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Trajectory Optimization for Wheeled-Legged

Quadrupedal Robots using Linearized ZMP

Constraints
Yvain de Viragh, Marko Bjelonic, C. Dario Bellicoso, Fabian Jenelten, and Marco Hutter

Abstract—We present a trajectory optimizer for quadrupedal
robots with actuated wheels. By solving for angular, vertical, and
planar components of the base and feet trajectories in a cascaded
fashion and by introducing a novel linear formulation of the zero-
moment point (ZMP) balance criterion, we rely on quadratic
programming only, thereby eliminating the need for nonlinear
optimization routines. Yet, even for gaits containing full flight
phases, we are able to generate trajectories for executing complex
motions that involve simultaneous driving, walking, and turning.
We verified our approach in simulations of the quadrupedal
robot ANYmal equipped with wheels, where we are able to run
the proposed trajectory optimizer at 50 Hz. To the best of our
knowledge, this is the first time that such dynamic motions are
demonstrated for wheeled-legged quadrupedal robots using an
online motion planner.

Index Terms—Legged Robots, Wheeled Robots, Motion and
Path Planning, Optimization and Optimal Control

I. INTRODUCTION

WHEELED-LEGGED robots offer the potential to com-

bine the best of two locomotion domains: The effi-

ciency and speed of wheels with the ability of legged robots to

cope with challenging terrain. Search and rescue, where time

can be a matter of life and death, is only one example of tasks

that could greatly benefit from such systems. However, so far

no locomotion framework has been published that would allow

to fully exploit one of the main advantages of this combination,

that is, the ability to simultaneously walk and drive. This work

bridges this gap by presenting a trajectory optimizer (TO) that

finds online highly dynamic motions for hybrid1 locomotion

of wheeled-legged quadrupedal robots, such as the one shown

in Fig. 1, that has no wheel steering. The ability to cope

with the latter is attractive from an engineering point of view

in the sense that it allows reducing mechanical complexity,

total weight, and leg inertia in favor of reliability, energy

consumption, and agility, respectively.
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1In the context of this work, we use “hybrid” as an attribute that denotes

simultaneous walking and driving.

Fig. 1. Gazebo simulation of ANYmal [1] equipped with actuated, non-
steerable wheels executing a hybrid, full flight trotting gait while tracking
a reference trajectory (orange) that includes a 90° turn. The center of mass
(CoM) and wheel trajectories (shown in red, green, and blue) for this highly
dynamic motion were generated by our trajectory optimizer (TO). A video
demonstrating many more can be found at https://youtu.be/I1aTCTc0J4U.

A. Related Work

Finding input and state trajectories for legged robots using

a model-based approach is an involved problem due to the

high nonlinearity of the system dynamics. To obtain a problem

that can be solved online, three techniques are commonly

employed: 1) introducing assumptions to reduce model com-

plexity 2) solving the problem in a hierarchical cascade such

that a set of simpler subproblems is obtained, and 3) using

heuristics to obtain parts of the solution.

An example using all three techniques is the policy-

regularized model predictive controller (MPC) for the

quadrupedal robot MIT Cheetah [2]. Their robot model is a

floating base with massless legs and quadratic velocity terms

neglected. The swing timings of the legs are found a priori and

a heuristic based on Raibert’s foothold prediction [3] is used

as an objective to guide the optimization search direction. The

reported solver times are in the order of 100ms for a planning

horizon of one stride duration2.

A TO that also optimizes over the swing timings is presented

in [4]. Again, the robot model is a floating base with massless

legs. Heuristics enter in the form of the initial guess and

the prefixed number of steps. The resulting solver times for

a planning horizon of one stride duration were stated as

100ms [5].

2The authors used a MATLAB implementation, while all other works
mentioned rely on C++.

https://youtu.be/I1aTCTc0J4U
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Previous work of Winkler et al. showed a TO formula-

tion which finds the planar CoM and feet trajectories using

nonlinear programming (NLP) [6]. The swing timings are

determined a priori, and the robot is modeled as a linear

inverted pendulum, with constant height and fixed orientation.

For a planning horizon of one stride duration, these drastic

simplifications resulted in solver times between 10 and 120ms,
depending on the gait.

If the feet trajectories are computed first using heuristics

such as Raibert’s foothold prediction, the CoM trajectory can

be obtained by quadratic programming (QP)3 and solver times

decrease to a few milliseconds [7]. The authors have recently

generalized their approach to include the vertical CoM motion

into an NLP problem [8]. This allows to find trajectories for

gaits containing full flight phases, but also increased solver

times more than fivefold.

