
  

  

Abstract—A simple direct method able to generate time-
optimal trajectories for a micro quadrotor helicopter is 
presented. It is based on modeling the quadrotor trajectory as a 
composition of a parametric function ( )λP  defining the 
quadrotor path, and a monotonically increasing function ( )tλ ,  
specifying the motion on this path. The optimal evolutions of 

( )λP  and ( )tλ , which are approximated using B-spline 
functions, are found using a nonlinear optimization technique. 
The proposed method accounts for the most important 
constraints inherent to the system behavior, such as 
underactuation, obstacles avoidance and limits on actuator 
torques and speeds. 

Keywords: quadrotor, dynamics, trajectory, nonlinear 
optimization. 

I. INTRODUCTION 
nmanned air vehicles (UAVs) are self-propelled aerial 
robots. They can be equipped with various instruments and 

payloads, making them capable of performing various civilian or 
military tasks. Among existing small UAVs, we find quadrotors 
which are Vertical Take-Off and Landing (VTOL) four rotor 
helicopters (Fig.1). They are controlled simply by changing the 
rotation speed of the four rotors. The front and rear rotors (2, 4) 
rotate in a clockwise direction while the left and right rotors 
(1, 3) rotate in a counter-clockwise direction to balance the 
torque created by the spinning rotors. The up/down motion is 
achieved by increasing/decreasing the rotors speed while 
maintaining an equal individual speed. The forward/backward, 
left/right motions are achieved through a differential control 
strategy of rotors speed. Thanks to this configuration, quadrotors 
are able to hover, takeoff, and land in small areas and enable 
them to perform tasks that fixed-wing craft are unable to do. 
Although the mechanical design of the quadrotor is simple, its 
particular dynamics makes the vehicle control relatively difficult. 
This is due principally to the fact that the system is 
underactuated: there are only four rotors which generate four 
inputs thrusts (Ti) to control the six degrees of freedom of the 
crossing body during fly.  

In recent years, there have been a number of papers dealing 
with various problems inherent to the exploitation of quadrotors. 
For example, dynamic modeling issues were addressed in 
references [1, 2, 3, 4, 5, 6, 7] whereas, nonlinear control laws, 
such as feedback linearization control, visual control, back-
stepping control and sliding-mode control were studied in many 
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papers such as references [3, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17]. 
However, trajectory planning problems of quatrotors were not 
widely studied. Yang et al. [12] treated the problem of time-
optimal control of a quadrotor by using a nonlinear programming 
method coupled with a genetic algorithm. They succeeded to 
generate in simulation minimum time point-to-point trajectories 
under various technological constraints. Cowling et al. [18] 
presented an optimal trajectory planner with a linear control 
scheme to follow a reference trajectory. Authors exploited the 
differential flatness of the quadrotor to address the optimization 
problem within the output space. In reference [19], a model 
predictive control based trajectory tracking system for small 
unmanned helicopters is presented. It is based on a linear model 
predictive controller and showed, in simulation, a good 
robustness to parameter uncertainty. In reference [20], authors 
addressed the stabilization with motion planning problem of a 
standard quadrotor. They showed that the system presents a flat 
output and exploited this fact in the treatment of the motion 
generation problem. They proposed an efficient tracking 
feedback controller based on receding horizon point to point 
steering. This work was later extended to the case of a 
bidirectional X4 flyer [21].  

In this paper, we propose a simple numerical method to treat 
the problem of generating minimum time trajectories for a 
quadrotor aerial robot under various constraints. It is based on 
previous works developed at our laboratory [22, 23] dealing with 
the problem of trajectory generation for serial manipulators and 
mobile robots. The trajectory generation problem is cast as a 
nonlinear optimization problem by parameterizing both of the 
robot path and the associated motion profile using a set of 
control points which are fitted by Bspline functions. The 
resulting problem is solved using the sequential quadratic 
programming method (SQP). Finally, simulation results 
corresponding to point-to-point tasks with free and imposed path 
in free and encumbered environments are presented to illustrate 
the efficiency of the proposed approach. 
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Fig. 1.  Description of the quadrotor motion 
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II. QUADROTOR MODELING 
The quadrotor helicopter is actuated by four DC motors 

driving four rotors connected to the extremities of a crossing 
body (fig. 1). Varying the speed of all rotors, thereby changing 
the lift forces, generates the motion of the quadrotor. Two frames 
will be used to study the system motion: an inertial earth 
frame { }ER ( )zy,x,,O , and a body-fixed frame  

