry, then they could be perfectly aligned and M

(as given by Eq. 17) would be zero. If M is minimized, but

has a non-zero value, this statistic characterizes the differ-

ences in the inner geometry of the two polyhedra, i.e. a post-

alignment misfit which manifests a fundamental difference

in size and shape. Note that this measure of inner coordinate

scatter will normally be smaller, sometimes much smaller,

than the corresponding outer coordinate scatter statistic

M2
pre-alignment = (xN

T − xN
A)′∗(xN

T − xN
A)

=

n
∑

i−1

�X2
i + �Y 2

i + �Z2
i (18)

in which the �X, �Y , and �Z are computed at each vertex

before alignment takes place.

The outer geometry of a polyhedron uniquely implies or

determines its inner geometry, but its inner geometry in no

way implies or determines its outer geometry. There are

an infinite number of outer geometries consistent with a

given inner geometry, and all these outer geometries can be

explored by searching over the space spanned by the six para-

meters of the H6 transformation. A key point is that if two

observers ascribe different inner geometries to a polyhedron,

then they are describing fundamentally different polyhedra,

or proposing inconsistent descriptions of a single polyhedron.

But it is possible that two observers ascribe differing outer

geometries (sets of coordinates) for the same polyhedron and

yet both have valid descriptions. If their measurements were

perfect, this situation would arise if the two observers had

adopted (or realized) different RFs, either deliberately or by

accident. Two differing sets of coordinates for a GPS network

are completely consistent only if they imply the same inner

geometry, i.e. the same lengths for all baselines in that poly-

hedron. An equivalent statement that is often more useful

operationally is that two sets of coordinates for a polyhedron

are completely consistent if and only if it is possible to find

specific values for the six parameters of the H6 transforma-

tion that transform one set of vertex coordinates so that it is

in complete agreement with the other set.

The concept of inner versus outer geometry also applies in

4D (i.e. in classical space–time) to the displacement histories

of GPS networks (polyhedra) that are moving and deform-

ing over extended periods of time. The inner description of

an evolving polyhedron is a description that can be framed

purely in terms of baseline lengths describing the polyhedron

at each and every epoch. Alternatively, this description could

be framed in terms of the baseline lengths in effect at a ref-

erence epoch, and the temporal changes in these lengths that

occur throughout the time span of interest. The inner geome-

try of a geodetic time series describing a deforming network

is independent of any RF, and therefore invariant under RF

transformation.

We can generalize the H6 transformation which accounts

for rotation and translation of an axis system, by assuming

that, over an extended period of time, we are concerned with

the relationship between two axis systems wherein one is

continuously translating and rotating relative to the other one.

We require that if any station has a constant velocity in RF#1

it will have a (generally different) constant velocity in RF#2.

This is achieved by assuming that the rotation and translation

vectors appearing in Eqs. (11) and (12) change linearly in
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time, such that

r = r0 + (t − t0)
dr

dt
= r0 + (t − t0)ṙ (19)

t = t0 + (t − t0)
dt

dt
= t0 + (t − t0)ṫ (20)

where t0 is some reference time, adopted by convention. Note

that these equations are invocations of the CVM (Eq. 2), but

applied to frame translation and frame rotation. The reader

might object that a rotation rate is an angular velocity, and

ongoing rotation necessarily produces accelerations, which

violates our requirement that every station has a constant

velocity in both frames. But, in our context, vector r expresses

infinitesimal rotations (typically |r| ∼ 1 nanoradian =

10−9), and the same is true of the derivative dr/dt . A

typical value for this derivative or rotation rate might be

∼10−9 year−1. Since both RFs are very nearly geocentric,

and the displacements implied near the earth’s surface are

circular arcs, then the amplitude of the associated centripetal

or transverse acceleration is given by the well known for-

mula a = −ω
2 RE , where RE is the radius of the earth, and

ω is angular speed. Because the acceleration depends on the

square of ω = |dr/dt |, and because ω is a tiny number, the

implied accelerations are completely negligible.

Thus, in the context of crustal motion geodesy, GPS coor-

dinate times series referred to two distinct axis systems (with

a shared and time-invariant scale) can be related by the three

rotations, three rotation rates, three translations and three

translation rates that describe the motion of one frame rel-

ative to the other one. These are the 12 parameters of the

generalized Helmert transformation, H12 (see Bevis et al.

2012a, for a related discussion). The H12 transformation can

be written down in a variety of ways, but perhaps it is simplest

to think of it as Eq. (11) or Eq. (12) in which the frame trans-

lations and rotations behave according to Eqs. (19) and (20).

We can combine these equations so as to arrive at a single

complicated equation, but this is not particularly edifying.

In the event that the trajectory of each station in the

network is characterized in RF#1 using a CVM, that is,

by stating a reference position (xR, yR, zR) and a velocity

(vx , vy, vz) for each station in the network, then the inner

geometry equivalent or ‘isometric’ description in RF#2 is

easily found using the appropriate H12 transformation. Two

distinct sets of reference positions and station velocities pur-

porting to represent the same polyhedron and the same period

of time are consistent, i.e. imply the same inner geometry,

if and only if we can find specific values for the 12 para-

meters of the H12 transformation that maps one description

{xR, yR, zR, vx , vy, vz}
i , i = 1 : n onto the other one. If

we cannot do this exactly, but we find instead the parame-

ters that bring the two descriptions as closely together as

possible, then the remaining differences manifest irreducible

length differences in the inner geometry of the two descrip-

tions, and their evolution over time. That is, they manifest

the inconsistency of the two kinematic descriptions.