The model simplifications in [6]–[8] rely to a large extent on

the so-called zero-moment point (ZMP) balance criterion. It

allows for considerable abstractions by formulating a condition

for dynamic balancing that relates the stance feet positions to

the linear and angular momentum of the system. Its application

has a long history in legged robotics [9]. However, it is

important to realize that the associated gain in computational

efficiency comes at the cost of reduced generality. For instance,

the extension to uneven terrain [10] and the inclusion of

friction cone constraints is not straightforward – a drawback

from which computationally more involved methods such as

[4] do not suffer.

As illustrated by above works, there has been a large interest

in generating dynamic motions for conventional legged robots.

By contrast, research on wheeled-legged robots [11]–[21] has

typically focused on statically stable locomotion over uneven

terrain. Examples include the space exploration vehicles [11]–

[13], which use their limbs rather as sophisticated suspension

systems than as legs with wheels as end-effectors. The ap-

proach to traverse flat terrain by driving and irregular terrain

by walking was further explored in [14]–[17]. However, the

possibilities offered by simultaneous walking and driving were

not much investigated, even for statically stable motions. In

this regard, two important exceptions are Boston Dynamic’s

wheeled biped Handle [22] and the recent contribution [23],

which has shown a generic approach to motion generation for

wheeled-legged robots based on NLP. However, little is known

about Handle’s control framework, and the computation times

of [23] are typically a multiple of the planning horizon, making

it prohibitively slow for online application in its present form.

B. Contribution

We present a TO for quadrupedal robots with actuated

wheels that finds trajectories for walking, driving, and hybrid

combinations thereof, given the gait pattern and the desired

goal state. We solve for the planar components of the CoM

and feet trajectories in a single optimization and, in contrast to

[6]–[8], we compute the angular components and the vertical

3Strictly speaking, QP is a subset of NLP. However, we here use the term
NLP to explicitly denote optimization problems that contain constraints that
are not linear, and can thus not be solved using QP.

Fig. 2. Model of a wheeled-legged quadrupedal robot with massless legs
and planar, nondeformable wheels. The current support polygon is shown in
shaded blue. I denotes an inertial frame with z-axis collinear to the ground
plane normal n, and B the base frame with origin at the robot’s CoM. We let
the frame F be fixed at a leg’s endpoint, i.e., the point that during stance is in
contact with the ground (shown for the left hind (LH) leg only), and define this
point as a leg’s foot. This is a useful definition for our case, as we can model
conventional point-contact feet and wheels simply by changing the kinematic
constraints at F . Namely, by defining the z-axis of F to be aligned with the
plane normal and the x-axis to be perpendicular to the wheel’s rotation axis,
the difference between the two becomes only whether F may have a non-zero
velocity component along its x-direction.

CoM motion prior to the optimization. This allows us to find

trajectories for driving curves and executing gaits with full

flight phases without solving an NLP problem. Further, we

introduce a parameterization of the stance feet trajectories that

inherently fulfills the kinematic rolling constraint. To the best

of our knowledge, we present a novel way of formulating the

ZMP balance criterion as a linear constraint.

As we demonstrate in simulations, this allows us to generate

trajectories for dynamic, hybrid locomotion of wheeled-legged

quadrupedal robots with unprecedented speed. We complete

the presentation of our TO by a discussion on its applicability

to real systems and irregular terrain.

II. PROBLEM FORMULATION

For our TO we assume a simplified robot model where

the legs are massless. The single floating body has the total

mass of the robot and an inertia that corresponds to a default

configuration. Furthermore, we model the wheels as flat,

nondeformable disks.

Fig. 2 illustrates our definitions of the inertial, base, and foot

frames I , B, and F , respectively. In the case of a wheeled

foot, the motion of F is subject to the kinematic rolling

constraint during stance. As we solve for the planar base

and feet trajectories simultaneously in our TO, but seek to

avoid nonlinear constraints, we need the following condition

to hold: The kinematic constraints on F must not depend on its

relative position to the base. For a conventional point-contact

foot, this is trivially satisfied, as it is fixed during stance.

However, in case of a wheel, it imposes restrictions on the

motion. For ANYmal [1] equipped with non-steerable wheels,

the condition is satisfied if the base pitch angle is zero with

respect to (w.r.t.) the inertial frame. This is outlined further in

the Appendix.

