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Trajectory Planning for Autonomous High-Speed

Overtaking in Structured Environments

Using Robust MPC

Shilp Dixit , Umberto Montanaro, Mehrdad Dianati , David Oxtoby,

Tom Mizutani, Alexandros Mouzakitis, and Saber Fallah

Abstract— Automated vehicles are increasingly getting
main-streamed and this has pushed development of systems
for autonomous manoeuvring (e.g., lane-change, merge, and
overtake) to the forefront. A novel framework for situational
awareness and trajectory planning to perform autonomous
overtaking in high-speed structured environments (e.g., highway
and motorway) is presented in this paper. A combination of a
potential field like function and reachability sets of a vehicle are
used to identify safe zones on a road that the vehicle can navigate
towards. These safe zones are provided to a tube-based robust
model predictive controller as reference to generate feasible
trajectories for combined lateral and longitudinal motion of a
vehicle. The strengths of the proposed framework are: 1) it is free
from non-convex collision avoidance constraints; 2) it ensures
feasibility of trajectory even if decelerating or accelerating while
performing lateral motion; and 3) it is real-time implementable.
The ability of the proposed framework to plan feasible trajec-
tories for high-speed overtaking is validated in a high-fidelity
IPG CarMaker and Simulink co-simulation environment.

Index Terms— Trajectory planning, autonomous overtaking,
MPC, robust MPC, autonomous vehicles.

I. INTRODUCTION

THE initial waves of autonomous driving cars are plying

on public roads and successfully providing features such

as lane-keeping, distance maintenance, lane departure, cruis-

ing, etc. Such systems have helped in improving safety on

highways, occupant comfort while reducing driver workload

simultaneously [1]. However, human intervention or input is

still required while performing more challenging, but equally

common manoeuvres (e.g., lane-change, merge, overtake etc.).
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Fig. 1. Schematic of an overtaking manoeuvre (SV: subject vehicle, LV: lead
vehicle).

Overtaking represents a template for such complex manoeu-

vres as it (i) combines lateral and longitudinal motion of an

overtaking vehicle (subject vehicle) while avoiding collisions

with a slower moving obstacle vehicle (lead vehicle), and

(ii) includes sub-manoeuvres i.e., lane-change, lane-keeping,

and another lane change back to the original lane in a

sequential manner [2] (see Fig. 1). Hence, the development of

autonomous overtaking systems is under great focus since it

unlocks the potential to perform a host of different manoeuvres

and pushes the capabilities of autonomous vehicle further

towards the overall goal of complete end-to-end autonomy.

The inherently intricate structure of overtaking stems from

its dependence on a large number of factors such as road

condition, weather, traffic condition, type of overtaking vehi-

cle, type of overtaken vehicle, relative velocity, legislation,

culture, etc. [3]. Furthermore, each overtaking manoeuvre is

unique in terms of duration of the manoeuvre, relative velocity

between vehicles, distance travelled, etc. [4]–[8] thus making

classification and standardisation difficult. Moreover, safely

performing an overtaking manoeuvre requires accurate infor-

mation of road and lane availability, lead vehicle trajectory,

lead vehicle driving intentions, road conditions, etc.

There are a variety of diverse ways proposed in literature for

planning safe trajectories to perform an autonomous overtak-

ing manoeuvre by treating it as a moving-obstacle avoidance

problem. Incremental search based algorithms and sampling

based trajectory planning methods such as ‘Rapidly exploring

Random Trees’ (RRT) have been proposed for planning safe

trajectories for autonomous overtaking [9]–[13]. Even though

algorithms incorporating basic vehicle kinematics within a

RRT search algorithm have been proposed, the planned trajec-

tories can be jerky which could lead to reduced occupant com-

fort. If accurate knowledge of road and surrounding obstacles
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is available, potential field based techniques are shown to be

successful at generating collision free trajectories for avoiding

stationary or moving obstacles [9], [14]. However, while guar-

anteeing collision free trajectories, potential field based meth-

ods do not incorporate vehicle dynamics and hence cannot

ensure feasibility of the planned trajectory [15]–[17]. Model

Predictive Control (MPC) helps address these shortcomings

with its ability to formulate vehicle dynamics and collision

avoidance constraints as a finite-horizon constrained optimi-

sation problem. However, collision avoidance constraints for

trajectory planning are generally non-convex which limits the

feasibility and uniqueness of the solution of the optimisa-

tion problem. Researchers rely on techniques such as con-

vexification [18], change of reference frame [19]–[21], create

approximate linear collision avoidance constraints [22], [23],

and shared control [24], [25] to address the issue. In [26]

the concept of motion primitives is included within an MPC

framework to plan collision avoidance trajectories. However,

since these motion primitives were computed offline and

accessed via a look-up table, only a subset of all feasible

trajectories were considered for motion planning. In [2] over-

taking trajectories were generated by directing the vehicle

along virtual target points located at safe distances around

the lead vehicle thus reformulating trajectory planning into a

navigation problem. A similar approach inspired from missile

guidance systems called Rendezvous Guidance was used to

plan a trajectory for an overtaking manoeuvre [27], [28]. How-

ever, in all these techniques the subject vehicle (SV) has been

modelled as a point mass with no dynamics and hence these

methods are unsuitable for high-speed trajectory planning of

autonomous vehicles. For the brevity of the paper, interested

readers are directed towards [29] for more details related to

trajectory planning for autonomous overtaking.

In this paper, extracting the relevant benefits of each

approach described in the literature, we propose a mathe-

matical framework of potential field like functions and MPC

for performing an autonomous high-speed overtaking manoeu-

vre. The framework is composed by three components (i)

an artificial potential field, (ii) a target generation block,

and (iii) a trajectory generation block. This paper is an

extension of our previous work in [30] and builds upon the

framework by (i) using a tube-based robust MPC technique

to plan feasible trajectories over a larger range of vehicle

velocities, (ii) development of collision avoidance constraints

based on lateral position and velocity of the subject vehicle,

and (iii) numerically validating the entire framework in IPG

CarMaker-Simulink co-simulation environment. The potential

field is used to map the surrounding region of the subject

vehicle. Contrary to typical potential field approaches where an

obstacle’s position has been used to identify high-risk zones,

the method in this paper combines an obstacle’s position,

orientation and relative velocity to create a map of safe

zones surrounding the subject vehicle. At every sampling

instant, the target generation block identifies the safest point

of the road which is compatible with the dynamics of the

subject vehicle and computes the reference state set point (e.g.,

velocity, lateral position, and heading angle) to be tracked.

To achieve this aim of reaching the reference, the target

generation block combines the safe zones in the potential field

with the vehicle dynamics capability of the subject vehicle

which are captured through the reachable set of the subject

vehicle from its current state. Finally, the trajectory generation

block uses a MPC strategy to generate feasible trajectories

and steer the vehicle to the required reference (target) states.

