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ABSTRACT

The increasing pervasiveness of location-acquisition tech-
nologies (GPS, GSM networks, etc.) is leading to the collec-
tion of large spatio-temporal datasets and to the opportunity
of discovering usable knowledge about movement behaviour,
which fosters novel applications and services. In this paper,
we move towards this direction and develop an extension
of the sequential pattern mining paradigm that analyzes
the trajectories of moving objects. We introduce trajectory
patterns as concise descriptions of frequent behaviours, in
terms of both space (i.e., the regions of space visited during
movements) and time (i.e., the duration of movements). In
this setting, we provide a general formal statement of the
novel mining problem and then study several different in-
stantiations of different complexity. The various approaches
are then empirically evaluated over real data and synthetic
benchmarks, comparing their strengths and weaknesses.

Categories and Subject Descriptors

H.2.8 [Database Applications]: Data mining

General Terms

Algorithms

Keywords

Trajectory patterns, Spatio-temporal data mining

1. INTRODUCTION
Spatio-temporal patterns that succinctly show the cumu-

lative behaviour of a population of moving objects are useful
abstractions to understand mobility-related phenomena. In
particular, a form of pattern, which represents an aggre-
gated abstraction of many individual trajectories of moving
objects within an observed population, would be extremely
useful in the domain of sustainable mobility and traffic man-
agement in metropolitan areas, where the discovery of traffic
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flows among sequences of different places in a town (origin-
destination flows) is a key issue [2].

Nowadays, the movement of people or vehicles within a
given area can be observed from the digital traces left be-
hind by the personal or vehicular mobile devices, and col-
lected by the wireless network infrastructures. For instance,
mobile phones leave positioning logs, which specify their lo-
calization, or cell, at each moment they are connected to the
GSM network; analogously, GPS-equipped portable devices
can record their latitude-longitude position at each moment
they are exposed to a GPS satellite, and transmit their tra-
jectories to a collecting server. The pervasiveness of ubiqui-
tous technologies guarantees that there will be an increasing
availability of large amounts of data pertaining to individual
trajectories, at increasing localization precision; therefore,
there is an opportunity – and a challenge – to discover auto-
matically, from these trajectories, spatio-temporal patterns
that convey useful knowledge.

In this paper, we precisely address this problem, and intro-
duce a novel form of spatio-temporal pattern, which formal-
izes the mentioned idea of aggregate movement behaviour.
The new pattern, that we call a trajectory pattern, represents
a set of individual trajectories that share the property of vis-
iting the same sequence of places with similar travel times.
Therefore, two notions are central: (i) the regions of interest
in the given space, and (ii) the typical travel time of moving
objects from region to region. In fact, in our approach a
trajectory pattern is a sequence of spatial regions that, on
the basis of the source trajectory data, emerge as frequently
visited in the order specified by the sequence; in addition,
the transition between two consecutive regions in such a se-
quence is annotated with a typical travel time that, again,
emerges from the input trajectories. For instance, consider
the following two trajectory patterns over regions of interest
in the centre of a town:

Railway Station
15min
−→ Castle Square

2h15min
−→ Museum (a)

Railway Station
10min
−→ Middle Bridge

10min
−→ Campus (b)

Here, pattern (a) may be interpreted as a typical be-
haviour of tourists that rapidly reach a major attraction
from the railway station and spend there about two hours
before getting to the adjacent museum. Pattern (b), instead,
may highlight the pedestrian flow of students that reach the
university campus from the station: for them, the central
bridge over the river is a compulsory passage. It should
be observed that a trajectory pattern does not specify any
particular route among two consecutive regions: instead, a
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typical travel time is specified, which approximates the (sim-
ilar) travel time of each individual trajectory represented by
the pattern. Also, it should be observed that the individual
trajectories aggregated in a pattern are not necessarily si-
multaneous: we only require that such trajectories visit the
same sequence of places with similar transition times, even if
they start at different absolute times1. Trajectory patterns
are a spatio-temporal variant of the temporally-annotated
sequences, or TAS in short, introduced in [5], where only the
time dimension is taken into account and the elements of
a frequent sequence are generic events without any specific
spatial semantics.

Obviously, once defined a potentially useful pattern, it is
necessary to provide an effective mining algorithm to extract
trajectory patterns from the source trajectory data. We ac-
tually provide three algorithms for trajectory pattern min-
ing, with reference to three approaches of increasing com-
plexity for dealing with the spatial dimension. The first
two solutions share the idea that the problem of identify-
ing the regions of interest is a discretization problem for the
spatial dimension, to be tackled before the actual mining of
trajectory patterns: in this approach, the input trajecto-
ries are transformed from sequences of points into sequences
of regions of interest in a preprocessing step; then, in the
pattern mining step, the temporal dimension only is taken
into account, in order to mine sequences with temporal an-
notations, by adopting the method introduced in [5]. The
first two methods differ in the form of spatial discretization
adopted:

• Pre-conceived regions of interest: in this case, some
subjective background knowledge is used to specify a
set of places of interest, which are known as movement
attractors. This approach is used, for instance, in se-
lecting the zones used in origin-destination matrices, a
classical tool of transportation engineering for describ-
ing traffic flows (see, e.g., [2]).

• Popular regions: in this case, regions of interest are
identified as the mostly visited places in the input tra-
jectories. Accordingly, we introduce a density-based
spatial discretization method to discover popular re-
gions from the input trajectories.

The third trajectory pattern mining algorithm is genuinely
spatio-temporal, in the sense that the identification of the re-
gions of interest is dynamically intertwined with the mining
of sequences with temporal information. This approach is
capable to detect more precise trajectory patterns, as the re-
gions of interest are incrementally identified as locally dense
regions, i.e., with respect to the trajectories in the patterns
found so far.

The methods have been put in practice in an empirical ex-
periment over synthetic and real datasets of GPS trajectory
data, as a preliminary demonstration of the computational
feasibility of our approach, as well as of the usefulness of the
introduced pattern. Summarizing, the contributions pre-
sented in this paper are: (i) the definition of the novel tra-
jectory pattern (Section 3); (ii) a density-based algorithm
for discovering regions of interest (Section 4); (iii) a tra-
jectory pattern mining algorithm with predefined regions of

1It is however possible to focus on specific time intervals,
e.g., rush hours, by temporal selection over the input tra-
jectories.

interest (Section 5); (iv) a trajectory pattern mining algo-
rithm which dynamically discovers regions of interest (Sec-
tion 6). The paper is completed by a discussion of related
work (Section 2) and a report of preliminary empirical ex-
periments (Section 7).

