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Abstract

We focus on the task of estimating a physically plausi-
ble articulated human motion from monocular video. Ex-
isting approaches that do not consider physics often pro-
duce temporally inconsistent output with motion artifacts,
while state-of-the-art physics-based approaches have either
been shown to work only in controlled laboratory condi-
tions or consider simplified body-ground contact limited to
feet. This paper explores how these shortcomings can be
addressed by directly incorporating a fully-featured physics
engine into the pose estimation process. Given an uncon-
trolled, real-world scene as input, our approach estimates
the ground-plane location and the dimensions of the physi-
cal body model. It then recovers the physical motion by per-
forming trajectory optimization. The advantage of our for-
mulation is that it readily generalizes to a variety of scenes
that might have diverse ground properties and supports
any form of self-contact and contact between the articu-
lated body and scene geometry. We show that our approach
achieves competitive results with respect to existing physics-
based methods on the Human3.6M benchmark [13], while
being directly applicable without re-training to more com-
plex dynamic motions from the AIST benchmark [36] and to
uncontrolled internet videos.

1. Introduction
In this paper, we address the challenge of reconstruct-

ing physically plausible articulated 3d human motion from
monocular video aiming to complement the recent meth-
ods [15, 16, 23, 42, 42, 48] that achieve increasingly more
accurate 3d pose estimation results in terms of standard
joint accuracy metrics, but still often produce reconstruc-
tions that are visually unnatural.

Our primary mechanism to achieve physical plausibil-
ity is to incorporate laws of physics into the pose estima-

Figure 1. Example results of our approach on internet videos of
dynamic motions. Note that our model can reconstruct physically
plausible articulated 3d motion even in the presence of complex
contact with the ground: full body contact (top row), feet and
hands (middle), and feet and knee contacts (bottom).

tion process. This naturally allows us to impose a variety
of desirable properties on the estimated articulated motion,
such as temporal consistency and balance in the presence of
gravity. Perhaps one of the key challenges in using physics
for pose estimation is the inherent complexity of adequately
modeling the diverse physical phenomena that arise due to
interactions of people with the scene. In the recent liter-
ature [29–31, 43] it is common to keep the physics model
simple to enable efficient inference. For example, most of



Figure 2. Examples results of our approach for scene with soft
ground (top) and interaction with a chair (bottom).

the recent approaches opt for using simplified contact mod-
els (considering foot contact only), ignore potential effects
due to interaction with objects other than the ground-plane,
and do not model more subtle physical effects such as slid-
ing and rolling friction, or surfaces with varying degrees of
softness. Clearly there are many real-world scenarios where
leveraging a more feature-complete physical model is nec-
essary. We explore physics-based articulated pose estima-
tion using feature-complete physical simulation as a build-
ing block to address this shortcoming. The advantage of
such an approach is that it allows our method to be readily
applicable to a variety of motions and scenarios that have
not previously been tackled in the literature (see fig. 1 and
2). Specifically, in contrast to [29–31, 43] our approach can
reconstruct motions with any type of contact between the
body and the ground plane (see fig. 1). Our approach can
also model interaction with obstacles and supporting sur-
faces such as furniture and allows for varying the stiffness
and damping of the ground-plane to represent special cases
such as trampoline floor (see fig. 2). We rely on the Bul-
let [7] engine, which was previously used for simulating hu-
man motion in [24]. However, none of our implementation
details are engine-specific, so we envision that the quality
of our results might continue to improve with further devel-
opment in physical simulation.

The main contribution of this paper is to experimentally
evaluate the use of trajectory optimization for physics-based
articulated motion estimation on laboratory and real-world
data using a generic physics engine as a building block. We
demonstrate that combining a feature-complete physics en-
gine and trajectory optimization can reach competitive or
better accuracy than state-of-the-art methods while being
applicable to a large variety of scenes and motion types.
Furthermore, to the best of our knowledge, we are the first to
apply physics-based reconstruction to complex real-world
motions such as the ones shown in fig. 1 and 2. As a

second contribution, we generate technical insights such as
demonstrating that we can reach excellent alignment of es-
timated physical motion with 2d input images by automat-
ically adapting the 3d model to the person in the image,
and employing appropriate 2d alignment losses. This is in
contrast to related work [29–31, 43] that typically does not
report 2d alignment error and qualitatively may not achieve
good 2d alignment of the physical model with the image.
We also contribute to the understanding of the use of the
residual root force control [45]. Such residual root force has
been hypothesized as essential to bridge the simulation-to-
reality gap and compensate for inaccuracies in the physical
model. We experimentally demonstrate that the use of phys-
ically unrealistic residual force control might not be neces-
sary, even in cases of complex and dynamic motions.

2. Related work
In the following, we first discuss recent literature on 3d

human pose estimation that does not incorporate physical
reasoning. We then review the related work on physics-
based human modeling and compare our approach to other
physics-based 3d pose estimation approaches.
3d pose estimation without physics. State-of-the-art meth-
ods are highly effective in estimating 2d and 3d people
poses in images [5, 15, 49], and recent work has been
able to extend this progress to 3d pose estimation in video
[16, 23, 42]. The key elements driving the performance of
these methods is the ability to estimate data-driven priors on
articulated 3d poses [16, 47] and learn sophisticated CNN-
based representations from large corpora of annotated train-
ing images [13, 14, 21, 37]. As such, these methods per-
form very well on common poses but are still challenged
by rare poses. Occlusions, difficult imaging conditions, and
dynamic motions (e.g. athletics) remain a challenge as these
are highly diverse and hard to represent in the training set.
As pointed out in [29], even for common poses state-of-
the-art methods still often generate reconstructions prone
to artifacts such as floating, footskating, and non-physical
leaning. We aim to complement the statistical models used
in the state-of-the-art approaches by incorporating laws of
physics into the inference process and thus adding a com-
ponent that is universally applicable to any human motion
regardless of the statistics of the training or test set.