A. Cascaded Trajectory Generation

Fig. 3 shows the complete architecture of our TO. The

high-level inputs are the gait pattern4 and a reference goal

4The gait pattern defines the swing and stance timings of each leg, i.e.,
when the leg’s endpoint F should be in contact with the ground.
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Gait Pattern Reference Goal State

Tracking Controller

Robot
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Planar Reference

Base Trajectory
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Fig. 3. Architecture of our cascaded TO. As explained in Section III, we
are able to generate all trajectories by solving systems of linear equations
(denoted as Aξ = b) or, in the case of the planar base and feet trajectories,
a single QP problem. Note that, instead of a reference goal state, one may
also directly provide the angular trajectories and the planar reference base
trajectory.

state consisting of linear and angular base position and/or

velocity. If the gait pattern contains full flight phases, i.e.,

all legs are in swing phase, a time-varying trajectory for the

z-component of the base is computed that accounts for these

ballistic free-fall phases. The goal state is used to compute

the angular trajectories and a planar reference base trajectory.

Alternatively, these can also directly be provided, for instance

by a high-level path planner. As the vertical foot motion does

not affect the optimization, we compute it separately, whereby

we parameterize each swing phase by a quintic polynomial. To

track the trajectories and compute actuation torques, a whole-

body controller (WBC), such as the one described in [24], can

for instance be used.

B. Linearized ZMP Balance Criterion

One of our main contributions consists of a linear formula-

tion of the ZMP balance criterion. We derive it starting from

our simplified robot model. Namely, assuming mass-less legs,

the dynamics of the robot are those of a free-floating rigid

body given by
[

m IaIB −m Ig

BΘBBω̇IB + BωIB × BΘBBωIB

]

=

[

IFext

BΓext

]

, (1)

where m denotes the robot’s mass, ΘB its inertia tensor, g the

gravity vector, and Fext, Γext the external forces and torques

acting at the CoM. The left-hand subscripts specify in which

frame the quantities are expressed. We let the symbols a, v,

r, and ω denote linear acceleration, velocity, position, and

angular velocity, respectively. As an example, IrBF is the

position vector of F w.r.t. B expressed in I . For a flat ground

plane, the ZMP is defined as the point on the ground where the

moment induced by the gravito-inertia forces – the left-hand

LF

RF

RH

LH

ZMP

Fig. 4. Different formulations of the ZMP balance criterion as constraint for
the case of a three-leg support phase where the left fore (LF), right fore (RF),
and right hind (RH) leg are in stance phase and the left hind (LH) leg is
swinging. Left image: Constraint on the ZMP (magenta circle) to lie within
the current support polygon (blue shaded area). Middle image: An equivalent
formulation where the constraint edges (dotted lines) have been shifted such
as to intersect at the ZMP and where the feet (blue circles) are constrained
to lie in the associated convex cones. In other words, the edge directions
(represented by normal vectors in brown) are those of the lines connecting
the feet. This formulation leads to doubling of the constraint number. Right
image: Linear constraints are obtained by fixing the constraint edge directions
a priori. If the angular motion of the base is known, this can, for instance,
be done by choosing them as the directions of the lines connecting the hips
(orange).

side (LHS) of (1) – has only a component in the direction of

the plane normal n. I.e., it must hold that

In× (IrIB − IrIZMP)× (m IaIB −m Ig)

= In×RIB (BΘBBω̇IB + BωIB × BΘBBωIB) , (2)

where RIB is the passive rotation matrix from the inertial

frame to the base frame such that Ir = RIB Br. As we let

the inertial frame’s z-axis coincide with the plane normal, (2)

can be solved for the x,y-components of the ZMP as

Ir
xy
IZMP = Ir

xy
IB −

1

z̈B − gz

(
zB (Ia

xy
IB − Ig

xy) +Lxy
)
, (3)

where zB and gz are the z-component of IrIB and Ig,

respectively, and (·)xy denotes a quantity’s planar components.

The angular contributions are given by

Lxy =

[
−RIB,2

RIB,1

]

(BΘBBω̇IB + BωIB × BΘBBωIB) ,

(4)

where RIB,i denotes the i-th row of RIB . Note that for

zB constant, (3) represents the equations of motion (EoM)

of a linear inverted pendulum with pivot at the ZMP. For

dynamic balancing, the planned ZMP must always lie within

the support polygon [10]. In an optimization, this criterion

takes the form of polyhedral constraints. These are nonlinear

when solving simultaneously for the feet and base trajectories,

due to the constraint edge directions depending either on the

feet positions or on auxiliary optimization variables, such as

in [6]. To obtain a linear constraint, the edge directions must

thus be fixed a priori. We propose to do this as illustrated in

Fig. 4 for the case of a three-leg support phase. Namely, we

require the feet to lie in the convex cones spanned by a set

of lines with fixed directions that intersect at the ZMP, such

that the resulting support polygon always contains the ZMP.