2. BACKGROUND AND RELATED WORK
In this section we summarize some relevant research re-

lated to the topic of this paper, and introduce some basic
concepts and terminology.

2.1 Spatio-temporal sequential patterns
The basic frequent sequential pattern (FSP) problem, orig-

inally introduced in [1], is defined over a database of se-
quences D, where each element of each sequence is a time-
stamped set of items — i.e., an itemset. Time-stamps de-
termine the order of elements in the sequence. Then, the
FSP problem consists in finding all the sequences that are
frequent in D, i.e., appear as subsequence of a large percent-
age of sequences of D. A sequence α = α1 → · · · → αk is a
subsequence of β = β1 → · · · → βm (α � β) if there exist
integers 1 ≤ i1 < . . . < ik ≤ m such that ∀1≤n≤k αn ⊆ βin .
Then we can define the support suppD(S) of a sequence S as
the percentage of transactions T ∈ D such that S � T , and
say that S is frequent w.r.t. threshold smin if suppD(S) ≥
smin . Since its first definition, many algorithms for sequen-
tial patterns have been proposed, from the earliest in [1], to
the more recent PrefixSpan [9] and SPADE [12].

Moving from the discrete realm of items and events to the
continuous context of spatio-temporal sequences, such as the
sequence of positions of a moving object, the standard no-
tion of sequential pattern borrowed from transactional data
mining, i.e., a pattern that exactly occurs several times in
the data, usually cannot be applied and thus some kind of
tolerance to small perturbations is needed. To the best of
our knowledge, the existing literature on this subject is com-
posed of only a few recent works, that tackle the problem
from different viewpoints.

The work in [3] considers patterns that are in the form
of trajectory segments and searches approximate instances
in the data; on the opposite, the work in [7] provides a
clustering-based perspective, and considers patterns in the
form of moving regions within time intervals, such as spatio-
temporal cylinders or tubes and counts as occurrences all
trajectory segments partially contained in the moving re-
gions. Finally, a similar goal, but focused on cyclic patterns,
is pursued in [8]: the authors propose an effective and fast
mining algorithm for retrieving maximal periodic patterns,
treating time as discrete, yet dealing with continuous spatial
locations that are discretized dynamically through density-
based clustering.

We conclude this section mentioning a different line of re-
search focused on the extraction of patterns over sequences
of events that describe also the temporal relations between
events, e.g., sequences with characteristic transition times
between consecutive events (as first proposed in [11] and
later more deeply explored by [5]), or more general sets
of events with temporal constraints between them, such as
chronicles [10]. We notice that these methods are not spe-
cific for moving object data, and so far no specific work has
been presented in literature for the spatio-temporal context.

This paper, instead, focusses on a method for extracting
patterns containing both spatial and temporal information,
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building on the work in [5], which is purely temporal. The
rest of this section briefly summarizes the key aspects of this
work.

2.2 Temporally Annotated Sequences
Temporally annotated sequences (TAS), introduced in [5],

are an extension of sequential patterns that enrich sequences
with information about the typical transition times between
their elements. TAS’s have the following form:

T = s0
α1−→ s1

α2−→ · · ·
αn−→ sn

also represented as a couple T = (S, A) of a sequence S =
〈s0, . . . , sn〉 with temporal annotations A = 〈α1, . . . , αn〉.

As an example, a TAS over the web pages visited along sev-

eral user navigation sessions can be the following: {’/’}
2

−→

{’/papers.html’}
90
−→ {’/kdd.html’}, that represents a se-

quence that starts from the root, then after 2 seconds con-
tinues with page ’papers.html’ and finally, after 90 seconds
ends with page ’kdd.html’.

Similarly to traditional sequential pattern mining, the no-
tion of frequency is based on the notion of support of a TAS ,
which in turn is defined as the number of input sequences
that contain the TAS. The key notion of containment can
be defined as follows:

Definition 1. (τ -containment (�τ )) Given a time thresh-

old τ , a TAS T = s0
α1−→· · ·

αn−→sn is τ -contained (or occurs)
in an input sequence I = 〈(I0, t0), . . . , (Im, tm)〉, denoted as
T �τ I , if and only if there exists a sequence of integers
0 ≤ i0 < · · · < in ≤ m such that:

1. ∀0≤k≤n. sk ⊆ Iik

2. ∀1≤k≤n. |αk − α′
k| ≤ τ

where ∀1≤k≤n. α′
k = tik

− tik−1
.

Essentially, a TAS T is τ -contained into an input sequence
I if there is an occurrence of T in I (condition 1) having
transition times similar to the annotations in T (condition
2). An example of τ -containment is the following:

{ b,d }, 3

{ a } { b } { c }
4 9

{ f }, 10 { c }, 14

3 14−3=11

{ a }, 0

T :

I :

where the sequence in T occurs in I , and the transition times
of the occurrence differ at most of 2 time units. Therefore,
if τ ≥ 2 we have that T �τ I .

Now, frequent sequential patterns can be easily extended
to the notion of frequent TAS’s, which are simply defined as
TAS ’s that are τ -contained in at least smin input sequences,
smin being a minimum support threshold provided by the
user. However, introducing time in sequential patterns gives
rise to a novel issue: in general the number of frequent TAS’s
for a dataset is infinite. For instance, in the single-sequence
example given above, if τ = 2 and smin = 1, not only T is
frequent, but also any other variant of T having transition
times 〈t1, t2〉, where t1 ∈ [1, 5] and t2 ∈ [9, 13].

In [5] it was shown that discovering the frequent TAS’s
(S, A) for any given sequence S can be neatly formalized as
a density estimation problem (in particular, a kernel-based

estimation problem), and that the infinite set of frequent
TAS ’s can be represented in a finite and concise way.

Finally, an efficient prefix projection-based algorithm for
extracting frequent TAS ’s was provided, that interleaves pre-
fix extension steps and detection of frequent annotations for
each prefix, exploiting the monotonicity properties of den-
sity over the annotation space and the relations between
frequent sequences and frequent TAS ’s.

