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Absmf-Thi s  paper gives an algorithm for fourth order 
trajector~. planning with constrained dynamics for single 
axis motion contml. A model-based feedforward controller i s  
derived that makes full use of these trajectories. Application 
to industrial high-pmision electromechanical motion systems 
is motivated. k n e s  like time-optimality, implementation and 
digitization are consided. Simulation results show superior 
eWectiveness in comparison with rigid-body feedforward. 

I. INTRODUCTION 
Feedforward control is commonly applied to high per- 

formance industrial motion control systems like robots and 
pick-and-place units. These systems are often embedded 
in a factory automation scheme, which provides desired 
motion tasks. Such motion tasks are then transferred to 
computer hardware dedicated to the control of the system, 
leaving the details of planning and execution of the motion 
to this dedicated motion controller. 

For simplicity, the trajectory planning and feedforward 
control are usually done for each actuating device sepa- 
rately, relying on system compensation and feedback control 
to deal with interactions and non-linearities, Each actuating 
device is then considered to be acting on a single mass 
moving along a single degree of freedom. The feedforward 
control problem is then to generate the force required 
for acceleration of the mass over the desired trajectory. 
Conversely, the trajectory should be such that the force is 
allowable and can be generated by the actuating device. This 
approach is referred to as ‘mass feedforward’ or ‘rigid-body 
feedforward‘. 

The disadvantage of this approach is its dependence on 
system compensation and feedback control to deal with 
uumodelled behavior. The resulting problem formulation 
can be split in two. 

1) During the trajectory, position errors and feedback 
control actions can be large, resulting in unallow- 
able velocities and/or accelerations (hence: actuator 
forces). 

2) When arriving at the endpoint, the position error is 
large and it is necessary to introduce a settling time 
before subsequent actions or motions are allowed. 

To improve on this, many academic and practical ap- 
proaches are possible. These can be categorized in three. 

1) Smoothing or shaping the trajectory and/or applica- 
tion of force. The result of this can be g o d ,  but it 
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may also lead to a considerable increase in execution 
time of the trajectory. Various examples can be found 

2) Feedforward control based on plant inversion, either 
by using a more detailed m d e l  or by learning its 
behavior based on measurements. This does not pro- 
vide an approach for designing a trajectory. Various 
examples can be found in [l], 131, [SI, 191, 1101, [131, 
[141, 1151. 

3) Feedback control and/or system compensation im- 
provement. Obviously, any feedback control design 
method can be used for this, but trajectory design is 
again not considered. Some references given above 
also discuss the effect of feedback control on trajec- 
tory following; e.g. see [91, [IO], [15]. 

This paper will provide a method for fourth order trajectory 
planning and feedforward control that can be used in 
addition to all of these approaches. After a review of rigid- 
body feedforward in section 11, ‘Fourth order feedforward‘ 
will be presented in section In. An accurate planning 
algorithm is given in section N. The effect of discrete time 
implementation will be considered in section V. Finally, 
some simulation results are given in section VI, followed 
by conclusions in section VII. 

in [21, 151, [61, [71, [111, 141. 

11. RIGID-BODY FEEDFORWARD 
The specifics of planning a trajectory and calculating 

a feedfonvard signal based on rigid-body feedforward are 
fairly simple and can be found in many commercially avail- 
able motion control systems. In this section a short review 
is given as an introduction to a standardized approach to 
higher order feedforward calculations. 

Consider the configuration of figure 1 with m denoting 
the mass of the motion system, F the force supplied by the 
actuating device, x the position and k a viscous damping 
term. Now suppose we have a given bound on acceleration 
c i  (i.e. a bound on F) ,  and we want to perform a motion 
over a distance denoted as Z. Then the shortest time within 
which the motion can be performed is calculated as: 

1 
2 

Z = 2 x -tit* =+ tn = 6 =+ t ,  =2ta  (1) 

with t z  denoting the constant acceleration phase duration 
and tZ  denoting the total trajectory execution time. Hence, 
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Fig. 1. Simple motion system: a single mass 

the trajectory consists of a constant maximal acceleration 
phase followed directly by a constant maximal deceleration 
phase. Clearly if a bound on velocity, denoted as B, is 
taken into account, tz can only become larger. We can test 
whether the velocity bound B is violated by calculating 
the maximal velocity obtained using the minimal time 
trajectory: 

8 := ii .ta (2) 

Now if 8 <= fi we are finished ti. = 2ta and no constant 
velocity phase is required. If 8 > B we calculate: 

- 

(3) 

and the constant velocity phase duration to is calculated as: 

V 1 t-  - - 
a j 

2- .- 2 x -at? < 35. 
2 0  a -  - a .- 

(4) 

resulting in: t o  = 2ta + ts. 

planning algorithm: 
This procedure can now be given as a simple trajectory 

1) calculate ta from equation 1, 
2) calculate maximal velocity ir from equation 2, 

if ir > U: recalculate ta from equation 3, 
3) calculate xa from equation 3, 
4) calculate te from equation 4, and 
5 )  finished 5 = iit: + U t .  and tz = 2t. + t o .  