The main drawback of this linearization is that it restricts the

optimization variables to lie in a subset of the ones that satisfy

the ZMP balance criterion, thus requiring careful selection of

the edge directions to obtain a feasible optimization problem.
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Intuitively speaking, this subset is characterized by the loss of

one rotational degree of freedom (DoF) per edge.

We found that it works well to select the edge directions as

the ones that result from connecting the hip positions of the

stance legs at touchdown. That is, we start with a set of six

direction vectors – one for each combination of feet pairs – and

whenever a foot switches from swing to stance, we recompute

the associated directions by connecting that foot’s hip position

with the hip positions of all other stance legs. This procedure

ensures that for pairs of grounded feet the directions remain

constant w.r.t. the inertial frame during nonzero yaw motions.

Otherwise, in the case of pure walking with gaits containing

two-leg support phases, the problem would become infeasible.

For the same reason, we initialize the edge directions of

initially grounded feet pairs by connecting the measured feet

positions instead of the hips.

III. TRAJECTORY OPTIMIZATION

We formulate the task of finding the x,y-components of the

feet and base trajectories as a QP problem of the form

min
ξ

1

2
ξTQξ + cT ξ, subj. to Aξ = b, Dξ ≤ f , (5)

where the variables parameterizing the trajectories are stacked

in the vector of optimization variables ξ. In the following,

this parameterization is presented in more detail, and we

introduce the objectives and constraints that contribute to the

QP problem. Furthermore, we propose a warm-starting scheme

and briefly discuss how the remaining trajectories, which serve

as inputs to the QP problem, can be generated by solving

systems of linear equations.

A. Parameterization

We parameterize the planar trajectories by sequences of

connected polynomials. We write an n-th order polynomial

starting at time tstart as

p(t) = ηn(t, t
start)T α, (6)

where α ∈ R
n+1 is the vector of coefficients and

ηn(t, t
start) =

[
τn τn−1 . . . τ 1

]T
∈ R

n+1, (7)

with τ := t − tstart. Derivatives w.r.t. time are obtained by

differentiation of ηn(t, t
start), e.g., ṗ(t) = η̇n(t, t

start)T α.
1) Base segments: We compose each base segment of two

quintic polynomials describing the planar components of the

base position:

Ir
xy
IB(t) =

[
η5(t, t

start
B,k )T 01×6

01×6 η5(t, t
start
B,k )T

]

︸ ︷︷ ︸

:=TB(t,tstart
B,k

)

[
αB,k,x

αB,k,y

]

︸ ︷︷ ︸
:=sB,k

, (8)

where tstartB,k is the start time of the k-th base segment.
2) Swing foot segments: Similarly, we compose segments

describing the motion of a foot in swing using pairs of cubic

polynomials:

Ir
xy
IF (t) =

[
η3(t, t

start
F,l )T 01×4

01×4 η3(t, t
start
F,l )T

]

︸ ︷︷ ︸

:=TF,l(t,tstartF,l
)

[
αF,l,x

αF,l,y

]

︸ ︷︷ ︸
:=sF,l

, (9)

where tstartF,l is the start time of the l-th foot segment.

3) Stance foot segments: For a wheeled foot, the trajectories

must satisfy the rolling constraint in stance phase. That is, the

instantaneous velocity must have no component along the y-

axis of the foot frame F . We thus parameterize such segments

by quadratic polynomials describing the velocity of F along its

x-axis and the position Ir
start
IF,l at the beginning of the segment.

That is, the velocity of F in the inertial frame is given by5

Iv
xy
IF (t) = R

xy
IF (t)

[
η2(t, t

start
F,l )T 0 0

01×5

]

︸ ︷︷ ︸

:=ṪF,l(t,tstartF,l
)

[
αF,l

Ir
start,xy
IF,l

]

︸ ︷︷ ︸
:=sF,l

, (10)

and the position is obtained by integration as

Ir
xy
IF (t) =

( [
02×3 I

]
+

∫ t

tstart
F,l

ṪF,l(t̃, t
start
F,l ) dt̃

)

︸ ︷︷ ︸

=TF,l(t,tstartF,l
)

sF,l,

(11)

where I ∈ R
2×2 denotes the identity matrix. Since (11) has no

analytic solution for nontrivial angular motions, a numerical

integration scheme must be used. However, the complexity

of the QP problem is not increased, as the integral does not

depend on any optimization variables.