{ }0R ( )0000 , z,y,xO , where 0O  is supposed to be at the mass 

center of the quadrotor. { }0R  is related to { }ER  by a vector 

( )zyx ,,  describing the position of the center of gravity in 

{ }ER , and three independent angles ( γβα ,, ). The relationship 
between the time variation of Euler angles and the components 
of 0

0Ω  is as follows [6, 7]:  

ΘHΩ &=0
0         (1a) 

where [ ] Tαβγ=Θ and H is given by: 
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The rotation matrix 0RE  that defines the orientation of 
{ }0R relative to the earth frame { }ER  can be written in a general 
form as follows [24]: 
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The linear velocity of the mass center of the crossing body O0, 
expressed in { }ER , is: 

[ ] TE zyx &&&=0V          (3) 
In reference [6], a complete dynamic model including rotors 
dynamics and external perturbations is developed using a 
multibody approach.  Hereafter, we consider a simplified 
dynamic model which is obtained under the following 
assumptions: 
 The linear and angular momentums of rotors are neglected. 
 Joints relating rotors to the crossing body are supposed perfect 
(no friction). 

 The crossing body is supposed symmetrical and the 
corresponding inertia matrix 0I is given in {R0} by: 

),,(0 zzyyxx IIIdiag=I . 
 The translation velocity of the quadrotor is small, therefore the 
aerodynamic forces and the corresponding moment are 
neglected. 

According to the momentum theory of rotors [25, 26], the 
aerodynamic efforts applied to the quadrotor are four trust efforts 

iT  and four resistive moments iQ , (i = 1, ..., 4), given by:  
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The direct dynamic model of the quadrotor is [6] : 
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Note that: 
• b and d are coefficients depending upon the blade’s Reynolds 

Number, Mach number and angle of attack as well as other 
factors [27]. They are generally identified experimentally as 
done in ref. [7, 28]. 

• The quantities ui can be seen as equivalent control inputs of 
our system since they are a linear combination of effective 
input torques iτ  given by: 

( ) ( )4 1,..., = i1 21
i

i
i d θτ &+−=      (6) 

The inverse form of (5a) is possible: 
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The inverse dynamic model (7) allows us to compute the 
equivalent input controls as a function of the system kinematics. 

III.  STATEMENT OF THE OPTIMAL TRAJECTORY PLANNING 
PROBLEM 

The quadrotor is required to move from an initial 
configuration to a final one; both are characterized by null 
velocities. Solving the optimal trajectory planning problem 
involves the determination of the transfer time T, the 
trajectory ( ) ( ) ( ) ( ) ( ) ( ) ( )( )ttttztytxt γβα ,,,,,=ℑ  and the 

corresponding input controls ( ) ( ) ( )( )ttt 41 ,, ττ K=Γ  such as the 
initial and final states are matched, constraints are respected and 
a cost function is minimized. Hereafter, we adopt exclusively the 
minimum time cost function: 

∫=
T

obj dtF
0

           (8) 

Boundary conditions inherent to the achievement of the 
desired task are those imposed on the quadrotor: 

– Configuration     ( ) iniℑ=ℑ 0  and  ( ) finT ℑ=ℑ    (9a) 
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– Velocity            ( ) 00
r

& =ℑ     and  ( ) 0
r

& =ℑ T        (9b) 
The other constraints that may have to be satisfied during the 

quadrotor fly are: 
• bounds on the quadrotor configurations  

( ) maxmin t ℑ≤ℑ≤ℑ         (10a) 
• bounds on the actuator velocities:   

( ) max

ii

min

i t θθθ &&& ≤≤    i = 1, …,4  (10b) 
• bounds on the actuator torques:  

( ) max

ii

min

i t τττ ≤≤    i = 1, …,4  (10c) 
• obstacles avoidance :  

Col( ( )tℑ )=false         (10d) 
The constraint (10a) traduces the fact that the quadrotor will 

move in a limited space and its orientation should be compatible 
with the simplification hypotheses (small angles) proposed in 
[6]. The constraint (10b) arises from the fact that each rotor 
should turn in a specific direction and the corresponding motor 
has a limited speed. The limited power of actuators implies also 
bounds on input torques as indicated in (10c). These limits are 
systematically projected on the amplitude of the equivalent 
control inputs ui, (i =1, …, 4). When obstacles are present in the 
workspace, the constraint (10d) will hold during the quadrotor 
fly. The function Col indicates whether the robot at a given 
configuration is in collision with an obstacle or not. 