In parallel with recent progress in pose estimation, we
now have accurate statistical shape and pose models [3,
20, 44]. These body models are typically estimated from
thousands of scans of people and can generate shape de-
formations for a given pose. In this paper, we take advan-
tage of these improvements and use a statistical body shape
model [44] to define the dimensions of our physical model
and derive the mass from the volume of the body parts.
Physics-based human motion modeling. Human motion
modeling has been a subject of active research in com-



Figure 3. Overview. Given a monocular video of a human motion, we estimate the parameters of a physical human model and motor
control trajectories τ (t) such that the physically simulated human motion aligns with the video. We first use an inference network that
predicts 2d landmarks li and body semantic segmentation masks from the video frames. From n seed frames we estimate a time-consistent
human shape β and the ground-plane location Tg . These are then kept fixed during a per-frame pose refinement step which provides the
3d kinematic initialization {θi} to the physics optimization. The dynamics stage creates a physical model that mirrors the statistical shape
model with appropriate shape and mass. Our dynamics optimization improves 3d motion estimation taking into account 3d kinematics, 2d
landmarks and physical constraints. We refer to §3 for details.

Contact model Real-time Physics implementation Residual force Body model Real-world videos
Li et al. [19] body joints no custom no fixed yes
Rempe et al. [29] feet no custom no fixed yes
PhysCap [31] feet yes custom yes fixed yes
Shimada et al. [30] feet yes custom yes fixed yes
SimPoE [46] full body yes MuJoCo [35] yes adapt. no
Xie et al. [43] feet no custom no adapt. no
DiffPhy [9] full body no TDS [12] no adapt. yes
Ours full body no Bullet [7] no adapt. yes

Table 1. Comparison of recent physics-based articulated pose estimation approaches. “Contact model” indicates what contact points
between body and ground are considered, “Residual force” indicates if the physical model allows application of additional external force to
move the person (see [45]), “Body model” specifies if approach adapts the physical model to person in the video, and “Real-world videos”
specifies if approach has also been evaluated on real-world videos or only on videos captured in laboratory conditions.

puter graphics [2,17], robotics [8] and reinforcement learn-
ing [11,24,40] literature. With a few exceptions, most of the
models in these domains have been constructed and evalu-
ated using the motion capture data [2]. Some work such
as [26] use images as input, aiming to train motion con-
trollers for a simulated character capable of performing the
observed motion under various perturbations. That work
focuses on training motion controllers for a fixed charac-
ter, whereas our focus is on estimating the motion of the
subject observed in the image. Furthermore, the charac-
ter’s size, shape, and mass are independent of the observed
subject. [17] propose a realistic human model that directly
represents muscle activations and a method to learn con-
trol policies for it. [41] generate motions for a variety of
character sizes and learn control policies that adapt to each
size. [17, 41] and similar results in the graphics literature
do not demonstrate this for characters observed in real im-
ages and do not deal with challenges of jointly estimating
physical motion and coping with ambiguity in image mea-
surements or the 2d to 3d lifting process [33].

Physics-based 3d pose estimation. Physics-based hu-

man pose estimation has a long tradition in computer vi-
sion [4, 22, 38]. Early works such as [38] already incorpo-
rated physical simulation as prior for 3d pose tracking but
only considered simple motions such as walking and mostly
evaluated in the multi-view setting in the controlled labora-
tory conditions. We list some of the properties of the re-
cent works in tab. 1. [19] demonstrate joint physics-based
estimation of human motion and interaction with various
tool-like objects. [29] proposes a formulation that simplifies
physics-based reasoning to feet and torso only, and infers
positions of other body parts through inverse kinematics,
whereas [19] jointly model all body parts and also include
forces due to interaction with an object. [30, 31] use a spe-
cialized physics-based formulation that solves for ground-
reaction forces given pre-detected foot contacts and kine-
matic estimates. In contrast, we do not assume that contacts
can be detected a-priori, and in our approach, we estimate
these as part of the physical inference. Hence we are not
limited to predefined types of contact as [19,29–31] or their
accurate a-priori estimates. We show that we quantitatively
improve over [29, 31], and qualitatively show how we can



address more difficult in-the-wild internet videos of activ-
ities such as somersaults and sports, which would be dif-
ficult to reconstruct using previous methods. Our work is
conceptually similar to SimPoE [46] in that both works use
physics simulation. In contrast to SimPoE, we introduce
a complete pipeline that is applicable to real-world videos,
whereas SimPoE has been tested only in laboratory condi-
tions and requires a calibrated camera. Furthermore, since
SimPoE relies on reinforcement learning to train dataset-
specific neural network models to control the simulated
body, it is not clear how well SimPoE would generalize to
variable motions present in real-world videos. One clear ad-
vantage of the SimPoE approach is its fast execution at test
time, which comes at the cost of lengthy pre-training. Our
approach is related to the approach of [43] which also esti-
mates 3d human motion by minimizing an objective func-
tion that incorporates physics constraints. Perhaps the most
significant differences to [43] are that (1) we use the full-
featured physics model whereas they consider simplified
physical model, (2) their model considers physics-based
loss, but the output is not required to correspond to actual
physical motion, and (3) they do not discuss performance
of the approach on real-world data. The advantage of [43]
is that they define a differentiable model that can be read-
ily optimized with gradient descent. Finally, the concurrent
work [9] tackles physics-based human pose reconstruction
by minimizing a loss using a differentiable physics simula-
tor given estimated kinematics.