3. PROBLEM DEFINITION
The basic object of our investigation is the trajectory that

describes the movement of an object. To our purpose, a tra-
jectory of an object is a sequence of time-stamped locations,
representing the traces collected by some wireless/mobility
infrastructure, such as the GSM mobile phone network, or
GPS traces recorded by portable devices and transmitted to
a central server. The location, like a GSM cell or a lat-long
pair, is abstracted using ordinary Cartesian coordinates, as
formally stated by the following:

Definition 2. (ST-sequence) A spatio-temporal sequence
(ST-sequence) or trajectory is a sequence of triples S =
〈(x0, y0, t0), . . . , (xk, yk, tk)〉, where ti (i = 0..k) is a time-
stamp, ∀0≤i<k ti < ti+1 and (xi, yi) are points in R2.

The fundamental step in moving from sequences to spatio-
temporal sequences consists in replacing the discrete ele-
ments that form each sequence, usually taken from a prede-
fined alphabet, with spatial locations. Therefore, mining
spatio-temporal sequences will focus on the relations be-
tween (chronologically ordered) positions in space, whereas
standard sequence mining focuses on relations between some
given event types (taken from the above mentioned alpha-
bet).

The key task in sequence mining consists in counting the
occurrences of a pattern, i.e., those segments of the input
data that match a candidate pattern. Matching the elements
of a sequence in standard sequential patterns requires sim-
ple equality tests between symbols; instead, in our context it
requires matching spatial locations, on the base of some no-
tion of approximated match and error tolerance. That can
be formally expressed in a simple and general way by means
of a neighborhood function N : R2 → P(R2), which assigns
to each pair (x, y) a set N(x, y) of neighboring points.

Definition 3. (Spatial containment, �N)Given a sequence
of spatial points S = 〈(x0, y0), . . . , (xk, yk)〉, a spatio-tempor-
al sequence T = 〈(x′

0, y
′
0, t

′
0), . . . , (x

′
n, y′

n, t′n)〉 and a neigh-
borhood function N : R2 → P(R2), we say that S is con-
tained in T (S �N T , or simply S � T , when N is clear from
context) if and only if there exists a sequence of integers 0 ≤
i0 < · · · < ik ≤ n such that: ∀0≤j≤k. (xj , yj) ∈ N(x′

ij
, y′

ij
).

The inclusion of temporal information in a sequential pat-
tern can be obtained by making the patterns include tem-
poral constraints between consecutive elements of the se-
quence, following the same spirit of temporally annotated
sequences (TAS) [5]:

Definition 4. (T-pattern) A Trajectory pattern, called T-
pattern, is a pair (S, A), where S = 〈(x0, y0), . . . , (xk, yk)〉
is a sequence of points in R2, and A = 〈α1, . . . , αk〉 ∈ Rk

+ is
the (temporal) annotation of the sequence. T-patterns will

also be represented as (S,A) = (x0, y0)
α1−→ (x1, y1)

α2−→

· · ·
αk−→ (xk, yk).
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(x1,y1)

(x0,y0) N(x0,y0)
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Y

Time

N(x1,y1)

Figure 1: Matching T-pattern (x0, y0)
α1−→ (x1, y1)

against an input ST-sequence.

An occurrence of a T-pattern takes place when both spa-
tial positions and transition times of the pattern approxi-
matively correspond to those found in an input sequence:

Definition 5. (Spatio-temporal containment, �N,τ )
Given a spatio-temporal sequence T , time tolerance τ , a
neighborhood function N : R2 → P(R2) and a T-pattern

(S, A) = (x0, y0)
α1−→ (x1, y1)

α2−→ · · ·
αk−→ (xk, yk), we say

that (S,A) is contained in T ((S, A) �N,τ T , or simply
(S, A) � T , when clear from context) if and only if there ex-
ists a subsequence T ′ of T , T ′ = 〈(x′

0, y
′
0, t

′
0), . . . , (x

′
k, y′

k, t′k)〉
such that:

1. S �N T ′, and

2. ∀1≤j≤k. |αj − α′
j | ≤ τ

where α′
j = t′j − t′j−1.

Intuitively, a T-pattern is contained in a trajectory if the
latter contains an approximated instance of the former, the
approximation being associated with both the spatial and
the temporal dimensions. We notice that comparisons are
not performed on absolute times, as spatio-temporal con-
tainment is based on the transition times between two con-
secutive elements in the sequence, expressed by the αi and
α′

i terms of condition 2 in Definition 5.
As an example, Figure 1 shows how the spatial and tempo-

ral constraints essentially form a spatio-temporal neighbor-
hood around each point of the reference trajectory. More-
over, we notice that in our model the neighborhood N()
of a point depends only on the spatial coordinates of the
points, and therefore neighborhoods are time-independent.
In the graphical example, this is reflected by the shape of
the spatio-temporal neighborhood, which is obtained as ex-
trusion of a spatial neighborhood along the time dimension.

From containment, a natural definition of support and fre-
quent pattern can be assigned, as well as a general definition
of the trajectory pattern mining problem.

Definition 6. (Trajectory pattern mining) Given a data-
base of input trajectories D, a time tolerance τ , a neighbor-
hood function N() and a minimum support threshold smin ,
the trajectory pattern mining problem consists of finding all
frequent T-patterns, i.e., all T-patterns (S, A) such that

supportD,τ,N(S, A) ≥ smin

where the support supportD,τ,N of a T-pattern (S, A) is the
number of input trajectories T ∈ D such that (S, A) �N,τ T .

Notice that the neighborhood function is a parameter of
the definition of containment, and different neighborhood
functions yield different variants of frequent T-patterns. In
particular, some choices lead to very complex mining prob-
lems, while others yield more tractable variants. Section 4
will introduce an approach of the latter kind, while Section
6.1 discusses a complex example of the former kind and is
followed by a trade-off solution described in Section 6.2.