The robust tube based MPC approach in [31] and [32] is

used to solve the reference tracking problem. The dynamics

of the lateral and yaw motion of a vehicle have a nonlinear

relation with the longitudinal velocity. The robust tube based

MPC formulation allows this nonlinearity to be modelled as

an additive disturbance which allows the controller to plan

feasible lateral motion (lane-change) trajectories over a large

range of longitudinal velocities. Moreover, the robust MPC

method proposed in [31] and [32] guarantees (i) closed-loop

stability, and (ii) persistent feasibility of the optimisation

problem which is desirable for any model predictive control

formulation [33]. Additionally, a novel technique of designing

collision avoidance constraints as a function of the longitudinal

velocity and lateral position of the vehicle is presented. This

technique differs from the ones in literature since the constraint

design does not depend on the longitudinal position thus

allowing the designers the possibility of reducing the state

dimension of the system. This is beneficial as removing a state

from the system model helps in reducing the dimension of the

parameters space which helps in bringing down the memory

and computational requirements for solving the optimisation

problem. Hence, this paper represents practical use of the

theory on the robust MPC presented in [31] and [32] to design

admissible, safe, and collision free trajectories for autonomous

vehicles. The effectiveness of the entire framework for high

speed autonomous overtaking is validated in a co-simulation

platform where high-fidelity vehicle dynamics are simulated

in IPG-CarMaker while the trajectory planning method with

the MPC is implemented in MATLAB/Simulink.

The paper is structured as follows: Section II introduces the

basic symbols and mathematical definitions used in the paper.

The mathematical formulation of relevant vehicle dynamics

and vehicle model structure to be used for controller design

is discussed in Section III. In Section IV, the robust MPC

approach in [31] and [32] is briefly overviewed to give to

the reader the fundamental details of this algorithm which has

been used for trajectory planning. In Section V, the situation

awareness system for the vehicle using potential field like

functions is presented, while Section VI is dedicated to the

design of the target generation block. The design of trajectory

planning based on the MPC method in [31] and [32] along with

the design of the collision avoidance constraints is covered in

Section VII. The effectiveness of the framework to support

high speed overtaking is numerically shown in Section VIII.

Finally, the concluding remarks are presented in Section IX.

II. MATHEMATICAL NOTATIONS AND DEFINITIONS

For a symmetric matrix M and vector x , ||x ||M denotes the

weighted norm given by ||x ||M =
√

x T Mx . Given two sets U

and V , such that U ⊆ R
n and V ⊆ R

n , the Minkowski sum is



2312 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 21, NO. 6, JUNE 2020

Fig. 2. Road setup: coordinate frame and range.

defined by U ⊕ V � {u + v|u ∈ U, v ∈ V} and the Pontryagin

set-difference is U⊖V � {w ∈ R
n |w+v ∈ U, v ∈ V}. Matrix

0n,m ∈ R
n×m denotes a matrix of zeros, matrix In ∈ R

n×n

denotes an identity matrix. For vectors a ∈ R
na , b ∈ R

nb ,

vector (a, b) denotes
[

aT, bT
]T

. For a given set Ŵ ⊂ R
na+nb ,

the projection operation is defined as A = Proja (Ŵ) = {a ∈
R

na : ∃b ∈ R
nb, (a, b) ∈ Ŵ}. For a system with states x ∈

X ⊆ R
nx and inputs u ∈ U ⊆ R

nu , whose dynamics are:

ẋ = f (x, u) (1)

where f (·, ·) is the state function (linear or non-linear),

R (t∗; x0) denotes the reachable set at the time instant t∗ when

the initial state is x(0) = x0 and it is defined as

R (t∗; x0) =
⋃

u(.),t∈[0,t∗]
x(t∗; x0, u(·)) (2)

with u(·) ∈ U being an admissible input in the time range

[0, t∗] and x(t∗; x0, u(·)) is the solution of (1) with initial

condition x0 and input u(·) [34].

For solving the overtaking problem through the combined

use of MPC and potential field, in addition to a coordinate

inertial-frame (I-frame), three additional coordinate frames

are exploited, i.e., vehicle-frame (V-Frame), obstacle-frame

(O-frame), and road-frame (R-frame). The V-frame is located

in the centre of gravity of the subject vehicle and follows

the Roll-Pitch-Yaw (RPY) convention [35]. Similarly, the

O-frame is located at the centre of gravity of the lead vehicle

and follows the RPY convention while the R-frame is a

moving coordinate frame located at the projection of the origin

of V-frame onto the innermost (rightmost) edge of the road

with x-axis in the direction of the travel. A generic point on

the road is denoted as p = (ξ, η), pr = (ξr, ηr), pv = (ξv, ηv),

or po = (ξo, ηo) when expressed in the inertial, road, vehicle,

or obstacle frame, respectively. The coordinate frames are

depicted in Fig. 2 where wlane [m] is the width of the lane

while shadow area denotes a rectangle moving along the

road-frame with vertices V = {V1, V2, V3, V4}. The potential

field is computed online within this region for situational

awareness and thus the values of {V1, V2, V3, V4} are chosen

in a range relevant for high-speed overtaking [5], [29], [36].

Finally, T i
j with i, j ∈ {I,V,R,O}, denotes the linear trans-

formation from i -frame to the j -frame. Notice that, this

transformation can be applied to either individual vectors or

sets. When applied to a generic set � ⊂ R
2, T i

j (�) denotes

the following set T i
j (�) � {T i

j (z)}z∈�.

Fig. 3. Kinematic bicycle model.

III. CONTROL ORIENTED VEHICLE MODEL

A wide variety of vehicle models have been developed by

researchers to study the dynamics of a vehicle and controller

design for various applications [37]. A comprehensive survey

of vehicle model for trajectory planning in [15] list out the

relevant vehicle models for this task. Moreover, the review

paper for trajectory planning for autonomous high speed

overtaking demonstrates that compared to point mass vehicle

models, single track vehicle models (i.e., bicycle models)

provide a suitable compromise between model order and

model accuracy [29]. A nonlinear kinematic vehicle model

assumes no slip between tyre and road is found to be suitable

for trajectory planning for highway driving when lateral accel-

eration is within bounds (|ay| ≤ 0.4g) [38], [39] (see Fig. 3).

Furthermore, since normal driving on the highway involves

small steering inputs, small angles approximation for the

side-slip angle and steering angle are often assumed [40], [41].

Under this assumption of small angles approximation the

vehicle bicycle model is:

ξ̇ = v (3a)

η̇ = vψ + lr

lf + lr
vδf (3b)

ψ̇ = 1

lf + lr
vδf (3c)

v̇ = ax (3d)

where ξ and η are the longitudinal and lateral displacement of

the centre of gravity in the I-frame, ψ is the inertial heading

angle, v is the velocity of the vehicle, lf is the distance of

front axle from centre of gravity, and lr is the distance of the

rear axle from the centre of gravity. The control inputs are

longitudinal acceleration ax and front steering angle δf. The

two aspects that stand-out based on the system dynamics in (3)

are: (i) nonlinearity in the system, and (ii) close dependence

of longitudinal velocity on the lateral and yaw dynamics of

the vehicle. To simplify the design of path planning, system

in (3) might be linearised around a nominal longitudinal speed.