Note that to automatically reverts to zero if the velocity 
bound is not obtained. 

Construction of the acceleration profile a from t a  and 
te is straightforward. From this, the desired trajectory 
can be determined by integrating it once to obtain the 
velocity profile U, and integrating it twice to obtain the 
position profile z; see figure 2. As the position profile thus 
establishes the trajectory as a sequence of polynomials in 
time with a degree of at most two, rigid-body feedforward is 
also referred to as ‘second order feedforwad. Note that the 
feedforward force F is simply calculated from the profiles 
in figure 2 as: 

F = m a + k u  (5)  

111. HIGHER ORDER FEEDFORWARD 
Compared with the second order trajectory considered 

in the previous section, higher order trajectories inherently 
have the advantage of ’smoothing’. This implies a lower 
energy content at higher frequencies, which results in a 
lower high frequency content of the error signal, which in 
turn enables the feedback controller to be more effective. 
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Fig. 2. Second order trajectory determination, 

Furthermore this reduces the chance of demanding a motion 
which is physically impossible to perform by the given 
motion system: e.g. most power amplifiers exhibit a ‘rise 
time’ effect, such that it is impossible to produce a step- 
like change in force. The result is a decrease of position 
errors during execution of the trajectory and a reduced 
settling time. Because of this, many high performance 
motion systems are already equipped with a third order 
trajectory planner; in this section it will be determined that a 
fourth order trajectory planner may give a significant further 
improvement. 

The main argument for this is that an electromechanical 
motion control system will usually have some compliance 
between actuator and load, and that both actuator and load 
will have a relevant mass. For this reason it is natural to 
extend the single mass model of figure 1 to the double 
mass model of figure 3. Here ml denotes the mass of the 
actuator, m2 the mass of the load, F the force supplied by 
the actuating device, 21 the actuator position, x2 the load 
position, c the stiffness between the two masses, k l z  the 
viscous damping between the two masses, kl the viscous 
damping of the actuator towards ground and kz the viscous 
damping of the load towards ground. The equations of 

Fig. 3. Extended motion system: double mass. 
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Laplace transformation and substitution then results in: 

(7) 

91 = mlmz 
qz = (ml+ mz)kl2 + mlkz + mzkl 
43 = (ml+ mz)c + k1k2 + (kl + k z ) h z  
44 = (kl + kz)c 

This implies that if we have planned some fourth order tra- 
jectory for x2, from which we can derive the corresponding 
profiles for velocity v, acceleration a, jerk and derivative 
of jerk d, the feedforward force F can be calculated as: 

An implementation of this feedforward scheme is given in 
figure 4. Analogous to rigid-body feedforward, all required 

k i  
Pm 

Fig. 4. Fourth order feedforward implementation. 

profiles can be obtained by integration of the derivative of 
jerk profile d. Note that rigid-body feedforward is implicit 
in this scheme: simply setting m2 = kz = k12 = 0 makes 
equation 8 equal to equation 5.  The remaining difference 
is that boundedness of jerk and derivative of jerk will 
result in a smooth trajectory in comparison with figure 2. 
This is illustrated in figure 5, which gives an example of 
a symmetrical fourth order trajectory for a point-to-point 
move based on the construction of a derivative of jerk profile 
d. This profile is completely determined by the value of the 
given bound 2 and the switching time instances t o . .  . t I5 .  
An algorithm for obtaining these switching time instances 
will be the subject of the next section. 

IV. FOURTH ORDER TRAJECTORY PLANNING 
Planners for second and third order trajectories are fairly 

well known in industry and academia and there are many 
approaches for obtaining a valid solution. Extension to 
fourth order trajectory planning is however not trivial. In 
this section an approach is given that can be seen as a direct 
extension of the rigid-body algorithm given in section 11. 

Assume that the position displacement f and bounds on 
all derivatives of the trajectory up to the derivative of jerk d 
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Fig. 5 .  Fourth order hajectary planning. 

are given (indicated as 6,  8, T and 4. Furthermore, assume 
that all derivatives are equal to zero at the start and end 
positions. The proposed fourth order trajectory planning 
algorithm is then given in the following steps. 

1) Temporarily discarg B, 8 and j. From figure 5 follows 
that d consists of 8 periods with value d or -2. 