4. REGIONS-OF-INTEREST
The general problem defined is Section 3 flexibly allows

to follow several different approaches, each corresponding
to a different choice of the neighborhood function N(x, y).
Choosing a neighborhood function essentially means imple-
menting some specific notion of spatial similarity that will
be used in the spatio-temporal containment test. In this
section, in particular, the neighborhood function is used to
model Regions-of-Interest (RoI), that represent a natural
way to partition the space into meaningful areas and, cor-
respondingly, to associate spatial points with region labels.
A straightforward solution is to reduce the problem of T-
pattern mining to the problem of mining simple TAS ’s, for
which an efficient solution was already provided. The details
of such a reduction process are provided in Section 4.1.

Integrating RoI and trajectories

Here we assume to receive as input a set R of disjoint spa-
tial regions – each representing a place that is relevant for
our analysis – which will be used to define a neighborhood
function in the following way:

NR(x, y) =

j

A if A ∈ R ∧ (x, y) ∈ A
∅ otherwise

(1)

The neighborhood of a spatial point is the whole region
it falls in, i.e., two points are considered similar iff they fall
in the same region. All points that are not covered by the
regions in R have an empty neighborhood, meaning that
they are not similar to any point (including themselves).
The result is that points disregarded by R will be virtually
deleted from trajectories and spatio-temporal patterns.

Static neighborhoods NR() greatly simplify the problem
of mining T-patterns. Indeed, it results that we can re-
place ST-sequences with corresponding sequences of regions,
thus treating the spatial information only in a preprocessing
step2:

Theorem 1. A T-pattern (S, A) is contained in a ST-
sequence T = 〈(x0, y0, t0), . . . , (xn, yn, tn)〉 w.r.t. a RoI neigh-
borhood NR() iff the TAS (S′, A) is contained in sequence T ′,
where S′ (resp. T ′) is obtained by mapping each spatial point
(x, y) of S (resp. T ) to NR(x, y), removing empty regions.

The regions associated with each point, i.e., NR(x, y), are
essentially used as labels representing events of the form “the
trajectory is in region NR(x, y) at time t”. Thus, the meth-
ods developed for extracting frequent TAS ’s can be directly
applied to the translated input sequences, and each pattern

2Due to space limitations, proofs of theorems are not given
here, and are available in [6].
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(TAS) of the form A
α
→ B represents (i.e., can be translated

back to) the set of T-patterns {(x, y)
α
→ (x′, y′) | (x, y) ∈

A ∧ (x′, y′) ∈ B}. As we can see, in the RoI approach to
the problem, the output obtained by the translated input
sequences (i.e., A

α
→ B) also provides a clear and compact

representation of the real set of frequent T-patterns that are
contained in the original dataset.

In several contexts the mining problem comes with an
a priori knowledge of suitable Regions-of-Interests to ap-
ply, manually obtained by experts in the application do-
main or simply through commonsense. For instance, origin-
destination matrices are a common tool for the analysis of
urban mobility flows, and both origins and destinations are
usually given as background knowledge or they are the re-
sults of some preliminary study [2]. However, in some cases
we do not have these information in advance, and therefore
they have to be derived someway, as discussed in the rest of
this section.

Static preprocessed spatial regions

When Regions-of-Interest are not provided by external means
(manually specified by the user, chosen by ad hoc algorithms
exploiting some form of background knowledge, etc.) they
have to be automatically computed through some heuristics.

This approach is very similar to the previous one, with the
difference that regions are automatically derived from actual
data, instead of being statically defined a priori. The un-
derlying idea is that locations frequently visited by moving
objects probably represent interesting places, as opposed to
seldom-visited locations that represent occasional behaviors.
E.g., the tourists of a historical town will probably visit the
same places of interest, while the routes they follow to move
from one interesting place to another may sensibly vary, de-
pending on the specific domain (town or countryside).

The natural way of doing that is to consider the set of
locations touched by any moving object, possibly taking into
account also the duration of its stay on the locations, and
to apply some form of clustering algorithm. In particular,
the discussion above suggests to adopt methods that take
into consideration the density of spatial regions. A detailed
solution for the problem is provided in Section 4.2.

4.1 Trajectory preprocessing
Assuming to know a suitable set of RoI, applying them

to the T-pattern mining problem simply consists in prepro-
cessing the input sequences to corresponding sequences of
RoI.

This process implicitly assumes that the observations that
compose the input ST-sequences describe the movement of
objects to a sufficient level of detail, which can be satisfac-
tory, e.g. in the case of GPS trajectories, or not, as in the
case of GSM trajectories.

Making assumptions about the movement of objects out
of the observation points means to provide a model for such
movement, for which a wide range of alternatives are avail-
able in the spatio-temporal data modeling literature, e.g.,
linear regression, Bezier’s curves, probabilistic models, con-
straints models, etc. One of the simplest and most fre-
quently adopted models is the linear regression, which as-
sumes a constant speed, constant direction movement be-
tween each pair of consecutive observations. When the full
motion of objects is reconstructed, in general an object stays
inside a region A for a time interval I , instead of a single

instant t, and therefore it is not obvious which time-stamp
should be associated with the event “Region A” in the trans-
lated sequence. A time-stamp should be chosen following
some criteria that correctly models the kind of events de-
scribed in the resulting TAS’s, since the simple one used so
far, i.e., “the object is inside the region”, is not applicable
any more. The basic solution, which will be adopted in the
rest of this paper, consists in choosing the time-stamp in the
following way:

• if the trajectory starts at time t from a point already
inside a region A, yield the couple (A, t);

• in all other cases, take entering times of the trajectory
for each region, and associate it with the region name.
Notice that an object can enter several times in a re-
gion, and each entry will be associated with a different
time-stamp.

More advanced solutions could consider exiting times in
place of entering times, or both of them, by creating two
distinct events Rin and Rout representing the events “enter
R” and “exit from R”.

4.2 Discovering Regions-of-Interest
When Regions-of-Interest are not known a priori, some

heuristics that enable to automatically identify them are
needed. Several different methods are possible:

• selecting among a database of candidate places (e.g., a
GIS containing features like restaurants, gyms, shops,
etc.) a subset that satisfy some given criteria (e.g., all
shops, or all restaurants close to an highway, etc.);

• automatically computing candidate places through the
analysis of trajectories, for instance by selecting all
minimal square regions that were visited by at least
10% of the objects;

• mixing the two approaches, e.g., by selecting all cross-
roads where more than the 50% of the crossing trajec-
tories change their direction (i.e., they turn).