However, the resulting lateral and yaw predictions of such

linear system are valid only when the longitudinal speed
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does not deviate with respect to the nominal one. Hence,

as a vehicle is expected to accelerate (and possibly decelerate)

while performing the lane change and passing sub-manoeuvres

of the overtaking manoeuvre, linearising this system around a

nominal velocity might lead to inaccuracies in lateral and yaw

predictions leading to unfeasible and/or unsafe trajectory gen-

eration. To tackle nonlinear vehicle dynamics systematically,

authors have proposed (i) maintain constant vehicle longitudi-

nal velocity during the lane change [2], (ii) design non-linear

controllers [2], and (iii) successive linearisation [42]. In this

paper, model (3) is used for computing the reachability sets

of a vehicle to identify safe driving zones, while for the

generation of the vehicle trajectory toward a target point,

model (3) is rewritten as a linear time invariant (LTI) system

subjected to an additive bounded disturbance. This is achieved

by denoting xa � [ξ, η,ψ, v]T ∈ Xa ⊆ R
4 as the system state

and u � [ax , δf]
T ∈ U ⊆ R

2 the system input with Xa and

U being state and input convex constraint sets, respectively,

system (3) can be recast as a linear parameter varying (LPV)

system

ẋa = Ac(v)xa + Bcu (4)

Ac(v) =

⎡

⎢

⎢

⎣

0 0 0 1

0 0 v 0

0 0 0 0

0 0 0 0

⎤

⎥

⎥

⎦

, Bc(v) =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

0 0

0
v · lf

lf + lr

0
v

lf + lr
1 0

⎤

⎥

⎥

⎥

⎥

⎥

⎦

(5)

where v ∈ Projv (Xa). System (4) is discretised with a

sampling time ts to obtain the linear parameter varying discrete

system shown below.

xa(k + 1) = Ad(v)xa(k) + Bd(v)u(k) (6)

The pair (Ad(v), Bd(v)) is the discretised version of the pair

(Ac(v), Bc(v)). For a given parameter (here v ∈ Projv (Xa)),

(Ad(v), Bd(v)) can take values from the convex set P defined

as

P = co{
(

Ad, j (v), Bd, j (v)
)

| j ∈ J } (7)

with J ∈ {1, 2, · · · , J }, see [43] (chapter 3). Accordingly the

dynamics of the LPV system (6) can be rewritten as a nominal

LTI system subjected to an additive disturbance, i.e.,

xa(k + 1) = Admxa(k) + Bdmu(k) + wa (8)

where the pair (Adm, Bdm) is obtained by the expression

below [43].

Adm =
(

1

J

) J
∑

j=1

Ad, j (v), Bdm =
(

1

J

) J
∑

j=1

Bd, j (v) (9)

Moreover, the disturbance wa is defined as

wa = (Ad(v) − Adm) xa(k) + (Bd(v) − Bdm) u(k) (10)

and thus is bound by the set W defined as

W = {(Ad(v) − Adm) xa(k) + (Bd(v) − Bdm) u(k) |
(Ad(v), Bd(v)) ∈ P, (xa, u) ∈ Xa × U} (11)

It is noted that the structure of model (8) enables the use

the robust tube-based MPC which is briefly revised in the

following section.

IV. CONTROL FORMULATION

This section provides an overview of the robust MPC

approach proposed in [31] and [32]. Compared to the classical

MPC formulation [33], the advantage of the control method

in [31] and [32] is its ability to steer the state of a constrained

system toward any set-point (i.e. desired target steady state)

whether it belongs to the terminal set or not. The method

guarantees the asymptotic convergence of the system state

to any admissible target steady state. Furthermore, if the

target steady state is not admissible, the control strategy

in [31] and [32] steers the system to the closest admissible

steady state. Moreover, the optimisation problem to solve

at each sampling time is a quadratic programming problem,

which allows explicit implementation of the method, thus

facilitating its deployment in real time. Given a discrete linear

time-invariant system with states x ∈ X ⊆ R
nx , inputs

u ∈ U ⊆ R
nu , outputs y ∈ Y ⊆ R

ny , and bounded process

disturbance w ∈ W ⊆ R
nx , where X , U and W are known

bounded convex sets, a discrete time state-space system is

given by

x(k + 1) = Ax(k) + Bu(k) + w (12a)

y(k) = Cx(k) + Du(k) (12b)

where the matrices A, B, C, and D are constant and it is

assumed that the pair (A, B) is controllable. The control objec-

tive is to stabilize system (12) and steer it in the neighbourhood

of a reference set-point despite the disturbance while keeping

the system state and control input within the required set

constraints (i.e., X and U , respectively) The solution proposed

in [31] and [32] leverages a nominal system of the plant in

(12) defined as

x̄(k + 1) = Ax̄(k) + Bū(k) (13a)

ȳ(k) = Cx̄(k) + Dū(k) (13b)

where x̄ , ū, and ȳ are the state, input and output of the

nominal model, respectively. The idea in [31] and [32] to

solve the constrained control problem for the uncertain system

(12) is to use an MPC approach to steer the nominal model

(13) towards the desired set point but with modified state and

input set constraints, denoted as X̄ , and Ū , respectively. The

set constrains for the nominal model are selected such that

if the closed-loop solution of the nominal system satisfies

(x̄(k), ū(k)) ∈ X̄ × Ū, ∀k, then (x(k), u(k)) ∈ X × U . These

tightened set constraints for the nominal system are computed

as

X̄ = X ⊖ Z, Ū = U ⊖ KZ (14)

where K ∈ R
nx ×nu so that AK = A+B K is Hurwitz, and Z is

a robust positively invariant set [44] for the system e(k +1) =
AKe(k) + w, with e � (x − x̄), such that

AKZ ⊕ W ⊆ Z (15)

In [31] and [32] it was proven that if X̄ and Ū are non-empty

sets they contain the steady state set-points and control inputs

that can be robustly imposed to system (12) when e(0) =
x(0) − x̄(0) ∈ Z , under the control action

u = ū + K e, ū ∈ Ū (16)
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It is noted that, given a target steady state x̂ ∈ R
nx , the control

action ū is generated by using a receding horizon technique

to steer system (13) to an admissible steady-state ρss =
(x̄ss, ūss) ∈ X̄ × Ū , such that x̄ss is as close as possible to x̂ .