3. Our approach
We present an overview of our approach in fig. 3. Given

monocular video as input, we first reconstruct the initial
kinematic 3d pose trajectory using a kinematic approach
of [48] and use it to estimate body shape and the position of
the ground plane relative to the camera. Subsequently, we
instantiate a physical person model with body dimensions
and weight that match the estimated body shape. Next, we
formulate an objective function that measures the similarity
between the motion of the physical model and image mea-
surements and includes regularization terms that encourage
plausible human poses and penalize jittery motions. Finally,
we reconstruct the physical motion by minimizing this ob-
jective function with respect to the joint torque trajectories.
To realize the physical motion, we rely on the implementa-
tion of rigid body dynamics available in Bullet [7].

3.1. Body model and control

We model the human body as rigid geometric primitives
connected by joints. Our model consists of 26 capsules and
has 16 3d body joints for a total of 48 degrees of freedom.
We rely on a statistical model of human shape [44] to in-
stantiate our model for a variety of human body types. To
that end, given the 3d mesh representing the body shape,

we estimate dimensions of the geometric primitives to ap-
proximate the mesh following the approach of [2]. We then
compute the mass and inertia of each primitive based on
its volume and estimate the mass based on an anatomical
weight distribution [28] from the statistical human shape
dataset CAESAR [27].

We do not model body muscle explicitly and instead ac-
tuate the model by directly applying the torque at the body
joints. We denote the vector of torques applied at time t
as τ t, the angular position, and velocity of each joint at
time t as qt and q̇t, and the set of 3d Cartesian coordi-
nates of each joint at time t as xt. Similarly to [25], we
control the motion of the physical model by introducing a
sequence of control targets q̂1:T = {q̂1, q̂2, . . . , q̂t} which
are used to derive the torques via a control loop. The body
motion in our model is then specified by the initial body
state s0 = (q0, q̇0), the world geometry G specifying the
position and orientation of the ground plane, the control tra-
jectory for each joint q̂1:T and the corresponding control
rule. We assume the initial acceleration to be 0. To im-
plement the control loop we rely on the articulated islands
algorithm1 (AIA) [34] that incorporates motor control tar-
gets as constraints in the linear complementarity problem
(LCP) (cf . (6.3) a, b in [34]) alongside contact constraints.
AIA enables stable simulation already at 100 Hz compared
to 1000-2000 Hz for PD control used in [2, 9, 25].

3.2. Physics-based articulated motion estimation

Our approach to the task of physical motion estimation
is generally similar to other trajectory and spacetime opti-
mization approaches in the literature [1, 2, 39]. We perform
optimization over a sequence of overlapping temporal win-
dows, initializing the start of each subsequent window with
the preceding state in the previous window. To reduce the
dimensionality of the search space, we use cubic B-spline
interpolation to represent the control target q̂1:T and per-
form optimization over the spline coefficients [6]. Given the
objective function L introduced in §3.3 we aim to find the
optimal motion by minimizing L with respect to the spline
coefficients of the control trajectory q̂1:T . We initialize the
control trajectory with the kinematic estimates of the body
joints (see §3.4). The initial state is initialized from the cor-
responding kinematic estimate. We use the finite difference
computed on the kinematic motion to estimate the initial ve-
locity. As in [1, 2] we minimize the objective function with
the evolutionary optimization approach CMA-ES [10] since
our simulation environment does not support differentiation
with respect to the dynamics variables. We generally ob-
serve convergence with CMA-ES after 2000 iterations per
window with 100 samples per iteration. The inference takes
20− 30 minutes when evaluating 100 samples in parallel.

1“POSITION_CONTROL” mode in Bullet.



3.3. Objective functions

We use a composite objective function given by a
weighted combination of several components.
3d pose. To encourage reconstructed physical motion to be
close to the estimated kinematic 3d poses qk

1:T we use the
following objective functions

LCOM (q̂1:T ) =
∑
t

(∥ct − ck
t∥22 + ∥ċt − ċk

t∥22) (1)

Lpose =
∑
t

∑
j∈J

arccos(|⟨qtj ,q
k
tj⟩|) (2)

where ct and ck
t denote the position of the center of mass at

time t in the reconstructed motion and kinematic estimate.
Lpose measures the angle between observed joint angles and
their kinematic estimates and the summation (2) is over
the set J of all body joints including the base joint which
defines the global orientation of the body.
2d re-projection. To encourage alignment of 3d motion
with image observations, we use a set of N = 28 landmark
points that include the main body joints, eyes, ears, nose,
fingers, and endpoints of the feet. Let lt denote the positions
of 3d landmarks on the human body at time t, C be the cam-
era projection matrix that maps world points into the image
via perspective projection, ldt be the vector of landmark de-
tections by the CNN-detector, and st the corresponding de-
tection score vector. The 2d landmark re-projection loss is
then defined as

L2d =
∑
t

∑
n

stn∥Cltn − ldtn∥2. (3)

See §3.4 for details on estimating the 2d landmarks.
Regularization. We include several regularizers into our
objective function. Firstly, we use the normalizing flow
prior on human poses introduced in [47] which penalize un-
natural poses. The loss is given by

Lnf =
∑
t

∥z(qt)∥2, (4)

where z(qt) is the latent code corresponding to the body
pose qt. To discourage jittery motions we a add total varia-
tion loss on the acceleration of joints

LTV =
1

J

∑
t

∑
j

∥ẍtj − ẍt−1,j∥1 (5)

Finally, we include a Llim term that adds exponential
penalty on deviations from anthropomorphic joint limits.
The overall objective L used in physics-based motion es-
timation is given by the weighted sum of (1- 5) and of the
term Llim. See the supplemental material for details.