In this section we sketch an example of the second type,
that consists in choosing popular regions of the space, thus
making only use of the input ST-sequences and not consid-
ering any form of geographical knowledge.

The approach is developed in two steps: first, dense (i.e.,
popular) points in space are detected, and then a set of sig-
nificant regions are extracted to represent them succinctly.

4.2.1 Popular points detection

The vague notion of popular region can be formulated in
several different ways, one of the most natural being any re-
gion of space that is visited by several distinct individuals.
Following the philosophy behind the notion of T-patterns, in
particular, we can start reasoning at the finest level of gran-
ularity and consider first popular points in space, i.e., points
that are visited by several individuals. Then, adopting the
same kind of spatial tolerance introduced in the definition
of T-patterns, we can refine the definition by modelling the
popularity of a point as the number of distinct moving ob-
jects that pass close to it w.r.t. a neighborhood function.

Computing the popularity of points is a distinct count
problem (a trajectory touching a point multiple times should
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(a) (b)

Figure 2: Density with and without regression

be counted only once) which becomes complex and compu-
tationally expensive if tackled over a continuous space. The
complexity of the problem, moreover, can increase depend-
ing on the kind of neighborhood used to model the spatial
uncertainty (e.g., spherical neighborhoods are more difficult
to handle than square ones) and on whether some kind of
regression between trajectory points is adopted or not (deal-
ing with regression is more complex than dealing with only
the points explicitly contained in the trajectories).

To efficiently compute popular points, we discretize the
working space through a regular grid with cells of small size.
A typical choice is to set cell width at a given fraction of the
chosen neighborhood. Then, the density of cells is com-
puted by taking each single trajectory and incrementing the
density of all the cells that contain any of its points or, tak-
ing uncertainty into account, all the cells that intersect the
neighborhood of any point of the trajectory. An example of
that is provided in Figure 2(a), where a trajectory of two
points is shown, with a square neighborhood, a grid hav-
ing cell size equal to 1/3 of the neighborhood, and where
the cells with incremented density are gray colored. In case
trajectories are reconstructed through regression, moreover,
the increment is performed over all the cells met along the
interpolated curve, including the buffer around the curve in-
duced by the uncertainty neighborhood, as exemplified by
Figure 2(b). As discussed above, this process is performed
ensuring to increment the density of each cell at most once
for each trajectory.

4.2.2 RoI construction

Popular cells represent an extremely fine-grained informa-
tion that is difficult to handle properly, due to their (typi-
cally) large number, but they are a useful basic information
for computing larger areas, easier to handle and more mean-
ingful for a pattern extraction task.

In general, the set of popular regions can be extremely
large – even infinite, if we work on a continuous space.
Therefore, some additional constraints should be enforced
to select a significant, yet limited, subset of them. Straight-
forward constraints, such as minimality or maximality of the
region, fail to provide a reasonable selection, since the single
popular cells are all and the only minimal popular regions,
while the whole space is the only maximal popular region.

In this paper we adopt a more complex, yet intuitive, def-
inition of popular region, based on the popular cells intro-
duced above.

Definition 7. (Popular region set) Given a grid G of n×m
cells, each with its density G(i, j) (1 ≤ i ≤ n and 1 ≤ j ≤

m) and a density threshold δ, a popular region set for G is
a collection R of sets of cells from G, such that: (i) each
r ∈ R forms a rectangular region; (ii) sets in R are pairwise
disjoint; (iii) all dense cells in G are contained in some set r ∈
R; (iv) all r ∈ R have avg (i,j)∈rG(i, j) ≥ δ; and (v) assuming

that r ∈ R has size h×k, all its rectangular supersets r′ ⊇ r
of size (h + 1) × k or h × (k + 1) violate (iv) or r and r′

contain exactly the same number of dense cells.

Essentially, a popular region set provides a coverage of
dense cells through disjoint, rectangular regions with some
form of local maximality (condition (v)). In particular, for
each region we consider the average density of its cells, in-
stead of its overall density (which is generally higher), and
larger rectangles are preferred only if they add dense regions.
Finally, we remark that in general there exist more than one
popular region set for a grid.

A simple algorithm for extracting one of the possible so-
lutions is provided in Figure 3. The algorithm iteratively
considers all popular cells (see cells filtering at (1) and cells
scan at (3)) not yet covered by existing popular regions (step
(4)). For each of them builds a corresponding single cell
region (step (5)) and tries to extend it as much as possible
along all four possible directions (steps (7–8)). Then, among
the directions that yield admissible larger regions w.r.t. the
requirements in Definition 7 (step (9)), if any, it chooses the
one that maximizes the average density of the new region3

(steps (10–12)). The process is repeated as long as the re-
gion can be extended, and at the end the resulting region is
added to the output set and all its cells are marked to avoid
overlaps with next regions (steps (14–15)).

Algorithm: PopularRegions(G,δ)

Input: A grid G with densities G(i, j), a density threshold δ
Output: A set R of rectangular regions over G.

1. R = ∅; G∗ = {(i, j) ∈ G|G(i, j) ≥ δ};
2. foreach (i, j) ∈ G do used(i, j) = false;
3. foreach (i, j) ∈ G∗ in descending order of G(i, j) do
4. if ¬used(i, j) then
5. r = {(i, j)};
6. repeat
7. foreach dir ∈ {left , right , up, down} do
8. rdir = r extended on direction dir;
9. ext = { dir| rdir ⊆ G ∧ avg density(rdir) ≥ δ

∧ ∃(h, k) ∈ (rdir \ r).G(h, k) ≥ δ

∧ ∀(h, k) ∈ rdir.¬used(h, k) };
10. if ext �= ∅ then
11. dir = arg maxd∈ext avg density(rd);
12. r = rdir;
13. until ext = ∅;
14. foreach (i, j) ∈ r do used(i, j) = true;
15. R = R ∪ {r};
16. return R;

Figure 3: Algorithm for Popular Regions extraction

In Figure 4 an example of all the steps for the extrac-
tion of popular region sets is represented: in (a) we have (a
sampling of) the input dataset of trajectories; in (b) the cor-
responding densities of the cells over a grid of size 100×100

3Notice that also any alternative choice would yield results
compliant with Definition 7.
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Algorithm: Static RoI T-pattern(Tin, G0, δ, ǫ, τ)