4) Segment durations: We set the solution complexity indi-

rectly through upper bounds on the maximal durations of base,

swing foot, and stance foot segments. Given these bounds,

we divide each swing and stance phase into a number of

equally spaced swing and stance foot segments, respectively,

and choose the base segments such that whenever a foot

switches between stance and swing, there is also a new base

segment starting. This is important for transitions between

disjoint support polygons, see Section III-C2.

B. Objectives

The following list gives an overview of the cost terms

contributing to the objective function in (5). In order for

the resulting Hessian Q to be positive definite, we add a

regularizer ρ to its diagonal elements, e.g., ρ = 10−8 as in

[7]. This ensures the convexity of the resulting QP problem.

1) Acceleration minimization: As done for instance in [8]

and [25], we minimize the acceleration of the polynomials

forming the trajectories using a cost of the form

αT

∫ ∆t

0

η̈n(τ, 0) η̈n(τ, 0)
T dτ α, (12)

where ∆t denotes the segment duration. The integral has an

analytic solution for all n-th order polynomials and can be

computed offline as function of ∆t.
2) Reference base state: To drive the robot toward the

desired goal state, we penalize the deviation of the final

base position, velocity, and acceleration from the ones of the

reference trajectory. Furthermore, to enable tracking of the

desired path with tunable accuracy, we sample the position

deviation from the reference trajectory, which is also useful

as regularization to counteract drift.

5Since the sequence of swing and stance segments is fixed prior to the
optimization, the segment type is known from l. Accordingly, the definitions
of TF,l and sF,l can be inferred from the value of their subscripts.
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3) Hip to foot distance: To avoid solutions with excessively

wide or narrow footprints, we penalize the distance between

the hip and foot of a leg as

‖Ir
xy
IB(t) +R

xy
IB(t)Br

xy
BH − Ir

xy
IF (t)‖

2
2, (13)

where rBH is the position from base to hip. We sample this

objective a fixed number of times per stance segment.

4) ZMP and support polygon center: Regarding robust

balancing and load distribution on the legs, it is desirable to

keep the ZMP away from the edges and vertices of the support

polygon. We thus penalize its distance from the geometric

center of the support polygon by

∥
∥
∥Ir

xy
IB(t)−

1

z̈B(t)− gz

(
zB(t) (Ia

xy
IB(t)− Ig

xy) +Lxy(t)
)

−
1

nG(t)

∑

F∈G(t)

Ir
xy
IF (t)

∥
∥
∥

2

2
, (14)

where G(t) denotes the set of grounded legs at time t and

nG(t) their number.

C. Constraints

The following list gives an overview of the constraints that

contribute to (5).

1) Initial states: We constrain the initial trajectory positions

and velocities to match a fused state obtained from linear in-

terpolation between the measured robot state and the previous

solution. We do not constrain the initial base acceleration,

because it decreases the reactivity against disturbances and

could prevent fulfillment of the ZMP balance criterion.

2) Segment junctions: To obtain a twice continuously dif-

ferentiable base trajectory, position, velocity, and acceleration

of successive segments need to match at the junctions:




TB(t
start
B,k+1, t

start
B,k ) −TB(t

start
B,k+1, t

start
B,k+1)

ṪB(t
start
B,k+1, t

start
B,k ) −ṪB(t

start
B,k+1, t

start
B,k+1)

T̈B(t
start
B,k+1, t

start
B,k ) −T̈B(t

start
B,k+1, t

start
B,k+1)





[
sB,k

sB,k+1

]

= 0.

(15)

However, we omit the constraint on the acceleration at junc-

tions that mark the transition between two potentially disjoint

support polygons6 since, in such a case, the ZMP needs to be

able to jump between the two7.

We apply similar constraints on the position and velocity

of successive feet segments to obtain once continuously dif-

ferentiable trajectories. However, successive stance segments

need special consideration in order not to introduce redundant

constraints, as numerical optimization routines might require

the equality constraint matrix to have full rank. We thus write

the corresponding constraints as
[
TF,l(t

start
F,l+1, t

start
F,l ) −TF,l(t

start
F,l+1, t

start
F,l+1)

V (tstartF,l+1, t
start
F,l ) −V (tstartF,l+1, t

start
F,l+1)

] [
sF,l

sF,l+1

]

= 0,

(16)

6For instance, the support polygons of a pacing gait with non-overlapping
stance phases are disjoint. However, even for overlapping stance phases, the
support polygons in the QP problem may be disjoint depending on the size
of the margins chosen for the ZMP balance criterion constraint below.