Model MPJPE-G MPJPE MPJPE-PA
HUND [48] 239 116 72

+ S 233 110 71
+ SO 178 85 62
+ SO + G 148 84 63
+ SO + T 186 85 61
+ SO + GT 135 80 58

Table 2. Ablation of kinematics improvements on HUND on a val-
idation subset of Human3.6M. +S indicates time-consistent body
shape, +O indicates additional non-linear optimization, +G us-
ing ground-plane constraints, and +T temporal smoothness con-
straints.

3.4. Kinematic 3d pose and shape estimation

In this section, we describe our approach to extracting 2d
and 3d evidence from the input video sequence.

Body shape. Given the input sequence, we proceed first to
extract initial per-frame kinematic estimates of the 3d pose
and shape using HUND [48]. As part of its optimization
pipeline HUND also recovers the camera intrinsics c and
estimates the positions of 2d landmarks, which we use in
the 2d re-projection objective in (3). HUND is designed to
work on single images, so our initial shape and pose esti-
mates are not temporally consistent. Therefore, to improve
the quality of kinematic 3d pose initialization, we extend
HUND to pose estimation in video. We evaluate the ad-
ditional steps introduced in this section in the experiments
shown in tab. 2 using a validation set of 20 sequences from
Human3.6M dataset. In our adaptation, we do not re-train
the HUND neural network predictor and instead, directly
minimize the HUND loss functions with BFGS. As a first
step, we re-estimate the shape jointly over multiple video
frames. To keep optimization tractable, we first jointly es-
timate shape and pose over a subset of n = 5 seed frames
and then re-estimate the pose in all video frames keeping
the updated shape fixed. The seed frames are selected by the
highest average 2d keypoint confidence score. We refer to
the HUND approach with re-estimated shape as HUND+S
and to our approach where we subsequently also re-estimate
the pose as HUND+SO. In tab. 2 we show results for both
variants. Note that HUND+SO improves considerably com-
pared to the original HUND results.

Ground plane. We define the location of the ground plane
by the homogeneous transformation Tg that maps from the
HUND coordinates to the canonical coordinate system in
which the ground plane is passing through the origin, and
its normal is given by the “y” axis. Let Mt be a subset
of points on the body mesh at frame t. The signed dis-
tance from the mesh points to the ground plane is given
by D(Mt) = TgM

tey , where ey = [0, 1, 0, 0]T is the
unit vector of the “y” axis in homogeneous coordinates. To
estimate the transformation Tg we introduce an objective



function

Lgp(Tg,M) =
∑
t

∥min(δ, Lk(D(Mt)))∥2, (6)

where Lk(D
t) corresponds to the smallest k = 20 signed

distances in Dt. This objective favors Tg that places body
mesh in contact with the ground without making preference
for a specific contact points. This objective is also robust to
cases when person is in the air by clipping the distance at δ,
which we set to 0.2m in the experiments in this paper. We
recover Tg by minimizing

Lgp(Tg) =Lgp(Tg,Ml) + Lgp(Tg,Mr)

+ 2Lgp(Tg,Mb),
(7)

where Ml, Mr and Mb are the meshes of the left foot, right
foot and whole body respectively. This biases the ground
plane to have contact with the feet, but is still robust to cases
when person is jumping or touching the ground with other
body parts (e.g. as in the case of a somersault).
3d pose. In the final step, we re-estimate the poses in all
frames using the estimated shape and ground plane while
adding the temporal consistency objective

Ltemp =
∑
t

∥Mt −Mt−1∥2 + ∥θt − θt−1∥2, (8)

where Mt is a body mesh and θt is a HUND body pose
vector in frame t. To enforce ground plane constraints we
use (6), but now keep Tg fixed and optimize with respect
to body pose. In the experiments in tab. 2 we refer to the
variant of our approach that uses temporal constraints in
(8) as HUND+SO+T and to the full kinematic optimiza-
tion that uses both temporal and ground plane constraints
as HUND+SO+GT. Tab. 2 demonstrates that both tempo-
ral and ground-truth constraints considerably improve the
accuracy of kinematic 3d pose estimation. Even so, the re-
sults of our best variant HUND+SO+GT still contain arti-
facts such as motion jitter and footskating, which are sub-
stantially reduced by the dynamical model (see tab. 3).

4. Experimental results
Datasets. We evaluate our method on three human mo-
tion datasets: Human3.6M [13], HumanEva-I [32] and
AIST [36]. In addition, we qualitatively evaluate on our
own “in-the-wild” internet videos. To compare different
variants of our approach in tab. 2 and tab. 3 we use a vali-
dation set composed of 20 short 100-frame sequences from
the Human3.6M dataset. We use the same subset of full-
length sequences as proposed in [43] for the main evalua-
tion in tab. 4. We use a preprocessed version of the AIST
dataset [36] from [18] which contains pseudo 3d body pose
ground-truth obtained through multi-view reconstruction.

Figure 4. Qualitative results on the Human3.6M dataset. Note how
the dynamical model (right) recovers plausible locomotion.

For our experiments, we select a subset of fifteen videos fea-
turing diverse dances of single subjects. For the evaluation
on HumanEva-I, we follow the protocol defined in [29] and
evaluate on the walking motions from the validation split of
the dataset using images from the first camera. We assume
known camera extrinsic parameters in the Human3.6M ex-
periments and estimate them for other datasets. In order
to speed up the computation of the long sequences of Hu-
man3.6M in tab. 4 we compute all temporal windows in par-
allel and join them together in post-processing.