Suppose we parameterize a trajectory model using a refer-

ence position vector xR and a velocity vector v, we can view

this description as constituting a position–velocity vector w

defined as

w =

[

xR

v

]

(21)

We can then define the network position–velocity vector for

a polyhedron as

wN =

⎡

⎢

⎢

⎣

w1

w2

·

wn

⎤

⎥

⎥

⎦

(22)

which is analogous to definition of the network position vec-

tor which appeared in Eq. (14), but describes the temporal

evolution of the polyhedron or network geometry, not just its

instantaneous geometry. And by analogy with Eq. (14), we

can represent the 12-parameter generalized Helmert trans-

formation H12 thus:

wN
B = H12

(

wN
A

∣

∣t0, r0, ṫ, ṙ
)

= H12
(

wN
A |h12

)

(23)

where the 12 elements of the parameter vector h12 constitute

the translation and rotations that relate frames A and B at

some frame reference epoch, and the (constant) translation

rates and rotation rates, that describe how frame rotation and

translation evolve as a function of time. Eq. [23] constitutes

the forward problem of transforming the network position–

velocity vector (to change from frame A to frame B) given

the parameter vector h12.

The problem of posterior imposition of a target RF,

described in Sect. 6.3, is essentially an inverse problem in

which we estimate the particular vector h12 that transforms

the network position–velocity vector (for some sub-network

of ‘common’ stations) expressed in an arbitrary frame so that

the transformed vector matches as closely as possible the pre-

dictions of the target RF model for that sub-network. Having

solved this inverse problem, then the forward equation (23)

can be applied to the entire network time series and model.

The reader might wonder how this approach applies if we

are using the SLTM or the ETM/ELTM instead of a CVM.

In fact this generalization poses no difficulties since translat-

ing the RF in no way effects the amplitudes of oscillations

or jumps or the amplitude coefficient A in the logarithmic

transient formula (Eq. 9), and the same is true for infinites-

imal rotations and infinitesimal rotation rates. The rotation

vector r, and the rotation rate vector dr/dt , produce discern-

able changes only when multiplied by a very large number
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such as the radius of the earth given in meters. So infini-

tesimal rotations affect geocentric position vectors, but they

have essentially no effect on topocentric vectors (i.e. those

‘rooted’ at the geodetic station) such as oscillation ampli-

tudes or jump amplitudes with typical magnitudes of 1 mm

to several meters. A similar consideration applies in rate or

velocity space.

The role of conventions in standard RFs. All geometrical RFs

contain purely arbitrary aspects that are resolved by conven-

tion. (From the linear algebraic point of view, these con-

ventions introduce constraints that resolve rank deficiencies

or degeneracies that would otherwise occur in the matrix

description of the RF and/or positioning of stations in that

RF). These conventions in no way affect the inner geome-

try of any entities described in the frame. For example, if

we frame a static geographical coordinate system (latitude,

longitude) for the earth, the location of the prime meridian

(i.e. the locus of zero longitude) is completely arbitrary. At

one time this particular ambiguity was resolved by adopting

the convention that the prime meridian passes through the

Greenwich Observatory in London. Any formula for the dis-

tance between two points on an axi-symmetric earth refers

only to the difference in the longitudes of these points, which

is entirely unaffected by the conventional designation of the

prime meridian. Since any Cartesian axis system [X, Y, Z]

can be related to any similar axis system [X′, Y′, Z′] using

six parameters or degrees of freedom, this is the number of

degrees of freedom that must be resolved by convention when

defining a ‘standard’ coordinate system or RF. The same is

true for terrestrial RFs, such as ITRF2008, that operate con-

tinuously in time except that 12 degrees of freedom must be

resolved by convention (6 associated with position space and

6 more for velocity or rate space). The fact that ITRF2008 is

nominally a NNR frame, for example, is essentially a conven-

tional means to resolve an otherwise arbitrary decision about

the rotation rates of this particular frame. The inner geometry

of a GPS coordinate time series is invariant with respect to

the choice of reference frame, so it is entirely independent

of the NNR assumption or any other conventional aspect of

ITRF2008. In this sense we might paraphrase Einstein and

state that in crustal motion geodesy, all geometry is either

inner geometry (length) or convention.

In this paper we analyze GPS networks without direct ref-

erence to the other space geodetic techniques used to devise

and define ITRF2008, and previous versions of ITRF. So,

in this paper we are directly concerned only with the scale

associated with GPS measurements. We acknowledge that

our GPS metric or scale is inherited from ITRF2008, via the

prior constraints applied during daily GPS data processing,

and that this scale actually derives from a combination of

geodetic techniques. Because of this, our RFs are not inde-

pendent of ITRF2008, and we think of them as modifications

of, or being derived from ITRF2008. We choose to depart

from the ITRF2008 standard because we place more impor-

tance on the consistency of our geometrical description than

in sharing this description with third parties (which requires

us to adopt a common and ‘named’ RF), and because we

place more importance on the consistency of our geomet-

rical descriptions than on the convention-related properties

of ITRF2008 such as its nominal NNR property. There are

applications and contexts in which adopting a standard and

shared reference frame, such as ITRF2008, is more important

that any consideration related to modest improvements in the

geometrical consistency of the adopted frame. But physics

usually places its main emphasis on inner geometry rather

than convention.
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