7As noted in [7], discontinuities in the acceleration are undesirable from
a controls perspective. However, they are not necessarily unphysical, in
particular, if a hard contact model is assumed.

where V (t, tstartF,l ) =
[
(t− tstartF,l )2 (t− tstartF,l ) 1 0 0

]
.

The third row of (16) requires the x-component of the ve-

locities expressed in the foot frame to be equal. Since the

y-component is zero by construction, see (10), it must not be

constrained.

3) Leg extension: To prevent the legs from reaching kine-

matic limits, we require each foot to lie within a regular

polygon centered at the hip position. We sample this inequality

constraint at a fixed frequency.

4) ZMP balance criterion: The formulation of the ZMP

balance criterion as proposed in Section II-B leads to inequal-

ity constraints on the base and stance feet of the form

Ie
T
(

Ir
xy
IB(t)−

1

z̈B(t)− gz

(
zB(t) (Ia

xy
IB(t)− Ig

xy)

+Lxy(t)
)
− Ir

xy
IF (t)

)

≤ ǫ, (17)

where e ∈ R
2 is a normal vector describing the direction of an

edge. The scalar ǫ can either be a positive relaxation margin for

one- and two-leg support phases or a negative safety margin

that prevents solutions where the ZMP lies near the support

polygon boundaries. We sample the resulting constraints at a

fixed frequency, except during full flight phases, as the ZMP

does not exist during these.

5) Pure walking: If a solution should be found that keeps

the stance feet in place, we add equality constraints that require

the stance coefficients parameterizing the quadratic velocity

polynomials to be zero, i.e., αF,l = 0. This enables our TO

to be used for conventional quadrupedal robots that have no

wheels.

D. Warm Starting

In terms of optimality, using an initial guess is not re-

quired, since we solve a convex QP problem, which thus

has a unique optimum. However, the number of iterations of

numerical optimization routines can be significantly reduced

by providing a suitable initial guess. We thus initialize the

coefficients describing the initial state of each segment with

the state of the solution from the previous optimization at the

corresponding, shifted time instant t̂start and set the remaining

segment coefficients to zero. By “shifted” we mean that, for a

segment start time tstart, the previous solution is evaluated

at t̂start = tstart + ∆tp, where ∆tp is the time elapsed

since the start of the previous optimization (we assume that

internally the trajectories start at zero). By consequence, there

is no solution available for the last ∆tp long portion of the

trajectories. As a simple remedy, we set the associated segment

coefficients to match the final state of the previous solution.

In particular, for large position offsets, this is a better choice

than setting them to zero.

E. Input Trajectories

As shown in Fig. 3, our optimization takes the angular

trajectory components, the vertical base motion, and a planar

reference base trajectory that should be tracked as inputs.

These can be represented by any parameterization ensuring

twice continuous differentiability. We choose sequences of
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quintic polynomials with equality constraints similar to (15),

which we shape using cost terms of the form (12) and equality

constraints on junction positions, velocities, and/or accelera-

tions. The latter are obtained by fusing information from the

previous solution, the reference goal state, the measured state,

and the gait pattern in the case of full flight phases. Namely, we

require the vertical base acceleration to match gravity during

these.

Since the resulting minimization problems contain linear

equality constraints only, their solutions can directly be ob-

tained by formulating the dual problems and solving the asso-

ciated systems of linear equations, thus requiring no iterative

optimization routines.

IV. RESULTS AND DISCUSSION

We have implemented our TO in C++. For matrix computa-

tions we use the open-source linear algebra library Eigen [26]

and for solving (5) the open-source, state-of-the-art solver

OSQP [27], which is based on the alternating direction method

of multipliers and exploits the sparseness of our problem.

Kinematics and dynamics computations are performed with

the open-source libraries Kindr [28] and RBDL [29], and the

simulations are carried out in the robot simulation environment

Gazebo [30] with ODE [31] as physics engines.

A. Setup

We tested our framework in simulations of ANYmal

equipped with actuated, non-steerable wheels8. Based on its

joint configuration, we set the base pitch trajectory to zero in

order to fulfill the condition stated in Section II. This ensures

that the integral in (11) does not depend on any optimization

variables. We further set the roll motion to zero, since we did

not consider it essential to execute the motions we show in the

following. For tracking of the trajectories, we used the WBC

described in [24], that generates joint and wheel actuation

torques at 400Hz while accounting for various constraints,

such as actuator limitations and friction cone constraints.