We report results using mean global per-joint position
error (mm) overall joints (MPJPE-G), as well as transla-
tion aligned (MPJPE) and Procrustes aligned (MPJPE-PA)
error metrics. Note that to score on the MPJPE-G metric
an approach should be able to both estimate the articulated
pose and correctly track the global position of the person in
world coordinates. In addition to standard evaluation met-
rics, we implement the foot skate and floating metrics sim-
ilar to those introduced in [29] but detect contacts using a
threshold rather than through contact annotation. Finally,
we report image alignment (MPJPE-2d) and 3d joint veloc-
ity error in m/s. See supplementary for further details.
Analysis of model components. In tab. 3 we present ab-
lation results of our approach. Our full dynamical model
uses kinematic inputs obtained with HUND+SO+GT intro-
duced in §3.4 and is denoted as HUND+SO+GT + Dy-
namics. Our dynamical model performs comparably or
slightly better compared to HUND+SO+GT on joint lo-
calization metrics (e.g. MPJPE-G improves slightly from
135 to 132 mm) but greatly reduces motion artifacts. The
percentage of frames with footskate is reduced from 64 to



Model MPJPE-G MPJPE MPJPE-PA MPJPE-2d Velocity Footskate (%) Float (%)
HUND+SO 178 85 62 12 1.3 25 40
HUND+SO + Dynamics 167 87 62 12 0.45 7 1
HUND+SO+GT 135 80 58 12 0.58 64 0
HUND+SO+GT + Dynamics 132 80 57 11 0.27 8 0
HUND+SO+GT + Dynamics

w/o 2d re-projection, (3) 154 104 68 17 0.32 - -
w/o 3d joints, (2) 134 84 60 11 0.27 - -
w/o COM, (1) 149 81 57 11 0.31 - -
w/o COM and 3d joints, (1, 2) 151 85 59 11 0.33 - -
w/o pose prior, (4) 138 80 57 11 0.24 - -

Table 3. Ablation experiments of the dynamics model on a validation set of 20 sequences from the Human3.6M dataset.

Dataset Model MPJPE-G MPJPE MPJPE-PA MPJPE-2d Velocity Footskate (%)

Human3.6M

VIBE [16] 208 69 44 16 0.32 27
PhysCap [31] - 97 65 - - -
SimPoE [46] - 57 42 - -
Shimada et al. [30] - 77 58 - - -
Xie et al. [43] (Kinematics) - 74 - - - -
Xie et al. [43] (Dynamics) - 68 - - - -
Ours: HUND+SO+GT 145 83 56 14 0.46 48
Ours: HUND+SO+GT + Dynamics 143 84 56 13 0.24 4

HumanEva-I

Rempe et al. [29] (Kinematics) 408 - - - - -
Rempe et al. [29] (Dynamics) 422 - - - - -
Ours: HUND+SO+GT 208 90 76 14 0.51 40
Ours: HUND+SO+GT + Dynamics 196 91 74 14 0.27 4

AIST
Ours: HUND+SO+GT 156 107 67 10 0.59 51
Ours: HUND+SO+GT + Dynamics 154 113 69 13 0.41 4

Table 4. Quantitative results of our models compared to prior work on Human3.6M [13], HumanEva-I [32] and a subset of AIST [18, 36].

8 and error in velocity from 0.58 to 0.27 m/s. We also
evaluate a dynamic model based on a simpler kinematic
variant HUND+SO that does not incorporate ground-plane
and temporal constraints when re-estimating poses from
video. For HUND+SO, the inference with dynamics sim-
ilarly improves perceptual metrics considerably. Note that
HUND+SO produces output that suffers from both foot-
skating (25% of frames) and floating (40% of frames).
Adding ground-plane constraints in (cf . (6)) removes float-
ing artifacts in HUND+SO+GT, but the output still suffers
from footskating (64% of the frames). Dynamical inference
helps to substantially reduce both types of artifacts both for
HUND+SO and HUND+SO+GT. In fig. 4 we show exam-
ple output of HUND+SO+GT + Dynamics and compare it
to HUND+SO+GT which it uses for initialization. Note
that for HUND+SO+GT the person in the output appears
to move forward by floating in the air, whereas our dynam-
ics approach infers plausible 3d poses consistent with the
subject’s global motion. In the bottom part of tab. 3 we re-
port results for our full model HUND+SO+GT + Dynam-
ics while ablating components of the objective function (cf .
§3.3). We observe that all components of the objective func-
tion contribute to the overall accuracy. The most important
components are the 2d re-projection (cf . (3)) and difference
in COM position (cf . (1)). Without these, the MPJPE-G
increases from 132 to 154 and 151 mm, respectively. Ex-
cluding the 3d joints component leads to only a small loss

of accuracy from 132 to 134 mm.

Comparison to state-of-the-art. In tab. 4 we present the
results of our full model on the Human3.6M, HumanEva-I,
and AIST datasets. We compare to VIBE [16] using the
publicly available implementation by the authors and use
the evaluation results of other approaches as reported in
the original publications. Since VIBE generates only root-
relative pose estimates, we use a similar technique as pro-
posed in PhysCap [31] and estimate the global position
and orientation by minimizing the 2d joint reprojection er-
ror. On the Human3.6M benchmark, our approach im-
proves over VIBE and our own HUND+SO+GT in terms of
joint accuracy and perceptual metrics. Compared to VIBE,
the MPJPE-G improves from 208 to 143 mm, MPJPE-2d
improves from 16 to 13 px, and the percentage of foot-
skating frames are reduced from 27% to 4%. Interest-
ingly our approach achieves the best MPJPE-PA overall
physics-based approaches except the pretrained SimPoE,
but reaches somewhat higher MPJPE compared to [30] and
fairly recent work of [43] (82 mm vs 68 mm for [43] and
77 mm for [30]). Note that [43] start with a stronger kine-
matic baseline (74 mm MPJPE) and that the performance
of other approaches might improve as well given such bet-
ter kinematic initialization. Furthermore, our dynamics ap-
proach improves over the results of [29] on HumanEva-I
and achieves significantly better MPJPE-G compared to
HUND+SO+GT. On the AIST dataset, dynamics similarly
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Figure 5. Example result on AIST [36]. The kinematic initialization produces poses that are unstable in the presence of gravity (red circle)
or poses that are temporally inconsistent (yellow circles). Our physics-based approach corrects both errors.