Input: A set of input trajectories Tin, a grid G0, a minimum
support/density threshold δ, a radius for spatial neighbor-
hoods ǫ, a temporal threshold τ .
Output: A set of couples (S,A) of sequences of regions with
temporal annotations.
1. G = ComputeDensity(Tin,G0,ǫ); (Sect. 4.2.1)

2. RoI = PopularRegions(G,δ); (Sect. 4.2.2)

3. D = Translate(Tin,RoI); (Sect. 4.1)

4. TAS mining(D, δ, τ ); ([5])

Figure 5: Mining frequent T-patterns with static
Regions-of-Interests

are plotted; finally, in (c) the dense cells (w.r.t. a given
threshold) are highlighted in dark/red and the popular re-
gions extracted are drawn. As we can see, the resulting
regions can contain non-dense cells, yet they are not pre-
dominant (due to the average density threshold enforced in
the algorithm) and there are no vertical or horizontal bands
without at least one dense cell. Some dense cells, however,
were too isolated to be merged with others, and so form very
small regions. Finally, the regions obtained experimentally
show a reasonably balanced shape.

Theorem 2. The complexity of the PopularRegions(G,δ)
algorithm is O(|G| log |G|).

We notice that when the density threshold adopted in this
task is equal to the minimum support for the T-patterns,
dense cells approximatively represent the set of frequent T-
patterns of length 1, i.e., the simplest patterns formed by
single spatial points (x0, y0). However, in the approach out-
lined above, such dense cells are used to form the regions
that will be used to extract all the T-patterns, not only
those of length 1, thus making the strong assumption that
such cells and groups of cells are meaningful for patterns of
any length.

5. T-PATTERNS WITH STATIC ROI
The spatial discretization process described in the pre-

vious section can be readily integrated to the TAS mining
algorithm in [5] to obtain a simple method for extracting T-
patterns following the approach based on (static) Regions-
of-Interest. Figure 5 summarizes the resulting algorithm.

Projecting all the input trajectories over the given grid
G0, and using a spatial neighborhood or radius ǫ, step (1)
computes the density of each cell of the grid. Next, a set
of Regions-of-Interest are automatically computed by means
of the popular region extraction method (step (2)). Then,
exploiting Theorem 1, in step (3) the input trajectories are
preprocessed to sequences of regions w.r.t. the RoI obtained
at the previous step, and the preprocessed trajectories are
used as input for the TAS mining algorithm, whose output
is also the output of our main algorithm.

6. T-PATTERNS WITH DYNAMIC ROI
In this section we discuss the complexity of the T-pattern

mining problem in its more general variant and provide
an approximated algorithm for them, based on Regions-on-
Interest dynamically computed within the mining process.

6.1 Dynamic neighborhood approach
The RoI-based neighborhoods discussed in the previous

sections, although not very intuitive at a first glance, lead
to a simple, yet useful, instantiation of the general frequent
T-pattern mining problem.

However, in some contexts such a solution, based on fixed
or pre-computed regions, is not significant, while more stan-
dard and general neighborhood functions, on the contrary,
can provide a better choice for the notion of spatial sim-
ilarity we need to model. Examples of that are spherical
neighborhoods (Nǫ(x̄) = {ȳ | ||x̄ − ȳ||2 ≤ ǫ}, for a given ǫ)
or square neighborhoods (Nǫ(x̄) = {ȳ | ||x̄ − ȳ||∞ ≤ ǫ}), re-
spectively defining a circle of radius ǫ and a square of side
2ǫ centered around the given point.

When we adopt such standard neighborhoods, we have
to face the T-pattern mining problem in its full generality,
which requires to return every T-pattern that fits in several
input ST-sequences. Fitting in a ST-sequence T , in particu-
lar, means that T contains n distinct points (i.e., a sequence
of n observations) that match the n points in the T-pattern
in the sense of Definition 5.

As we can see, understanding which input sequences T
support a T-pattern in principle requires to check all sub-
sequences of T searching for anyone that matches with it,
i.e., anyone whose n points and n − 1 transition times have
the corresponding items of the T-pattern within their neigh-
borhoods. Similar to what was done with for TAS ’s, we
can see the problem from the opposite viewpoint: a T-
pattern matches an input ST-sequence T when it falls in
the neighborhood of any of its subsequences, which is equiv-
alent to say that it falls in the union of the neighborhoods
of all possible subsequences of T , that for convenience we
will call the neighborhood of T . Then, frequent T-patterns
are those that fall in the neighborhood of several input ST-
sequences, which is a plain formulation of a kernel-based
density-estimation problem where we look for dense points
in a space that represents T-patterns by means of tuples of
points plus corresponding (n − 1)-ples of transition times4.
The kernel adopted on this space is simply the product of the
neighborhoods applied for each element of the n-ple (resp.
(n−1)-ple), i.e., an Nǫ() (or other spatial neighborhood) for
each point and Nτ () for each transition time. E.g., looking
for all frequent T-patterns of length 3 with spatial neigh-
borhood Nǫ() is equivalent to find all dense points in R8,
where 8 = 2 × 3 + 2, i.e., 2 dimensions for each point in the
T-pattern and 1 for each transition time.

In the general case extracting frequent T-patterns trans-
lates to a density-estimation problem over spaces of rapidly-
growing dimensionality, i.e., over R3n−1 (n being the pat-
tern length). In particular, as compared to the TAS mining
problem, T-patterns exacerbate the difficulty of the den-
sity estimation task in two ways: (i) the dimensionality of
working spaces of TAS’s grows less quickly (Rn−1 instead of
R3n−1); (ii) the sequence component in each TAS strongly
limits the number of instances that can be found within each
input sequence, making the density estimation task easier.

4More precisely, in our context the neighborhoods of all sub-
sequences of a single ST-sequence T are aggregated through
set union, i.e., they do not sum up their contributions to
density, while contributions are summed up for neighbor-
hoods of different ST-sequences. We are essentially facing a
multi-instance density-estimation problem, that introduces
a complication to the standard density-estimation setting.
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(a) input trajectories (b) density distribution (c) dense cells and extracted RoI

Figure 4: Example of RoI extraction

From the discussion given above, we can easily deduce
that in a general setting the T-pattern mining problem be-
comes intractable even for small pattern lengths. That moti-
vates the development of simpler heuristic approaches, that
try to extract the same kind of information contained in
pure T-patterns but with some simplifying approximation.