Moreover, the quadrotor has only four motors actuating the 
four rotors whereas the system has six dof. This means that the 
system is underactuated. The exploitation of such a system 
involves the identification of the dependency existing between 
the six dof, i.e. between the elements of ( )tℑ .  

From the three first equations of (5a), it is straightforward to 
write: 
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Relation (11a) represents two nonholonomic constraints of 
second order traducing the dependency existing between the 
quadrotor kinematic parameters. Using this relation, it is possible 
to deduce two parameters from a non linear combination of the 
four other parameters (and their time derivatives), e.g.: 
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In addition to the previous constraints, there is another constraint 
arising from the relationship existing between the quantities ui 
and the effective input torques iτ , (i = 1, …, 4), which are 

proportional to 2
iθ& . In fact, from relations (4), (5b) and (6), it is 

easy to establish that:  
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d
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where:  
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Hence, the feasibility of any set of inputs ui, i = 1,…, 4, is 
conditioned by the following constraint:  

( ) 04321
1

r
>− TuuuuΛ                       (13) 

The satisfaction of inequality (13) ensures the existence of the 
vector ( )T2

4
2

3
2
2

2
1 θθθθ &&&& . Hence, the corresponding input torques 

may be achieved by the quadrotor actuators. In contrast, 
violating this constraint means that the considered trajectory 
involves unfeasible control inputs, thus it should be modified.  
The problem defined by relations (8, 9a-b, 10a-d, 11a, 13) is a 
generic optimal control problem and may be solved using either 
direct or indirect methods [29]. In the following section, we 
present a simple direct numerical method able to treat this 
problem. 

IV. THE PROPOSED APPROACH 
Using (11b), it is possible to express all elements of the 

optimization problem (cost function and constraints) as a 
function of the time evolution of only four configuration 
parameters, namely {x(t), y(t), z(t), α(t)} and their time 
derivatives. In fact, the definition of a trajectory candidate may 
be done by defining the evolution of {x(t), y(t), z(t), α(t)}, for 

[ ]Tt 0∈ , while accounting for boundary conditions (9) and 
bounds (10a) on the quadrotor configurations. Whereas, from 
relation (11b) the time evolution of the two other configuration 
parameters can be deduced. By application of the inverse 
dynamic model (7), the input controls are calculated. After that, 
the remaining constraints (10b, 10c, 10d, 13) may be checked. 

The remaining question is how to generate the trajectory 
candidates? For this purpose, we propose to consider any 
trajectory candidate as a composition of : (i) a parametric form 

( )λP ( ) ( ) ( ) ( )( )λαλλλ ,,, zyx= , [ ]10∈λ , defining the 
quadrotor path, and (ii) a monotonically increasing function 

( )tλ , [ ]Tt 0∈ ,  specifying the motion on this path. i.e.: 
( ) ( ) ( )tt λλ oP=ℑ                                     (14)  

The optimal evolutions of ( )λP  and ( )tλ , which are 
approximated using B-spline functions fitting a set of control 
points, are found using a nonlinear optimization technique.  

The construction of ( )λP  and ( )tλ  may be done as follows:  

• Generate ( )λP , [ ]10∈λ (Fig.2a), by means of a quintic B-
spline model. The 5th degree ensures the continuity of the 2nd 
order derivatives of angles β and γ . This B-spline is built by 
using a set of Np control points (5 points at least) [30], and 
generated within the admissible workspace defined by (10a) and 
accounting for constraints (9a, 10d). 
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• Build the motion profile ( )tλ on the interval [0 T] using a 
quintic B-spline model (Fig.2b), generated by Nm control points 
uniformly distributed along the time scale, and accounting for the 
following boundary conditions: 

             ( ) ( ) ( ) ( ) 00000000 ==== λλλλ &&&&&&     

and    ( ) ( ) ( ) ( ) 0001 ==== TTTT λλλλ &&&&&&  
These conditions ensure the compatibility of the resulting 
trajectory ( )tℑ  with constraints (9b). The increasing monotony of 
the motion profile is ensured by generating the Nm control points 
in INm intervals such as (Fig.2 b): 
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The design parameters of ( )λP  and ( )tλ , which are the 
coordinates of the B-spline function control points and the value 
of T, become the unique unknowns of the trajectory generation 
problem. Their optimal values may be found easily using, for 
example, the sequential quadratic programming technique [31]. 