improves in terms of MPJPE-G, footskating, and velocity
compared to our kinematic initialization.
Results on real-world internet video. We show example
results of our approach on the AIST dataset [36] in fig. 5
and on the real-world internet videos in fig. 1, 2 and 6. To
obtain the results with a soft floor shown in fig. 2 we man-
ually modify the stiffness and damping floor parameters to
mimic the trampoline behavior. The sequence with the chair
from the Human3.6M dataset shown in fig. 2 (bottom) is
generated by manually adding a chair to the scene since our
approach does not perform reasoning about scene objects.

In fig. 5 we qualitatively compare the output of our
full system with physics to our best kinematic approach
HUND+SO+GT. We strongly encourage the reader to
watch the video in supplemental material2 to appreciate
the differences between the two approaches and to see the
qualitative comparison to VIBE [16]. We observe that our
physics approach is often able to correct out-of-balance
poses produced by HUND+SO+GT (e.g. second frame in
fig. 5) and substantially improves temporal coherence of the
reconstruction. Note that typically both HUND+SO+GT
and our physics-based approach produce outputs that match
2d observations, but the physics-based approach estimates
3d pose more accurately. For example, in the first sequence
in fig. 6 the physics-based model infers the pose that en-

2See tiny.cc/traj-opt.

ables the person to jump in subsequent frames, whereas
HUND+SO+GT places the left leg at an angle that would
make the jump impossible. Note that the output of the
physics-based approach can deviate significantly from the
kinematic initialization (fig. 7 and second example in fig. 6.
This is particularly prominent in the fig. 7 where we show
example result on a difficult sequence where 2d keypoint
estimation fails to localize the legs in several frames due
to occlusion by the clothing. Note that in this example our
full model with dynamics is able to generate reasonable se-
quence of 3d poses despite multiple failures in the kinematic
initialization.

Failure cases of our approach. We show a few character-
istic examples of the failure cases of our approach in fig. 8.
Note that our physics-based reconstruction depends on the
kinematic 3d pose estimation for initialization and also uses
it in one of the components of the loss (cf . eq. 2). Therefore
our physics-based approach is likely to fail when kinematic
reconstruction is grossly incorrect (see fig. 8 (b)) or when it
fails to estimate position of the limb important to maintain
the overall pose (see fig. 8 (a)). Our physics-based model
might also fail when the estimate of the ground-plane with
respect to the camera is inaccurate. Note how in fig. 8 (c) the
kinematic estimate positions the standing person at an angle
to the true ground-plane normal vector (red arrow). As a re-
sult in this example the physics-based reconstruction tilts

https://tiny.cc/traj-opt
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Figure 6. Example results on real-world videos. In the top row sequence, the kinematic initialization incorrectly places the left foot before
the jump. We highlight the mistake by showing the scene from another viewpoint (red circle). The kinematic initialization also fails to
produce temporally consistent poses in the example in the bottom row (yellow circles). Our physics-based inference corrects both errors
and generates a more plausible motion. See tiny.cc/traj-opt for more results.

https://tiny.cc/traj-opt
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Figure 7. Example results on a difficult real-world video in which the legs of the person are occluded by the clothing. Note that 2d
keypoints on the legs are incorrectly localized in multiple consecutive frames due to severe occlusion (second row) which results in poor
3d pose estimation by the kinematic model (third row). Interestingly our full model with dynamic is able to recover from errors in the
kinematic initialization and generates reasonable sequence of 3d body poses (fourth row).

the person at the torso to maintain stable pose given the in-
correct gravity vector (see the two bottom rows in fig. 8 (c)).

5. Conclusion
In this paper, we have proposed a physics-based ap-

proach to 3d articulated video reconstruction of humans.
By closely combining kinematic and dynamic constraints
within an optimization process that is contact, mass, and in-
ertia aware, with values informed by body shape estimates,
we are able to improve the physical plausibility and reduce
reconstruction artifacts compared to purely kinematic ap-

proaches. One of the primary goals of our work has been to
demonstrate the advantages of incorporating an expressive
physics model into the 3d pose estimation pipeline. Clearly,
such a model makes inference more involved compared to
specialized physics-based approaches such as [31, 43], but
with the added benefit of being more capable and general.

Ethical considerations. This work aims to improve the
quality of human pose reconstruction through the inclusion
of physical constraints. We believe that the level of detail
in our physical model limits its applications in tasks such as
person identification or surveillance. The same limitation
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(a) (b) (c)

Figure 8. Examples of the characteristic failure cases of our ap-
proach on the real-world videos. Note that physics-based model-
ing introduces additional coupling between positions of the body
limbs. While this is typically seen as an advantage, it also means
that failure to estimate one limb correctly can propagate to other
body limbs. For example in (a) our approach failed to correctly
estimate position of the left arm which is used to support the body.
As a result the overall 3d pose is worse for the dynamics (forth
row) compared to the kinematic initialization (third row). Our
physics-based reconstruction might also fail due to poor kinemat-
ics initialization (b) or due to failure to correctly estimate the ori-
entation of the ground plane relative to the camera (c).

also prevents its use in the generation of e.g. deepfakes,
particularly as the model lacks a photorealistic appearance.
We believe our model is inclusive towards and supports a
variety of different body shapes and sizes. While we do not
study this in the paper, we consider it important future work.
Acknowledgements. We would like to thank Erwin
Coumans for his help with the project, as well as the sup-
portive anonymous reviewers for their insightful comments.
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Appendix
This supplementary material provides further details on our
methodology and the data we used. §A presents details on
our physical human body model, §B provides details re-
garding our simulation parameters, §C presents our physics
metrics, in §D we present the datasets used in our experi-
ments, §E provides details about our method’s hyperparam-
eters, and lastly §F summarizes our computational setup.
When referring to equations or material in the main pa-
per we will denote this by (mp). Finally, please see our
supplemental video for qualitative results of our method at
tiny.cc/traj-opt.