6.2 A step-wise heuristic
The main issue in the general T-pattern mining problem

is that we need to consider density for space and transition
times in parallel, making it a high-dimensional problem.

Here a trade-off solution is provided, that approximates
the more general instantiations of the T-pattern problem,
by adopting a step-wise approach in building T-patterns,
and approximating sets of similar T-patterns by means of a
RoI-based representation.

6.2.1 Principles of the method

We start by observing that the set P0 of T-patterns of
length 1 for a dataset of trajectories T0 consists of all points
(x0, y0) over R2 that are dense w.r.t. the given neighbor-
hood function, i.e., all points that are touched or that fall
close to a sufficient number of the input trajectories.

In order to discover all patterns P1 of length 2, i.e., of the

form (x0, y0)
∆t1−→ (x1, y1), the general definition requires to

examine the occurrences of each input trajectory in the rep-
resentation space R5 looking for dense points, as discussed
in Section 6.1. However, that will yield patterns whose first
points, (x0, y0), are a subset of those found in P0, and, more
generally, any frequent T-pattern of length n + 1 is the ex-
tension of some frequent T-pattern of length n, as stated by
the following property.

Theorem 3 (Anti-Monotonicity). Let T be an in-
put trajectory, and let τ and the spatial neighborhood func-
tion N() be the parameters for the T-pattern mining prob-
lem. Then:

(x0, y0)
∆t1−→ . . .

∆tn+1
−→ (xn+1, yn+1) �N,τ T (2)

⇒ (x0, y0)
∆t1−→ . . .

∆tn−→ (xn, yn) �N,τ T (3)

⇒ (x0, y0)−→ . . .−→(xn, yn) �N T (4)

This property implies that the support of a T-pattern is
less than or equal to the support of any its prefixes, and thus

allows us to adopt a level-wise approach by mining step-by-
step patterns of increasing length. Moreover, it also states
that, in a similar way, transition times can be searched in a
separate step, after finding the interesting spatial points.

A critical aspect of this approach is the fact that at each
step we have in general an infinite number of possible points
to consider, e.g., the patterns in P0 correspond to all the
points that fall in any dense region of R2 w.r.t. the neigh-
borhood function. To deal with this problem, we introduce
an approximation of the basic method, where points are not
treated separately, but at each step are clustered together by
following the approach described in Section 4.2, to form ba-
sic regions that are treated as an indivisible entity. As in the
case of static RoI, the set of regions derived this way can be
used to translate trajectories to sequences composed of such
regions, which will be used to extend the actual pattern.

Notice that each occurrence of a region in the translated
sequence is associated with a time stamp, which is the time
stamp of the corresponding original point in the trajectory,
or, in case the trajectory was reconstructed through regres-
sion, the entry time of the trajectory in the region.

6.2.2 Implementation of the method

Exploiting the monotonicity property provided by Theo-
rem 3, we can safely search for any frequent pattern pn+1 =

(x0, y0)
∆t1−→ . . .

∆tn+1
−→ (xn+1, yn+1) by analyzing only the tra-

jectories that are already known to contain the subpattern

pn = (x0, y0)
∆t1−→ . . .

∆tn−→ (xn, yn). Moreover, only a seg-
ment of such trajectories really needs to be searched, since
we only need to find continuations of the pattern pn, and no
point occurring before the end time of pn can be appended
to pn to obtain pn+1. Therefore, any point occurring before
such end time can be removed from the trajectory. That
essentially means that we can follow a projection-based ap-
proach, as adopted by PrefixSpan [9] for sequential patterns
and by MiSTA [5] for frequent TAS’s.

The main difference from existing methods for mining se-
quential patterns or episodes is that our input data and the
projections obtained at each step will contain trajectories,
rather than sequences of events or itemsets. Then, at each
step we dynamically derive the interesting regions from the
trajectory segments of the actual projection, use such RoI
to translate the whole projection to a set of sequences of
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regions, and finally apply a standard prefix extension step
over the resulting sequences.

The algorithm is summarized in Figure 6. Its structure
closely follows the algorithm introduced in [5] for mining
frequent TAS’s and shares the same representation for tem-
poral annotations (i.e., the transition times associated to
each occurrence of the prefix in the sequences of a projec-
tion) and the same functions for handling them5(see steps
(6), (8) and (14)). In particular, each projection is associ-
ated with a prefix (the pattern built so far) and is formed by
a set of trajectories, each trajectory being associated with
a set of annotations, representing the timings of all occur-
rences of the prefix in the trajectory – they are used by
function ExtractFrequentTimings to extract frequent tem-
poral annotations.

The algorithm proceeds in a level-wise style and itera-
tively consider all existing projections of increasing prefix
size (steps (2–4)). If the the actual pattern has transition
times to be evaluated (step (5)) – i.e., it contains at least
two regions – we compute its frequent temporal annotations
(step 6). The resulting set of frequent annotations is re-
turned and used to prune the projection by removing use-
less trajectories, i.e., those that were not associated with any
frequent annotation (steps (7–8)). Then, in order to extend
the actual pattern by one step, we first analyze the trajecto-
ries in the projection to discover the new RoI (steps (9-10))
and use them to translate trajectories to corresponding se-
quences of RoI (step 11). Now, the translated trajectories
are used to extend the prefix by all admissible regions (steps
(12–13)), i.e., all those having a sufficiently high support.
For each region r, the extension of the prefix is performed
by function ExtendProjection in step (14), which selects the
translated trajectories where r occurs and updates the cor-
responding temporal annotations (refer to [5] for further
details). Then, the results of the prefix extension are re-
produced in the trajectories of the original projection (step
(15)), by removing the trajectories corresponding to the re-
moved sequences of RoI (the link between them is kept by a
trajectory ID) and by removing the segments of trajectory
that cannot be used for future prefix extensions (i.e., those
that precede the first end time of all prefix occurrences, as
described at the beginning of this section). Finally, at step
(18) the updated projection and the new prefix (one region
longer than the original one) are queued for processing at
the next iteration of the main cycle (step (2)). The compu-
tation stops when no more extensions are possible, and so
no new projections are produced by steps (12–18).