Moreover, the subspace of steady-states and inputs of system

(13) have a linear representation of the form

ρss = Mθ θ (17)

where θ ∈ R
nθ is a parameter vector that characterises the sub-

space of steady-states and inputs and Mθ is a matrix of suitable

dimensions (see [31], [32] for further details). Furthermore,

by denoting N as the prediction horizon, the control action

ū at the time instant k is computed by solving the following

optimisation problem parametrised in xp = x(k) and x̂ .

min
Ūi ,θ,x̄

VN (x̄, ūi , θ; xp, x̂)

subject to x̄ ∈ xp ⊕ (−Z)

x̄(i) ∈ X̄

ū(i) ∈ Ū

X̄ i = 
x̄ + �Ūi , i = 0, 1, . . . , N

(x̄ss, ūss) = Mθ θ

(x̄(N), θ) ∈ Xt (18)

where Ūi = {ū(0), ū(1), . . . , ū(N−1)} is the vector of stacked

inputs, X̄ i = {x̄(1), x̄(2), . . . , x̄(N)} the vector of stacked

predicted states, and 
 and � are the prediction matrices of

appropriate dimensions constructed based on the the nominal

system dynamics described in (13) resulting in a prediction

model

X̄ i = 
x̄ + �Ūi , i = 0, 1, . . . , N (19)

and the terminal set Xt is chosen as

Xt = {(x̄, θ) ∈ R
nx +nθ : (x̄, K� x̄ + Lθ) ∈ X̄ × Ū,

Mθ θ ∈ X̄ × Ū , (A + B K�)x̄ + B Lθ ∈ X̄ } (20)

with K� ∈ R
nx +nθ being a constant matrix such that the

eigenvalues of A + B K� lie within the unit circle, L =
[

K�, Inu

]

Mθ , and the cost function VN (x̄, ūi , θ; xp, x̂) is

VN (x̄, ūi , θ; xp, x̂)

=
N

∑

i=0

[

||x̄(i) − x̄ss||2Q + ||ū(i) − ūss||2R
]

+ ||x̄(N) − x̄ss||2P + ||x̄ss − x̂ ||2T (21)

where the matrices Q ∈ R
nx ×nx , R ∈ R

nu×nu , T ∈ R
nx ×nx are

positive definite, and P ∈ R
nx ×nx is a positive definite matrix

solving the Lyapunov equation

(A+B K�)T P (A+B K�) − P =−
(

Q+K T
� RK�

)

(22)

It is noteworthy that in the optimisation problem (18),

the initial state of the nominal system x̄(0) = x̄ is also

a decision variable selected such that xp − x̄ ∈ Z , which

guarantees the evolution of the system (12) in X × U for

any w ∈ W (see [31], [32] for further details). Therefore,

the solution of the optimisation problem (18) yields an optimal

initial state x̄∗ (

xp, x̂
)

and an optimal input sequence Ū∗
i =

{ū∗(0, xp, x̂), ū∗(1, xp, x̂), · · · , ū∗(N − 1, xp, x̂)} along with

an parametrised steady-state θ∗ (

xp, x̂
)

. The net control action

applied on the plant is given as

u(k) = ū∗(0, xp, x̂) + K
(

xp − x̄∗(xp, x̂)
)

(23)

Remarks:

• x̄ , ūi , and θ are the decision variables of the optimisation

problem (18), while xp and x̂ are its parameters

• The terms of the cost function under the summation

represent the penalty for deviating from the steady-state

and input, the second term penalises the deviation of the

terminal state from the steady-state, and the final term

penalises the deviation of the artificial state from the

reference state

• As the optimisation problem (18) can be expressed as a

quadratic programming problem, it can be converted to

an explicit MPC form to reduce online computations [45]

• System constraint handling capabilities and closed loop

asymptotic stability and feasibility of the proposed con-

troller are proven in [31]

• The minimal robust invariant set Z can be computed

using the recursive algorithm proposed in [44].

V. LOCAL RISK MAP

In this paper, it is assumed that the vehicles (subject vehicles

and other traffic vehicles) are travelling on a one-way straight

road of infinite length. At highway speeds, in addition to

maintaining approximately a lane-width’s distance with each

vehicle in the lateral direction, vehicles also maintain safety

distances of ≈ 50 m to the vehicle in front and behind [5].

Therefore, an overtaking manoeuvre is expected to maintain

these distances while performing the lane-change manoeuvres

that mark the start and end of an overtaking manoeuvre

resulting in the need for a subject vehicle to have accurate

situational awareness of the surrounding obstacles in this range

to plan safe trajectories. Semsar-Kazerooni et al. [46], [47]

mentioned that embedding driving rules and collision avoid-

ance constraints within a multi-objective optimisation problem

results in a control laws with large computation requirements.

On the other hand, a potential field like function for envi-

ronmental risk detection can be shaped in such a way that

it guides towards desired driving behaviour. In this paper the

surrounding environment is described through the use of a

potential field where several road elements (i.e., road limits,

road markers, and other road users) are considered for shaping

the potential function so as to include driving rules and guide

the subject vehicle through safe road regions. The net potential

function is generated by combining several potential functions

where the design of each function is intended to incorporate

one or more driving rule(s). The road potential function (Uroad)

is designed to keep the subject vehicle away from the road

limits, the lane potential function (Ulane) is used for lane-

keeping, the lane velocity potential function (Uvel) is designed

such that the subject vehicle occupies the innermost (slowest)

lane when more than one lane is available, and the car potential

function (Ucar) is designed such that a subject vehicle either
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maintains a safe distance to the lead vehicle or if the other lane

is available, moves to a faster lane. Similar to the approach

presented in [48], a net potential function (Ur) is generated

by superimposing these individual potential functions to create

local risk maps that can be used for autonomous overtaking

in a human-like manner. The construction of the individual

potential functions is discussed below.

A. Lane Velocity Potential

Different lanes on a road have an implicit velocity asso-

ciated with them, i.e., the velocity progressively increases

from inner (right-most) to outer (left-most) lane. Thus, if one

assumes that higher-speeds represent higher-risk, each lane of

the road can be appropriated a certain potential to describe

its risk. This is achieved by a simple gain-based function as

shown below.

Uvel,i (pr) = γ
[

vlane,i (pr) − vlane,1 (pr)
]

(24)

where γ is a gain factor, vlane,i is the nominal velocity of the

i th lane, and Uvel,i is the potential due to lane-velocity of the

i th lane.

B. Road Potential

The road potential [48] is designed such that the boundaries

of the road have the highest (∞) potential and the centre of the

road has the lowest potential. A function often used in robotics

for perception is used here to describe the road potential and

is given below.

Uroad(pr) = 1

2
ζ

2
∑

b=1

(

1

ηr − ηr,b

)2

(25)

where ζ is a scaling factor and ηr,b is the y-coordinate of the

bth road edge, b ∈ {1, 2}.

C. Lane Potential

A lane potential function [48] creates a virtual barrier

between lanes to direct the subject vehicle towards the lane

centre. A Gaussian function shown below is used to achieve

this desired behaviour.

Ulane,i (pr) = Alane exp

(

−
(

ηr − ηl,i

)2

2σ 2

)

(26)

Where ηl,i is the y-coordinate of the i th lane division, σ and

Alane are scaling factors, and Ulane,i is the potential due to

lane boundary of the i th lane.