A. Physical Body Model
Given a GHUM [44] body mesh M(β,θ0) associated

with the shape parameters β and the rest pose θ0, we build
a simulation-ready rigid multibody human model that best
approximates the mesh with a set of parameterized geomet-
ric primitives (cf . fig. 9). The hands and feet are approx-
imated with boxes whereas the rest of the body links are
approximated with capsules. The primitives are connected
and articulated with the GHUM body joints.

Inspired by [2], we optimize the primitive parameters by
minimizing

L(ψ) =
∑
b∈B

∑
vg∈Mb

min
vp∈M̂b

||vg − vp||+

+
∑
b∈B

∑
vp∈M̂b

min
vg∈Mb

||vp − vg||, (9)

where ψ are the size parameters for the primitives, i.e.
length and radius for the capsules, and depth, height and
width for the boxes. The loss penalizes the bi-directional
distances between pairs of nearest points on the GHUM
mesh Mb and surface of the primitive geometry M̂b associ-
ated with the body link b.

Figure 9. The physical body model’s shape and mass parameters
are based on an associated GHUM [44] mesh.

Furthermore, we learn a nonlinear regressor ψ(β) with
an MLP that performs fast shape approximation at run time.
The regressor consists of two 256-dimensional fully con-
nected layers, and is trained with 50K shapes generated with

Gaussian sampling of the latent shape space β together with
the paired optimal primitive parameters using (9).

Our physical model share an identical skeleton topology
with GHUM but does not model the face and finger joints,
due to the focused interest on the body dynamics in this
work. Extending with finger joints, however, would enable
simulation of hand-object interactions which would be in-
teresting, but we leave this for future work. We note that
there is a bijective mapping for the shared 16 body joints
between our model and GHUM, which allows for fast con-
version between the physical and stastical representation.

B. Simulation Details
We run the Bullet simulation at 200 Hz, with friction

coefficient µ = 0.9 and gravitational acceleration constant
9.8 m/s2. The PD-controllers controlling each torque motor
is tuned with position gain kp = 4.0, velocity gain kd =
0.3, and torque limits similar to those presented in [25].

C. Additional Metrics
In addition to the standard 2d and 3d joint position er-

ror metrics, we evaluate our reconstructions using physi-
cal plausibility metrics similar to those proposed in [29].
Since the authors were unable to share their code we im-
plement our own versions the metrics which doesn’t require
foot-ground contact annotations. A foot contact is defined
as at least N = 10 vertices of a foot mesh being in con-
tact with the ground plane. We set the contact threshold to
d = 0.005 m for kinematics. To account for the modeling
error when approximating the foot with a box primitive we
set the contact threshold for dynamics to d = −0.015 m.
Footskate. The percentage of frames in a sequence where
either foot joint moves more than 2 cm between two ad-
jacent frames while the corresponding foot was in contact
with the ground-plane.
Float. The percentage of frames in a sequence where at
least one of the feet was not in contact but was within 2 cm
of the ground-plane. This metric captures the common is-
sue of reconstructions floating above the ground while not
penalizing correctly reconstructed motion of e.g. jumps.
Velocity. The mean error between the 3d joint velocities
in the ground-truth data and the joint velocity in the recon-
struction. High error velocity indicates that the estimated
motion doesn’t smoothly follow the trajectory of the true
motion. We define the velocity error as

ev =
1

N

N∑
i=1

∑
k∈K

| ˙̄xi
k − ẋi

k|, (10)

where ˙̄xi
k is the magnitude of the ground-truth 3d joint ve-

locity vector (in m/s) for joint k at frame i and where ẋi
k

denotes the reconstructed joint. We estimate the velocity

https://tiny.cc/traj-opt


Weight H36M AIST HumanEva-I Grid
wCOM 15.0 15.0 15.0 {1, 2, 5, 10, 15, 25 }
wpose 0.5 0.5 0.5 {0.1, 0.5, 1, 2 }
w2d 4.0 4.0 4.0 {1, 2, 4, 8, 10 }
wnf 1.0 1.0 1.0 {0.001, 0.1, 1, 10}
wTV 1.0 1.0 1.0 {0.1, 1, 10}
wlim 1.0 1.0 1.0 {0.1, 1, 10}

Table 5. Weights of the objective function described in §3.3 (mp)and (11) for our three main datasets: Human3.6M [13], AIST [36], and
HumanEva-I [32]. “Grid” specifies the values evaluated while selecting hyperparameter values. Note that we did not exhaustively explore
all combination.

Sequence Subject Camera Id Frames
Phoning S11 55011271 400-599
Posing_1 S11 58860488 400-599
Purchases S11 60457274 400-599

SittingDown_1 S11 54138969 400-599
Smoking_1 S11 54138969 400-599

TakingPhoto_1 S11 54138969 400-599
Waiting_1 S11 58860488 400-599
WalkDog S11 58860488 400-599

WalkTogether S11 55011271 400-599
Walking_1 S11 55011271 400-599
Greeting_1 S9 54138969 400-599
Phoning_1 S9 54138969 400-599
Purchases S9 60457274 400-599

SittingDown S9 55011271 400-599
Smoking S9 60457274 400-599

TakingPhoto S9 60457274 400-599
Waiting S9 60457274 400-599

WalkDog_1 S9 54138969 400-599
WalkTogether_1 S9 55011271 400-599

Walking S9 58860488 400-599

Table 6. The subset of Human3.6M used in the ablation experi-
ments. Note that the data was downsampled from 50 to 25 FPS.

using finite differences from 3d joint positions and use first
frame translation aligned joint estimates (as in MPJPE-G).