2) Determine t i :  the shortest time of constant d (always 
first period) such that the total displacement is f: 

3) Calculate maximal value of velocity 8: 

C = 22t; 

if C > B: recalculate t i  based on B: 

t z =  f& 
4) Calculate maximal value of acceleration b: 

6 = JtZ- 
d 

if 6 > 8: recalculate t i  based on 8: 

5) Calculate maximal value of jerk j: 
- 

j = dta 

if j > 5 recalculate t d  based on 5 



The resulting td will not be changed anymore. 
6) Temporarily discard B and 6, but not 7: extend the 

trajectory symmetrically with periods of constant 
whenever 3 reaches the value 7 or -J. 

7) Determine ti such that the total displacement is 2. 
This is the positive real solution of the third order 
polynomial equation: 

z 
2dtd t i  + (5td)t; + (8tf) t j  + (4ta - -) = 0 (16) 

8) Calculate maximal value of velocity 6: 

8 = 2 4  + 32tfti + dtdt; (17) 

if 8 > B: recalculate ti based on B; this is the positive 
real solution of the second order polynomial equation: 

9) Calculate maximal value of acceleration iL: 
6 = dti + &Jti (1% 

if d > 6: recalculate ti based on 3: 

The resulting ti will not be changed anymore. 
10) Temporarily discard B hut not 6: extend the trajectory 

symmetrically with periods of constant a whenever a 
reaches the value E or -6. 

11) Determine t .  such that the total displacement is 2. 
This is the positive real solution of the second order 
polynomial equation: 

{ t i  + t&}dt; + {6ta + 9t f t j  + 3t&}dt,+ 
{8t$ + 16t& + lot i t ;  + Zt&}d - I = 0 

(21) 
12) Calculate maximal value of velocity 8: 

8 = 2dtf + 32tfti + dt& + &it. + dt&ta (22) 

if 6 > B: recalculate ta  based on 8: 

13) Calculate total displacement as if no constant velocity 
phase is required: 

I. = {&?ti + 16tatj + 1Ot:t; + 2t&+ 
t i t ;  + t j t& + 6tatn f9tftJt"jt. + 3t,jt&,}d - (24) 

14) Calculate constant speed phase duration tu  such that 
the total displacement is 2: 

15) Finished l, td, ti, ta and tu completely determine 

The trajectories resulting from this algorithm have two 
important inherent properties: 

the trajectory. 

. none of the given bounds is violated, 
in case there is a constant velocity phase ( tu > O), the 

Furthermore, although obviously more complex than the 
rigid-body approach, the algorithm consists of straightfor- 
ward calculations that can relatively easily he implemented 
in state-of-the-art motion control hardware. 

trajectory is time-optimal. 

V. IMPLEMENTATION ASPECTS 
This section gives some considerations on the trajectory 

planning algorithm and the feedforward control scheme of 
figure 4 for implementation in digital hardware. 

A. Switching times 
When considering discrete time implementation, the 

switching time instances of the planned trajectory must 
be synchronized with the sampling time instances. This 
implies that the time intervals to .  ta .  etc. must be rounded- 
off towards a multiple of the sampling time interval T.. 
To remain within the given bounds, hut at the same time 
approximate them as closely as possible, this rounding off 
must be done to the next higher multiple. The suggested 
approach is to do this immediately after each calculation of 
a time interval, after which the maximal value d must he 
recalculated accordingly. 

As an example consider the first calculation of td (equa- 
tion 9). The rounded-off value for td is: 

with ceil(.) denoting the rounding off towards the next 
higher integer. From equation 9 we can then calculate a 
new value for 2: - 

Note that with t$  2 td we must have c? 5 2. It can be 
verified that this same approach is valid for the calculation 
or recalculation of all time intervals. Note that with each 
new calculation of B its value must reduce.  his guarantees 
that none of the bounds that were checked in earlier steps 
of the algorithm will be violated. 

E. Synchronization of profiles 
The discrete time implementation of the integrators in 

figure 4 can be done by replacing the continuous time 
integrators by forward Euler discrete time integrators as in 
figure 6. Clearly, all required profiles are now calculated 

Fig. 6.  Discrete time planner using forward Evler integrators 

with sampling time interval T,. However, due to the zero 
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order hold effect, each of the four integrators introduces 
a specific delay time. This can be seen in figure la, in 
which the discrete time profiles are compared with the 
corresponding continuous time profiles. Note that T. = 
0.05 8 ,  which is chosen large in relation to the required 
trajectory to show the discretization effect more clearly. 

To fix this effect, the higher order profiles can be delayed 
individually such that the symmetly of the complete set 
of profiles is restored. Figure 7b shows this: the discrete 
time profiles are now perfectly synchronized with the 2T, 
delayed continuous time profiles. 

Nornulid OYllU Ilm.lo"nn~p.,,*..r.mp.ndrilh.."ti"MiY6m.~lilu 
.:MI qnchronizd b*ncnmn.d.*laYd bY0.l. 