D. Car Potential

A technique inspired by [48] is used to embed lead vehicle

position, orientation, and velocity within the potential function

as an obstacle vehicle. By modelling the lead vehicle as

a rectangular area, virtual triangular wedges, also denoted

as buffer zones, are appended to the front and rear of the

lead vehicle which act as safety margins. The location (x, y

coordinate) of triangle’s vertex behind the lead-vehicle is

calculated based on the velocity of the subject vehicle and

the headway time ht while the location of the triangle’s vertex

in front of the lead-vehicle is calculated based on the velocity

of the lead vehicle and the headway time ht. By denoting Ŵlv

as the set of coordinates in the R-frame containing the obstacle

vehicle and the two triangular wedges, a Yukawa function is

used to describe the potential due to an obstacle vehicle as

given below.

Ucar(pr) = Acar

(

e−αKd

Kd

)

(27)

where α is a Yukawa scaling factor, Acar is the Yukawa

amplitude [49], and Kd is the Euclidean distance to the nearest

coordinate of the obstacle given as

Kd = min
b0∈Ŵlv

||b0 − pr|| (28)

where b0 represents the set of points lying within the obstacle.

These individual potentials are superimposed to obtain an

overall risk map in the surrounding of the vehicle given by

the expression below.

Ur (pr) = Uvel + Uroad + Ulane + Ucar (29)

Where Ulane =
Nlanes
∑

i=1

Ulane,i and Uvel =
Nlanes
∑

i=1

Uvel,i with Nlanes

being the number of lanes. To facilitate trajectory planning the

potential field is studied in the inertial frame through the use

of the function U (p)
�= Ur

(

T I
R (p)

)

. By assigning a threshold

limit Usafe, the safe regions of the road surrounding the subject

vehicle are expressed in the inertial frame using the set

G = {p ∈ T I
R (Ŵlv) : U (p) ≤ Usafe} (30)

Thus, equation (30) provides a set of safe regions and the

subject vehicle needs to plan trajectories that keep it within

this region set thereby reducing risk. Moreover, since the net

potential field depends on the states of the subject vehicle (lon-

gitudinal position, lateral position, and longitudinal velocity)

and the lead vehicle (longitudinal position, lateral position, and

longitudinal velocity), it updates at each time instant to provide

an accurate environmental representation for a subject vehicle.

However, the set (30) does not consider vehicle dynamics

of the subject vehicle, thus some regions of the road with

satisfactory potential may not be reachable in practice. The

method designed for selecting reference points in the set of

safe regions which are compatible with the dynamics of the

subject vehicle is detailed in the next section.

VI. SELECTION OF THE TARGET POINT

In this section, the method designed for selecting reference

points in the set of safe regions which are compatible with

the dynamics of the subject vehicle is detailed. In ideal

highway cruising conditions, a vehicle is expected to traverse

along at a constant desired longitudinal velocity vdes while

maintaining its lane position. While travelling on a straight

road, these dynamics of the system from (3) can be described

by ẋa = [vdes, 0, 0, 0]T. However, in real world scenarios,

a vehicle is unable to maintain constant longitudinal velocity

and lane position (due to traffic, route, etc.) and has to

perform different manoeuvres such as lane-change, merge, etc.
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These manoeuvres can be thought of as transitions from one

set of states to another set of states within the set Xac = {x ∈
Xa : ψ = 0}. In such ideal scenarios the objective of the

subject vehicle is to adjust its trajectory to avoid obstacles

while ensuring that the vehicle’s speed is maintained within

the range v ∈ Projv (Xa). Starting from an initial position

p0 = (ξ0, η0) and travelling at vdes, using admissible control

actions from the set {(ax , δf) : ax ≤ 0, (ax , δf) ∈ U}, the set

Rtotal ⊂ R
4 of the vehicle configurations (states) reachable

without exceeding the desired velocity vdes in the time interval

[0, t∗] of the system can be computed using (2) and the vehicle

model (3). The set of points on the road that are reachable

R ⊂ R
2 form a subset of Rtotal and is expressed as

R = Projp (Rtotal) (31)

Remarks:

• The velocity vdes corresponds to the maximum velocity

of the SV as desired by the occupants and it is upper

bound by the legal speed-limit of the road.

• Thus, from a given initial position p0, the subject vehicle

can theoretically reach all points lying within the set R

without exceeding the maximum desired velocity vdes.

It is noteworthy that the set of admissible control actions

mentioned above is a subset of U and is used only

for computing the reachable set, the trajectory planning

algorithm will have the entire set U at its disposal for

generating feasible trajectories.

From (30), (31) the safe zones surrounding the subject vehicle

which are reachable with respect to the current vehicle state

and vehicle dynamics is

Rsafe � G ∩ R (32)

Then, the reference target coordinates p̂ = (ξ̂ , η̂) are chosen

from R with the aim to maximise the distance travelled by

the subject vehicle in the time interval [0, t∗], i.e.

p̂ = arg max
p∈Rsafe

||p − p0|| (33)

The longitudinal distance from ξ0 to ξ̂ can be traversed by

the SV by travelling with a uniform longitudinal velocity

calculated using the equation below.

v̂ = ||ξ̂ − ξ0||
t∗

(34)

A vehicle with the ability to closely match or follow the

reference velocity computed above will enhance its ability

of get closer to the reference position p̂. Thus, if the initial

velocity v0 of the vehicle is not equal to the target velocity v̂,

the trajectory planner should come up with a suitable accel-

eration profile to accelerate/decelerate the vehicle to achieve

the target velocity v̂ . Moreover, since the subject vehicle is

assumed to be travelling on a straight road, the target heading

angle of the subject vehicle remains

ψ̂ = 0 (35)

It is noteworthy that in case the subject vehicle is travelling on

a curved road, target heading angle ψ̂ can be obtained from

the road orientation at the given coordinate (ξ̂ , η̂) stored in the

vehicle’s mapping functionality. Thus, stacking the reference

targets for each state the target state vector x̂a = [ξ̂ , η̂, ψ̂ , v̂]T

for the system is obtained. It is noted that, the set of reachable

lateral and longitudinal coordinates for subject vehicle in the

vehicle frame is

RV = T I
V (R) (36)

VII. TRAJECTORY GENERATION

The target states x̂a which are generated using the approach

in the Section VI at each time step result in piecewise

references (e.g., if a lane-change is required, η̂ will change

from the centre of one lane to another). The robust MPC

approach overviewed in Section IV is used in the proposed

framework to plan trajectories for directing the vehicle from

its current state xa(0) = [ξ0, η0, ψ0, v0]T to a (safe) target state

x̂a = [ξ̂ , η̂, ψ̂ , v̂]T in an admissible way (i.e. by considering

vehicle dynamics, state constraints, and input constraints).