D. Datasets

Human3.6M. We use two subsets for our experiments on
Human3.6M [13]. When we compare our method to state-
of-the-art methods we use a dataset split similar to the one
used in [43]. See tab. 8 for the complete lists of sequences
we use. Similarly to [31, 43], we down sample the se-
quences from 50 FPS to 25 FPS.

When perform ablations of our model we a smaller sub-
set where we select 20 4-sec sequences from the test split
of Human3.6M dataset (subjects 9 and 11). We selected se-
quences that show various dynamic motions such as walk-

Sequence Frames
gBR_sBM_c06_d06_mBR4_ch06 1-120
gBR_sBM_c07_d06_mBR4_ch02 1-120
gBR_sBM_c08_d05_mBR1_ch01 1-120
gBR_sFM_c03_d04_mBR0_ch01 1-120
gJB_sBM_c02_d09_mJB3_ch10 1-120

gKR_sBM_c09_d30_mKR5_ch05 1-120
gLH_sBM_c04_d18_mLH5_ch07 1-120
gLH_sBM_c07_d18_mLH4_ch03 1-120
gLH_sBM_c09_d17_mLH1_ch02 1-120
gLH_sFM_c03_d18_mLH0_ch15 1-120
gLO_sBM_c05_d14_mLO4_ch07 1-120
gLO_sBM_c07_d15_mLO4_ch09 1-120
gLO_sFM_c02_d15_mLO4_ch21 1-120

gMH_sBM_c01_d24_mMH3_ch02 1-120
gMH_sBM_c05_d24_mMH4_ch07 1-120

Table 7. Sequences used for evaluation on AIST.

ing dog, running and phoning (with large motion range), to
sitting and purchasing (with occluded body parts). For each
sequence, we randomly selected one of the four cameras.
We list the sequences in tab. 6.

HumanEva-I. We evaluate our method on the subset of
HumanEva-I walking sequences [32] as selected by [29],
see tab. 9.

AIST. We select four second video sequences from the pub-
lic dataset [18, 36], showing fast and complex dancing mo-
tions, picked randomly from one of the 10 cameras. We list
our selected sequences in tab. 7.

”In-the-wild" internet videos. We perform qualitative
evaluation of our model on videos of dynamic motions
rarely found in laboratory captured datasets. These videos
were made available on the internet under a CC-BY license
which grants the express permission to be used for any pur-
pose. Note that we only used the videos to perform qualita-
tive analysis of our approach – the videos will not be redis-
tributed as a dataset.



Sequence Subject Camera Id
S11 Directions_1 60457274
S11 Discussion_1 60457274
S11 Greeting_1 60457274
S11 Posing_1 60457274
S11 Purchases_1 60457274
S11 TakingPhoto_1 60457274
S11 Waiting_1 60457274
S11 WalkDog_1 60457274
S11 WalkTogether_1 60457274
S11 Walking_1 60457274
S9 Directions_1 60457274
S9 Discussion_1 60457274
S9 Greeting_1 60457274
S9 Posing_1 60457274
S9 Purchases_1 60457274
S9 TakingPhoto_1 60457274
S9 Waiting_1 60457274
S9 WalkDog_1 60457274
S9 WalkTogether_1 60457274
S9 Walking_1 60457274

Table 8. The evaluation subset of Human3.6M used in the main
evaluation. The subset is similar to the one used in [31]. We down-
sampled the data from 50 FPS to 25 FPS.

Sequence Subject Camera Id Frames
Walking S1 C1 1-561
Walking S2 C1 1-438
Walking S3 C1 1-490

Table 9. Sequences used for evaluation on HumanEva-I.

D.1. Human Data Usage

This work relies on recorded videos of humans. Our
main evaluation is performed on two standard human pose
benchmarks: Human3.6M3 [13] and AIST4 [36]. These
datasets have been approved for research purposes accord-
ing to their respective websites. Both datasets contain
recordings of actors in laboratory settings. To complement
this, we perform qualitative evaluation on videos released
on the internet under creative commons licenses.

E. Hyperparameters

The most important hyperparameters are the weights
of the weighted objected function described in §3.3 (mp).
Where combined loss function is given by

3http://vision.imar.ro/human3.6m/
4https://aistdancedb.ongaaccel.jp/

L = wCOMLCOM + wposeLpose

+ w2dL2d + wnfLnf + wTV LTV

+ wlimLlim.

(11)

We tuned the weights on sequences from the training
splits. The goal was to scale the different components such
that they have roughly equal magnitudes while minimizing
the MPJPE-G error. See tab. 5 for details regarding the
search grid and the chosen parameter values.

F. Computational Resources
For running small experiments we used a desktop work-

station equipped with an “Intel(R) Xeon(R) CPU E5-2620
v4 @ 2.10GHz” CPU, 128 GB system memory and two
NVIDIA Titan Xp GPUs. We ran kinematics in the cloud
using instances with a V100 GPU, 48 GB of memory and 8
vCPUs. In the dynamics experiments, we used instances
with 100 vCPUs and 256 GB of memory for the CMA-
ES [10] optimization. Optimizing a window of 1 second of
video takes roughly 20 min using a 100 vCPUs instance.

http://vision.imar.ro/human3.6m/
https://aistdancedb.ongaaccel.jp/
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