Regarding solution complexity, we choose the maximal

segment durations uniformly as 0.2 s, and enforce sampled

objectives and constraints every 0.1 s, except for the ZMP

balance criterion which we sample at 0.05 s. For a planning

horizon of 2 s, this leads to QP problem sizes in the order of

6× 102 optimization variables, 3× 102 equality constraints,

and 7× 102 inequality constraints. The resulting total compu-

tation times of the TO are in the order of 20ms, where solving

the QP problem makes up roughly half of the time9.

B. Simulations

Fig. 5 illustrates trajectories generated by our TO for

different gaits and references. Thanks to the pure walking

8For realistic simulation, we use the full body dynamics, where the base,
leg, and wheel inertia values are obtained from the computer-aided design
(CAD) model of ANYmal. The actuator torque and velocity limits are
considered as well.

9The times stated in this work and the video are always for the complete
TO, i.e., they include the computation times of all blocks enclosed by the
dotted rectangle in Fig. 3. All results were obtained on a 2.5GHz quad-core
Intel Core i7 laptop.

(a) Dynamic lateral walk (pure walking).

(b) Static walk (hybrid).

(c) Pace (hybrid).

Fig. 5. Trajectories generated by our TO for different gaits and reference
motions (dotted orange). The base trajectory is shown in red, the planned
ZMP trajectory in magenta, and the fore and hind feet trajectories in green
and blue, respectively, with the solid and dotted portions representing stance
and swing phases, respectively. The initial feet and base positions are marked
by circles. The yaw motion, which is a prescribed input, is shown as black
arrows that indicate the robot’s heading direction.

constraint in Section III-C5, our TO can be employed to

generate motions for quadrupedal robots with point-contact

feet, as shown in Fig. 5a for dynamic lateral walking (see

Fig. 7 for an illustration of the gait patterns). However, the

real strength of our approach is demonstrated in Fig. 5b and

5c, where driving considerably reduces the length and number

of the steps required to reach the goal position. Remarkable is,

in particular, the solution obtained for the reference in Fig. 5c.

Instead of trying to directly reach the goal state by laterally

pacing, our TO finds a solution similar to backwards parking

with a car. In comparison, this considerably reduces lateral

shifting of the base, which in our experience is crucial for

robust execution of pacing gaits, since these inherently exhibit

large lateral accelerations10. This result highlights the benefit

of computing the planar components of the feet and base

trajectories in a single optimization, as this behavior could not

be expected by independently computing the feet trajectories

using heuristics.

The reader is encouraged to watch the accompanying

video11, as it shows the execution of these motions and

presents further results, including locomotion with a hybrid

gait that conventional quadrupedal robots cannot execute.

Fig. 6 shows tracking of a reference trajectory with a full

flight trotting gait. The motion is demanding to execute, as

10It should be emphasized that we did not impose a large cost on deviations
from the sampled reference trajectory compared to the desired final state and
the acceleration minimization. Note that we used the same weights in all
presented simulations, including the video.

11Also available at https://youtu.be/I1aTCTc0J4U.

https://youtu.be/I1aTCTc0J4U
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Fig. 6. Tracking of a reference trajectory in simulation with our TO running
in receding horizon fashion and the planning horizon set to 2 s. The gait is
trotting with full flight phases. Shown are the continuously updated setpoints,
that is, the positions that were to be tracked by the WBC. The choice of colors
and symbols is the same as in Fig 5.
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Fig. 7. Gait patterns of the motions shown in the previous figures. From left
to right, with the stride durations in brackets: Dynamic lateral walk (0.6 s),
static walk (1.7 s), pace (1.0 s), flying trot (0.6 s). Swing and stance phases
are shown in white and color, respectively. Note that the time scales are
normalized w.r.t. the stride durations.

it does not only contain full flight phases but also requires

the robot to drive a curve and even change its orientation by

90° while moving forward. However, by running our TO in

receding horizon fashion12, we are able to follow the reference

and compensate for the various sources of disturbances, such

as the simplified robot model, computation delays, and the

accumulation of tracking errors. For the chosen planning

horizon of 2 s, the update frequency was measured to be in

the order of 50-60Hz. We furthermore found that not using

the warm starting scheme of Section III-D increases the QP

solver time by up to 40%.