As the dynamics of the state ξ of system (4) depends only on

v, it is possible to further simplify the system for the trajectory

generation. The reduced order system for trajectory generation

is

x(k + 1) = Ax(k) + Bu(k) + w, y(k) = x(k) (37)

where x = [η,ψ, v]T is the system state, u = [ax, δf]T

is the input, w is the disturbance vector composed by the

last three entries of the wa-term in (10), and the system

and input matrices A and B are obtained by extracting the

appropriate rows and columns of Adm and Bdm in (8), respec-

tively. The state and input constraints polyhedrons X and U

are

X = {x ∈ R
3 : xmin ≤ x ≤ xmax} (38a)

U = {u ∈ R
2 : umin ≤ u ≤ umax} (38b)

where xmin, xmax ∈ R
3 and umin, umax ∈ R

2 are constant

vectors. It is noted that the boundedness of X and U and

the structure wa-term in (10) imply that the w-term in (8)

belongs to a bounded polyhedron set denoted as W [43].

From (37) and (38), it follows that the vehicle dynamics of

interest for the overtaking manoeuvre match the hypothesis

required for the application of the robust MPC in Section IV,

which is therefore used for the generation of a feasible path to

steer the vehicle toward x̂ = [η̂, ψ̂ , v̂]T belonging to the safe

reacheble set (32), where η̂, ψ̂ and v̂ are defined in the section

above.

A. Collision Avoidance Constraints

The basic tools that are used to construct the potential field

for situational awarness can also be used to obtain collision

avoidance constraints that can be added to the optimisation

problem in (18). An example demonstrating how the collision

avoidance constraints can be designed while approaching a

lead vehicle is explained using Fig. 4 as an exemplar. While

designing the potential field in Section V-D, the equation

acaξ + bcaη + cca = 0 is one of the hyperplanes that is



DIXIT et al.: TRAJECTORY PLANNING FOR AUTONOMOUS HIGH-SPEED OVERTAKING IN STRUCTURED ENVIRONMENTS 2317

Fig. 4. Schematic to explain identification of collision avoidance zone. Note:

SV - blue rectangle, LV and surrounding unsafe region - red polygon, target
coordinate - magenta cross, safe zone - green polygon.

used to construct the bounds of the unsafe region around the

lead vehicle (Ŵlv). However, the utility of this hyperplane is

expanded by using it to divide the given road segment into two

zones; (i) safe zone represented by acaξ + bcaη + cca > 0,

and (ii) unsafe zone represented by acaξ + bcaη + cca < 0, see

Fig. 4.

Thus, for a subject vehicle located at (ξ0, η0), an MPC based

trajectory planner can ensure collision-free motion if con-

straints are designed that limits all planned trajectories to stay

within the safe zone. This is the crux of the various collision

avoidance constraints that are described in literature [19], [50].

However, as discussed in the section above, in this paper a

reduced order system that does not have longitudinal position

ξ as one of its states is used by the MPC for planning trajec-

tories. This gives rise to the need of expressing the collision

avoidance constraints using the states from the reduced order

system i.e., η and v.

1) Constraint I: If (ξ0, η0) represent the current location of

the SV in global coordinates and in the context of MPC are

known values then the satisfaction of the following constraint

equation guarantees that initially the subject vehicle is within

the safe zone.

acaξ0 + bcaη0 + cca > 0 (39)

2) Constraint II: Similarly for a given nominal initial state

x̄(0) = (η̄, ψ̄, v̄), which is a part of the decision variable of the

problem in (18), the equation below ensures that the nominal

initial position of the SV is also within the safe zone.

acaξ0 + bcaη̄ + cca > 0 (40)

3) Constraint III: Finally, it is important to ensure that

the trajectory obtained by solving the optimisation problem

in (18) guarantees that the SV stays within the safe zone

throughout the prediction horizon. From (3a), (4) it is evident

that the evolution of the longitudinal position ξ is a function

of the longitudinal velocity of a vehicle v. Thus, along a

given prediction horizon N , the predicted nominal longitudinal

position ξ̄ can be estimated using the initial longitudinal

position ξ0 and the predicted nominal velocity v̄ using the

equation below.

ξ̄ ( j) =

⎡

⎣ξ0 +
j

∑

i=1

(v̄(i) · ts)

⎤

⎦; j = 1, 2, . . . , N (41)

The expression above is utilized to create N different con-

straints that fulfill the collision avoidance criterion along the

entire prediction horizon. The generalized constraint equation

that is used to create the N different constraint equations is

Fig. 5. Closed-loop framework for trajectory planning. Note: LV denotes
lead vehicle.

given below.

aca

⎡

⎣ξ0 +
j

∑

i=1

(v̄(i) · ts)

⎤

⎦ + bcaη̄( j) + cca > 0;

j = 1, 2, . . . , N (42)

where the predicted nominal velocity v̄(i) and predicted lateral

position η̄(i) can be obtained from the prediction model

in (19). Therefore, the set of (N + 2) equations obtained

from (39), (40) and from different values of j in (42)

represent collision avoidance constraints that are expressed

solely as a function of two states namely lateral position

and longitudinal velocity. These inequalities representing the

collision avoidance constraints can be supplemented to the

constraints of the optimisation problem in (18) to ensure

that the planned trajectory is collision free along the entire

prediction horizon. It is noteworthy that the technique for

design of the collision avoidance constraints described above

can be easily adopted to situations where (i) the SV needs

to perform the lane-change while completing an overtaking

manoeuvre and/or (ii) when there are multiple hyperplanes

representing collision-avoidance constraints for more than one

traffic member.

At each discrete time instant k, problem in (18) with

additional constraints (39), (40), and (42) is solved by set-

ting the target state and the initial state as x̂ = [η̂, ψ̂ , v̂]T

and xp = x(k) respectively. The optimal trajectory x∗ =
[ξ∗, η∗, ψ∗, v∗]T is generated by simulating the vehicle

model (3) with the optimal inputs u∗ = [a∗
x , δ

∗
f ]T from the

solution of MPC problem (18) and then passed to a trajectory

tracking controller as reference signals. The following algo-

rithm (depicted in the closed loop structure in Fig. 5) sum-

marises all the steps required for performing a safe overtaking

manoeuvre in the proposed framework, see Algorithm 1.

VIII. NUMERICAL RESULTS

In this section, a results obtained from a closed-loop simu-

lations are used to evaluate the ability of the proposed frame-

work for planning trajectories for a high-speed overtaking

manoeuvre. The scenario used is as follows: both the subject

vehicle and the lead vehicle are travelling on a two-lane one-

way road of infinite length at longitudinal velocity v and

vLV, respectively. The dimensions of the road, lane-limits

and lead vehicle’s states are available to the subject vehicle
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Algorithm 1 Trajectory Planning

1: initialize:

2: RV ← bank of reachable sets in V-frame

3: Usafe ← upper bound of risk potential

4: procedure GENERATETRAJECTORY

5: top:

6: vdes ← desired longitudinal velocity from user

7: Rtotal ← reachable set for given vdes as (2)

8: R ← projection of Rtotal in I-frame as (31)

9: loop:

10: Ur ← net potential field in R-frame as (29)

11: U ← net potential field in I-frame

12: G ← safe regions of the road as (30)

13: Rsafe ← G ∩ R as (32)

14: x̂a ← generateT arget States(Rsafe) as (33)-(35)

15: xa ← getCurrent StateV ector(·)
16: getColli sion AvoidanceConstraints(·) as (39)-(42)

17: u∗ ← solveRobust M PC(x, x̂) as (23)

18: x∗ ← applyOptimal Input (u(k)) as (3)

19: if user request change in vdes then

20: goto top.