7. EXPERIMENTS
In this section we summarize the results of a set of exper-

iments aimed at showing some sample trajectory patterns
obtained from real data and at empirically evaluate the scal-
ability of the proposed algorithms.

The real data used in these experiments describe the GPS
traces of a fleet of 273 trucks in Athens, Greece, for a total of
112203 points6. Running both the Static RoI T-pattern and
Dynamic RoI T-pattern algorithms with various parameter

5More exactly, step (6) summarizes three operations
introduced in [5]: Extract annotation blocks, Com-
pute density blocks, and Coalesce density blocks; step
(8) corresponds to function Annotation-based prune; and
step (14) corresponds to extend proj.
6Download at http://isl.cs.unipi.gr/db/projects/rtreeportal/

Algorithm: Dynamic RoI T-pattern(Tin, G0, δ, ǫ, τ)

Input: A set of input trajectories Tin, a grid G0, a minimum
support/density threshold δ, a radius for spatial neighbor-
hoods ǫ, a temporal threshold τ .
Output: A set of couples (S,A) of sequences of regions with
temporal annotations.

1. L = 0; T0 = {(Tin × {∅}, 〈〉)};
2. while TL �= ∅ do
3. TL+1 = ∅;
4. foreach (T, prefix ) ∈ TL do
5. if |prefix | ≥ 2 then
6. A = ExtractFrequentTimings(T ); ([5])

7. Output (prefix ,A);
8. T = PruneEmptyAnnotations(T , A); ([5])

9. G = ComputeDensity(T ,G0,ǫ); (Sect.4.2.1)

10. RoI = PopularRegions(G,δ); (Sect.4.2.2)

11. D = Translate(T ,RoI); (Sect.4.1)

12. foreach r ∈ RoI do
13. if supportD(r) ≥ δ then
14. D′ =ExtendProjection(D,r); ([5])

15. T ′ = { (traj ,A′) | (traj ,A) ∈ T

∧ (S′,A′) ∈ D′
∧ traj .ID = S′.ID

∧ traj ′ = Cut(traj ,A′) }
16. TL+1 = TL+1 ∪ {(T ′, append(prefix , r))};
17. L++;

Figure 6: Mining frequent T-patterns with dynamic
Regions-of-Interest

settings (the same for both algorithms), several frequent tra-
jectory patterns were discovered. Among them, two patterns
are shown in Figure 7(left) over a simplified plot of the roads
of the area, and provide an example of how the same kind
of pattern hidden in the data is detected by the two differ-

ent approaches, static and dynamic. The T-pattern A
∆t1−→

B′ ∆t2−→ B′′ was discovered through the dynamic approach,
with main temporal annotations (∆t1, ∆t2) ∈ [330, 445] ×
[116, 190] and (∆t1, ∆t2) ∈ [400, 513]× [41, 61] (the detailed
list of annotations is omitted here for lack of space), and es-
sentially represents frequent movements similar to a round
trip, since the first and last regions are adjacent. The corre-

sponding static T-pattern A
∆t1−→B

∆t2−→B provides a coarser
description of the same behavior, composed of larger regions
(B replaces B′ and B′′), with the presence of a loop and as-
sociated to a larger set of annotations (not listed for lack of
space). It is quite clear that the dynamic T-pattern provides
more precise information than its static counterpart.

The performances of the static and dynamic algorithms
have been studied by means of synthetic data, generated by
the CENTRE synthesizer described in [4]. Data contain 50%
of purely random trajectories and 50% of trajectories that
follow predefined patterns, randomly chosen among a set
of 100 (random) patterns. Where not otherwise specified,
the datasets contain 1000 trajectories, each one described
on average by 200 points, and the algorithms are run with
a minimum support/density threshold equal to 5%, spatial
neighborhood of radius 10, time tolerance equal to 300 and
density grid of size 100x100.

Figure 7(center) reports the execution times obtained by
both algorithms over datasets with increasing number of in-
put trajectories. The curves show an almost linear scalabil-
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Figure 7: Sample T-patterns (left), algorithm scalability over input size (center) and min. support (right)

ity with very similar times for both algorithms. Observing
the running times for different minimum support thresholds
(also used as density threshold for the region extraction pro-
cess), then, we can see in Figure 7(right) that, interestingly,
running times grow when the minimum support is decreased,
as expected, but then quickly decrease when it goes below
a given value, thanks to the effect of density on the region
extraction process, which partitions the space in a smaller
number of regions, thus causing the main algorithm to gen-
erate less projections. We observe, moreover, that while the
static algorithm performs better on extreme support thresh-
old values, its execution times grow much faster when clos-
ing to the critical middle values, exceedings the time limits
enforced in these experiments (60 minutes).

The impact of other parameters was also investigated, but
for lack of space we give here only a brief summary of the
results: increasing the radius of the spatial neighborood (ǫ)
we obtain irregular performances, yet very large values lead
to very high execution times; changing the time tolerance
threshold (τ ) we obtain results very similar to computing
TAS ’s (see [5]); finally, increasing the number of points in
each trajectory causes a quasi-linear growth of times.

8. CONCLUSION
In this paper, we introduced the trajectory pattern mining

problem, together with several different methods to extract
T-patterns from trajectory data. The first empirical assess-
ment reported in Section 7 exhibits promising results, from
the point of view of both computational feasibility and use-
fulness of the mined T-patterns. In our view, T-patterns
are a basic building block for spatio-temporal data mining,
around which more sophisticated analysis tools can be con-
structed, including:

• integration with background geographic knowledge, such
as road networks and other geographic information
layers, at the level of trajectory pre-processing, RoI
discovery, T-patterns mining and post-processing;

• adequate visualization metaphors for T-patterns, as
well as integrations into visual analytics methods and
tools for exploratory trajectory pattern mining;

• adequate mechanisms for spatio-temporal querying and
reasoning mechanisms on both input trajectories and
extracted T-patterns, including refinements of inter-
esting T-patterns.

Research efforts are being put in these directions, as well
as in a large-scale experiment aimed at testing the concrete

usefulness of trajectory pattern mining in the analysis of
traffic flows in a metropolitan area.
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