V. SIMULATION RESULTS 
Hereafter, three examples are discussed. The two first examples 
show the possibility of applying the proposed approach for a 
point to point motion with a free or imposed path between two 
limit configurations. These examples are executed in a free-
obstacle space. The third example shows the ability of the 
approach to handle the trajectory planning problem in an 
encumbered space. Also, this last example highlights that the 
necessary minimum time to move between two configurations is 
not given obligatory by a motion on the shortest path. These 
examples are simulated using parameters of Table 1. 

A. Example 1  
The quadrotor is assumed to move from an initial configuration 

( )0,0,1,1=ℑ ini  to a final one ( )0,9,6,12=ℑ fin  in a 3D non-
encumbered space. A quintic B-spline, generated using nine free 
control points is used to represent the parameterized path ( )λP . 
The motion on this path is built also by using a quintic Bspline 
but with only two free control points. The minimum transfer time 
found in simulation is T = 6.25 seconds. The path and the 
evolution of the position and the orientation of the quadrotor are 
depicted on Figure 3. 
 

 

B.  Example 2 
In this example, the quadrotor is supposed to achieve the same 
displacement as in example 1, but along a predefined linear path. 
In this case, the path function ( )λP  is already defined and only 

( )tλ  should be optimized. The motion on this path is always 
represented by a quintic B-spline generated with two free control 
points. The minimum transfer time found in simulation is 
T = 7.22 seconds and the evolution of the six dof of the 
quadrotor is given in Figure 4. 

 

C. Example 3 
In this example, the environment is cluttered with obstacles as 
shown in figures 5a and 5b and the motion is confined to a fixed 
altitude z = 5m. We are interested in finding the minimum time 
transfer linking the configurations ( )0,5,5.0,5.1=ℑ ini  and 

( )0,5,5.8,5.8=ℑ fin . Two alternatives are studied: moving from 
iniℑ  to finℑ (i) freely or (ii) along the shortest safe path. In the 

first case, ( )λP  is generated using a quintic B-spline fitting 
twelve free control points. The motion profile ( )tλ  is 
constructed, in both cases, by using a quintic B-spline and six 
free control points. The minimum transfer time found for case (i) 
is T = 10.57 seconds, while for case (ii) is T = 19.41 seconds. 
The optimal evolutions of the four actuator torques, for both 
cases, are shown in Figures 5c and 5d successively. 

VI. CONCLUSION 
In this paper, the problem of minimum time trajectory planning 
has been addressed accounting for the main constraints inherent 
to the system and its environment. A simple direct numerical 
method, based on an adequate parametrization of the quadrotor 
trajectory and using a nonlinear optimization technique, has been 
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Fig. 2.  Path and motion profiles 

a) A path component profile  b) The motion profile 

TABLE I 
SIMULATION PARAMETERS 

m  = 0.5 kg Ixx = 0.0622  kg.m² z min = 0; z max=14m 

L = 0.2 m Iyy = 0.0733 kg.m² α max =-α min = 10° 

b =4.74E-5 Izz = 0.0964  kg.m² β max =-β min = 10° 

d =2.35E-7 Ir = 1E-4 kg.m² γ max =-γ min = 10° 

g=9.81m.s -2 xmin = 0; xmax =14m max

iq& =180rd.s-1 

τ max =- τ min =0.05Nm ymin = 0; ymax =14m  
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Fig. 3.  Point to point motion with free path 

a) Path of the quadrotor b) Evolution of the six dof of the quadrotor  
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Fig. 4.  Point to point motion with an imposed linear path 

a) Path of the quadrotor b) Evolution of the six dof of the quadrotor

proposed. Any trajectory candidate was modeled as a 
composition of a path function and a monotonically increasing 
motion function. Both of these functions were generated using b-
spline functions fitting a set of control points. In addition to the 
transfer time, the locations of these control points were 
considered as the principal unknowns of the trajectory 
optimization problem and can be found by using classical NL 
optimization techniques. The proposed approach is able to treat 
various problem formulations, involving for example, obstacles 
avoidance or path following. Although, the method was exposed 
for the minimum time transfer problems, it can easily be 
extended to handle more general cost function formulations. 
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