21: else

22: goto loop.

on-demand through for example a V2X communication link.

Each lane of the highway is assumed to have a nominal

desired velocity which is provided to the subject vehicle by

the route planner while the decision to perform an overtaking

manoeuvre and availability of the faster lane is verified by

the decision making block of the SV [51], [52]. The design

parameters, state, and input set constraints in Table I are used

to set up the scenario and controller within an integrated

Simulink and IPG CarMaker co-simulation platform. It is note-

worthy that, the constraints for the inputs were designed by

considering the steering and longitudinal acceleration applied

by an inbuilt IPG CarMaker controller for several smooth

high-speed overtaking manoeuvres in CarMaker. Furthermore,

the control weights were chosen so as to ensure that the

generated trajectory was similar to the one obtained via IPG

CarMaker’s default lane-change trajectory. Alternatively, other

techniques can be used to tune the control weights and a

comprehensive review of such techniques is available in [53]

and [54].

Remarks:

• As discussed in the section above, the optimal trajectory

generated by the trajectory planner acts as reference

signal for a lower level trajectory tracking controller, see

Fig. 5. The trajectory tracking controller is responsible

for actuating the steering, accelerator/brakes to follow the

reference trajectory as closely as possible while handling

system non-linearities and disturbances. In this paper,

the optimal velocity v∗ obtained from the robust MPC

is passed on to a longitudinal tracking controller as a

reference signal. The longitudinal tracking controller is

sensitive to the powertrain delays and factors them in

while computing an appropriate longitudinal acceleration

signal for the SV. On the other hand, the lateral tracking

is performed by an adaptive controller that uses x∗ as

its reference to compute appropriate steering action [55].

In addition to tracking the reference trajectory as closely

as possible, these lower level controllers can handle

system delays, tire nonlinearities, road surface variations,

etc. However, the task of longitudinal and lateral tracking

can also be performed by the multitude of techniques

available in literature but is beyond the scope of this paper

(the reader is referred to [29], [56]–[59] for possible

alternative techniques).

• The entire co-simulation was run on a laptop machine

with an Intel i7-6820HQ processor, 16GB RAM run-

ning Microsoft Windows 7 64-bit, and MATLAB 2012b

32-bit. The average time required at each time step for

the optimisation routine was 0.0077 s with a standard

deviation of 0.0011 s.

A. Robust Positive Invariant Set and MPC Implementation

The robust positive invariant set Z for the error dynamics

and the nominal control law in (15), (16) is calculated using

the algorithm in [44]. The algorithm in [44] provides an iter-

ative technique based on the supporting function of polytopic

sets to calculate the outer approximation of a minimal robust

positively invariant set for a discrete-time linear time-invariant

system. Equation (15) suggests that the structure of the set Z

has a dependence on (i) size of set W , and (ii) the matrix AK.

Since, the set W is fixed by the vehicle geometric constraints

and chosen longitudinal velocity range (see Table I), the only

degree of freedom available for designing the set Z is via the

design of a Hurwitz matrix AK by choosing an appropriate

controller K to ensure stable error dynamics. The trade-off

for the design of the nominal controller with fixed gain K

(or equivalently the design of the matrix) are twofold; (i) to

constraint the error set Z to a reasonable size such that

the deviation between nominal system and actual system is

reduced and (ii) to ensure that the input set Ū for the MPC

is as large as possible, thus enlarging the decision space for

the MPC to compute smooth control inputs. Furthermore,

it was noted that AK-matrices with eigenvalues close to the

origin of the complex plane might result in an empty Ū ,

while if the eigenvalues of AK are close to the unit circle,

the set Z might become so large that X̄ is an empty set,

thus both extreme cases make the MPC problem in (18) ill-

posed. For this application, this tradeoff was met by selecting

the dominant eigenvalue λ of AK for the lateral and yaw

dynamics such that Z is a bounded set and Ū is as large

as possible. Fig. 6 provides a visual representation for this

behaviour where the plot on the left depicts the disturbance

set W and the robust positively invariant set Z for a given

controller, whereas the plot on the right depicts the net input

set U and the constrained input set Ū . It is noteworthy that

only a projection of the disturbance and error sets onto the

lateral and yaw dimension of the system is plotted since the

disturbance for the system exists only along these dimensions,

see (10). Furthermore, by increasing the dominant eigenvalue

beyond λ = 0.72 results in a large Z that renders X̄ = φ.

Likewise, the plots show that the error set grows along the
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TABLE I

DESIGN PARAMETERS

Fig. 6. Error polyhedron and resulting tightened input set obtained by
changing magnitude of eigenvalue.

lateral position dimension as the eigenvalue changes whereas

the absolute limits along the heading angle dimension are close

to constant. However, even for the error set Z obtained with

the largest eigenvalue, the magnitude of the error limits in

lateral position is a small fraction of the actual limits in lateral

position while allowing a large Ū making it a suitable choice

for being used to solve the MPC problem in (18).

B. Simulation Results

A simulation environment is initialised with the subject

vehicle behind the lead vehicle and the initialisation para-

meters given in Table I. The simulation is then allowed

to run and the proposed framework performs three primary

tasks; (i) surrounding risk zone detection, (ii) safe target

identification, and (iii) trajectory generation at each sampling

time. Some details for each task output as well as overall

simulation results are discussed below. Fig. 7a and 7b shows

the snapshot of the output of the local risk map and target point

selection at the time instant t = 14 s during the overtaking

when the subject vehicle has detected the lead vehicle as it is

performing the first lane change of the overtaking manoeuvre.

Fig. 7a provides a 3D-view of the entire potential function

computed as in (29) and the local minima at the centre of

each lane for guiding a subject vehicle can be seen along with

the trapezoidal field created by a lead vehicle (it is noted that

in Fig. 7a and 7b large values of the potential field are trun-

cated for the sake of readability of the figure). Significantly,

the potential field approach can be expanded to accommodate

more lanes, additional traffic members, and/or more complex

road geometries. Furthermore, the computation of potential

fields is based on simple mathematical operations and hence

addition of traffic participants, more lanes, etc. will not result

in any significant computation overhead. Similarly, the design

of collision avoidance constraints relies of basic mathemat-

ical operations and thus collision avoidance constraints for

each traffic participant can be generated without any major

computation overhead. However, the design of potential fields

for different road types is not the primary focus of this body

of work and hence not discussed in greater detail. Fig. 7b

depicts the level curves of the potential field for the same

time instant in the R-frame along with the reachable set of the

subject vehicle and identified target on the road computed as

in (33), which also represents the output of the block Target

Id. In Fig. 7b, the lead vehicle is depicted as red rectangle

and the buffer zones (as triangular appendages), where the

potential field rapidly increases to prevent the subject vehicle

from getting too close to the lead vehicle during the different

phases of an overtaking manoeuvre, can be easily observed.