0 0.2 0.4 0.6 0.8 1 1 . 2 0  0.2 0.4 0.1 0.8 I 1.2 
um. 1.1 um 18, 

Fig. 7.  Discrete time fourth order profiles using forward Euler integrators. 
compared with equivalent continuous time profiles. 

c 
kiz 

Note that the derivative of jerk profile must be delayed 
with ZT., the jerk profile with liT,, the acceleration profile 
with T, and finally the velocity profile with iTa. To obtain 
a delay of iTs when sampling with T, the average value is 
taken from the current and previous amplitude of the con- 
sidered profile. This operation appears to work very well, 
although the associated smoothing effect is undesirable. 

6 . 1 0 5  N/m *33% 
SW Ns/m *loo% 

C. Implementation of first order filter 
All required profiles for calculation of the feedforward 

signal are now available. The multiplication with factors 
q1 to q4 followed by summation as indicated in figure 4 
is straightforward. The first order filtering is less trivial, 
as it must also be transferred to discrete time. A possible 
implementation that prevents problems with unwanted time 
delays and gives good results is to make use of the trap- 
zoidal integration method as shown in figure 8. 

Y 
lZ1kl2s*TO 112*kl2+cx?~~ 

Fig. 8. 
integration method. 

Discrete implementation of fin1 order filter using the Waperoidal 

D. Calculation of reference trajectory 
A final point on synchronization must be made with 

respect to the calculation of the reference trajectory that 
is used for feedback control. When applying the syn- 
chronized feedforward signal as given above, the actual 
plant's response will be close to the ideal continuous time 
response with a delay of 2T.. However, in order to compare 
this response with the reference trajectory it must also be 
sampled with T,, leading to an additional delay of iTs.  
Hence, it is necessary to also delay the reference trajectory 
with this same value. 

The result of this is that the control error will not 
be affected by sampling. The controller will only act on 
the effects of disturbances and on discrepancies between 
the actual plant and the modelled fourth order behavior. 
Obviously, this is only true if the sampling frequency is 
sufficiently high otherwise the momentary control error 
may deviate significantly from the average value. If this 
is the case, an increase in sampling frequency must be 
considered, Usually however, the sampling frequency is 
more significantly determined by the demands on stability 
and performance of the (digital) feedback controller. 

VI. SIMULATION RESULTS 
The effects of parameter variations and discretization on 

the performance of fourth order feedforward control are 
considered. For this, some simulations are performed using 
the configuration of figure 4. The motion system parameters 
and their variations are given in table I. The trajectory 

TABLE I 
SIMULATION PARAMETERS 

is calculated for a displacement 5 = 1 m, with bounds: 

(see figure 5). 
The main concern with model-based feedforward is the 

discrepancy between the behavior of the actual motion 
system and the used model. Figure 9 shows the performance 
of fourth order feedforward for a fourth order motion 
system model with perturbations according to table I. For 
comparison, the response of the nominal motion system 
model with optimal rigid-body feedforward is given (by 
applying equation 5 to the acceleration and velocity profiles 
of figure 5). Note that in spite of the significant plant 
variations, fourth order feedforward performs at least twice 
as good. 

Figure 10 shows that the servo error responses will 
not significantly deteriorate if fourth order feedforward is 
implemented in discrete time. As an example, the motion 

d = 1000 d s 4 ,  f = 50 d s 3 ,  ti = 5 d s 2 ,  and 3 = 1.5 d s  
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Fig. 9. Open loop simulation results of fourth order feedfonvard controller 
with plant variations. in comparison with optimally tuned rigid-body 
feedforward. 

llm 1.1 
Fig. IO. Simulation results of open Imp and c l o d  loop discrete time 
fourth order feedforward controller with minimal stiffness plant. Thick 
lines: discrete. thin lines: continuous time. 

system with minimal spring-stiffness is considered. Both 
open loop and closed loop results are given: the feedback 
controller is tuned for a bandwidth of about 10 Hz, whereas 
the motion system's first resonance mode is at 50 Hz. The 
digital feedfonvard controller is combined with a discrete 
time feedback controller, both with a sampling rate of 
200 Hz. Note that this is a low sampling rate for a high 
performance servo system: this is chosen to demonstrate 
the discretization effects more clearly. 

VII. CONCLUSIONS 
For high performance motion control the usefulness of 

feedfonvard is well known. This paper shows that rigid- 
body feedfonvard can be extended to fourth order feedfor- 
ward with superior performance for an important class of 
motion systems. 

An algorithm is given to calculate fourth order trajec- 
tories for point-to-point moves with important properties 
like time-optimalily, actuator effort limitation, reliability, 
implementability and accuracy. Other motion commands, 
like speed change operations, can be derived from this. 

Further implementation issues, like discrete time calcu- 
lations and synchronization, are addressed. It is shown that 
deterioration of the continuous time results due to sampling 
are small when applying a sufficient sampling rate. 
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