C. Discussion of real-world applicability

As indicated by the simulation results, our TO is a promising

candidate for application on real robots, since it can be run

online at high frequency in receding horizon fashion and gen-

erates a rich set of motions. Conceptually, it is closely related

to the ZMP-based approaches [6]–[8], which have demon-

strated impressive performance on hardware. In particular,

the implementations of [7], [8] successfully run on ANYmal,

despite using the imperfect on-board state estimation [32] and

the TOs not accounting for the leg inertias, which are relatively

large due to the knee actuators. From our experience with [7],

[8], we expect that the main step required to bring our TO from

simulation to real hardware will be related to handling the drift

in the state estimation and accounting for unperceived terrain

irregularities. A simple and effective measure for these two

purposes consists of always computing the trajectories w.r.t.

the currently estimated ground plane, see the plan frame in

12In our context, this means that we continuously update the trajectories by
rerunning the TO. Therefore, each set of trajectories is only tracked as long
as it takes to compute a new one.

[8] for details. In combination with the compliant behavior of

the WBC [33], this should allow to blindly traverse significant

irregularities, as demonstrated for steps and inclines in [24].

Further measures that we found to be important for ro-

bustness are accounting for early and late touchdowns and

reacting to unexpected loss or gain of contact. These issues

can be addressed by an online adaptation of the vertical feet

trajectories and the gait pattern. Note that recomputation of

the vertical feet trajectories can be done instantaneously since

it is decoupled from the QP problem.

V. CONCLUSION AND OUTLOOK

We have shown how trajectories for wheeled-legged

quadrupedal robots can be generated, such that complex

motions requiring simultaneous driving and stepping can be

executed. By solving for angular, vertical, and planar trajec-

tory components in a cascaded fashion and using a linear

formulation of the ZMP balance criterion, we rely on QP

only. Nevertheless, we are able to execute gaits with full flight

phases. In addition, our implementation meets and, depending

on the motion, even beats the computation speed of competing

TOs for quadrupedal robots, despite solving a problem that due

to the motion of the wheels in stance phase is more complex.

In the future, we plan to investigate how much the condition

of zero pitch can be relaxed for ANYmal, in order to execute

gaits such as bounding, which would be useful to cross

obstacles and steps at high driving speed. Further, we would

like to generate the gait pattern online as function of the

reference trajectory, terrain irregularities, and obstacles such

as to ensure robust dynamic balancing and to minimize the

number of steps in favor of energy consumption.

APPENDIX

ANYmal: Condition for Linear Rolling Constraint

For ANYmal, it holds that under the condition of zero base

pitch angle w.r.t. the ground plane, the wheel rotation axes

and the ground projected x-axis of the base frame – which we

define as the heading direction – are always perpendicular.

According to our definition of the frame F (see Fig. 2),

this implies that the x-axis of F is parallel to the heading

direction. Since we have from the rolling constraint that the

velocity of F must be parallel to its x-axis, it follows that

the rolling constraint is independent of the relative position of

F w.r.t. the base. To prove this claim, we thus verify in the

following that the wheel axes and the heading direction are

indeed perpendicular for zero base pitch.

To this end, we parameterize the base orientation by an

intrinsic z-y’-x” sequence of Euler angles13:

RIB = Rz(ψ)Ry(χ)Rx(φ), (18)

where ψ, χ, φ are the base yaw, pitch, roll angles, respectively,

and where Ra(·) denotes the rotation matrix with rotation axis

a. The joint configuration of ANYmal’s legs corresponds to

13We do not provide any intermediate results due to the corresponding
terms being very long and of limited interest. However, the correctness of our
findings can easily be verified with a symbolic computation tool.
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an intrinsic x-y’-y” sequence of Euler angles, which describes

the orientation from base to shank S14:

RBS = Rx(α)Ry(β)Ry(γ), (19)

where α, β, γ are the hip abduction/adduction, hip flexion/ex-

tension, knee flexion/extension angles, respectively. Note that

the shank frame does not coincide with the foot frame F , but

that the projections of their y-axes onto the ground plane are

parallel. The orientation from the inertial frame to the shank

frame is given by

RIS = RIBRBS . (20)

Accordingly, the direction of the wheel axis is given by the

second column of RIS , and the heading direction by

IhB =
[
cos(ψ) sin(ψ) 0

]T
. (21)

As can be shown, their dot product evaluates to

sin(φ+ α) sin(χ). (22)

Thus, it follows that the wheel axis is perpendicular to the

robot’s heading direction for a base pitch angle equal to zero.
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