As the region Ŵlv (unsafe region) surrounding the lead vehicle

moves in the R-frame with speed vLV − v, at each time

step the local risk map of the safe reachable region and the

reference targets change accordingly. Fig. 8 shows some of

the target references selected by the subject vehicle for safely

overtaking.

The reference points, dynamically generated, are used by

the Trajectory Generation block in Fig. 5 the generation of

the trajectory as described in Section VII. The results from
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Fig. 7. Snapshot of simulation (simulation time t = 14 s). (a) Cumulative
potential field Ur from road, lane, and obstacle vehicle. (b) Contour plot of
the potential field along with the reachable set (yellow) and reference target
on the road (magenta cross). Note: Blue rectangle depicts the subject vehicle
and the rectangle in red depicts the lead vehicle.

Fig. 8. Snapshot of simulation demonstrating: reference targets (×) for
different configurations of subject vehicle (�) and lead vehicle (♦) while
driving on a highway. Note: solid lines (–) are the road boundaries and dashed
line (- -) is the lane marking.

the entire simulation are depicted in Fig. 9. The trajectories

of the subject and lead vehicles as well as the relevant states

and inputs of the subject vehicle are shown in the inertial

frame in Fig. 9. Moreover, Gaussian noise is added to the

lead vehicle’s velocity in an attempt to (i) introduce sensor

imperfections, (ii) wireless network packet loss, and (iii) lack

of accurate knowledge of lead-vehicle states. Introducing this

noisy signal in the potential field calculation in (27) will

help in understanding if the proposed technique is robust

against the random variations in lead-vehicle states. The top

plot shows the actual path followed by the subject and lead

vehicles and the trajectory of the overtaking manoeuvre for

the subject vehicle can be observed. Moreover, since the

Fig. 9. Simulation results: SV and LV trajectories, longitudinal velocity,
heading angle, longitudinal acceleration, and steering angle for a high-speed
overtaking manoeuvre. Note: (- -) are the system constraints.

subject vehicle is travelling with a higher longitudinal velocity,

it covers a larger portion of the road segment in the given

time. The bottom four plots of Fig. 9 show the states and

input of the subject vehicle evolving over time. The key

aspect about the overtaking manoeuvre is that the overtaking

manoeuvre is initiated close to 10 s and one can observe

the longitudinal velocity of the vehicle increasing while the

first lane change manoeuvre is being performed. The reverse

behaviour (i.e., decreasing velocity while performing the lane

change) is visible after 20 s. This is reminiscent of a real-world

overtaking manoeuvre where a vehicle may accelerate or

decelerate while performing the lane change manoeuvre(s)

thus demonstrating the efficacy of the proposed controller.

The noisy data from the lead vehicle’s velocity also does

not have any impact on the trajectory planning process as

both the states and input signals are devoid of high-frequency

oscillation. Another key aspect is that the two states of SV,

(i) longitudinal velocity and (ii) heading-angle show smooth

evolution without any high-frequency oscillation during either

of the lane-changes. The longitudinal acceleration profile is

obtained via the tracking controller discussed above and it

also does not demonstrate any high-frequency oscillations.

However, it is designed using basic frequency-based tech-

niques and is not tuned to minimize the jerk but if required

this controller can be swapped with any preferred control

technique available in literature. Similarly, the steering action

for the lateral motion demonstrates smooth evolution with

no high-frequency oscillation. Moreover, just as in the case

of the longitudinal tracking controller, if necessary another

controller for the steering action can be utilized with the

proposed trajectory planning framework. Also, as expected the

MPC controller respects all the system and input constraints

which is evident from the plots in Fig. 9.
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Fig. 10. Simulation results: trajectory of the subject vehicle (SV) during an
overtaking manoeuvre in the lead vehicle (LV) frame of reference (ξo, ηo).

To show the need of the robust MPC to tackle variations of

the longitudinal vehicle speed while performing the overtaking

manoeuvre, we compare the performance of the proposed

framework when the robust MPC in the Trajectory Generation

Block in Fig. 5 is replaced by the MPC strategy for disturbance

free LTI systems proposed in [30], referred in the rest of

the paper as nominal MPC. The LTI vehicle model for the

design of the nominal MPC is obtained from system (13)

based on (9), while the remaining vehicle parameters for

the control tuning are set to those listed in Table I. It is

noted that, despite the fact that nominal MPC is effective for

overtaking with fixed speed (see [30] for further details), its

performance to generate feasible trajectories reduces when the

longitudinal speed change during the overtaking manoeuvre.

This is confirmed in Fig. 10 where the reference and actual

vehicle trajectories of the subject vehicle in the O-frame

of reference are depicted both for the nominal and robust

MPC. These results demonstrate the nominal MPC struggles

to generate suitable trajectories for the overtaking manoeuvre

with varying longitudinal velocity. The trajectories suffer from

overshoot and also takes the subject vehicle very close to

the lead vehicle during the initial lane change. Both these

factors make the nominal MPC based technique unsuitable for

planning overtaking trajectories with variable velocity. On the

other hand, the robust MPC based trajectory generates very

little overshoot and also maintain the safety margins to the lead

vehicle during all three sub-manoeuvres. Furthermore, due to

its ability to generate consistent and uniform trajectories for

lane change while accelerating and decelerating, the controller

proposed in this paper appeals to a wider application set

(lane-change, merging into traffic, etc.). It is noted that in

the proposed approach, the parameters of the MPC strategy

(i.e., Q, R, P, T, and N) can be tuned for adjusting the

aggressiveness of a manoeuvre. Additionally, at each time

step the optimisation problem underlying the robust MPC

techniques is always feasible according to Theorem 2 in [31].

IX. CONCLUSION

In this paper, a modular control framework for autonomous

high-speed overtaking was presented with (i) Local Risk Map

generation, (ii) safe target identification, and (iii) trajectory

planning being the different modules of the system. In this

framework the onus of situational awareness lies with the

local risk map and safe zone identification sub-systems and

the onus of feasible and collision-free trajectory generation

lies with the MPC controller. This modular design allows the

framework to avoid non-convex constraints allowing for an

MPC formulation that can be solved using commonly available

optimisation solvers. Moreover, a robust tube based MPC tech-

nique with the nonlinearities in lateral and yaw dynamics due

to variation in longitudinal velocity being modelled as additive

disturbances has been used. Additionally, a novel technique

for designing collision avoidance constraints based only on

lateral position and longitudinal velocity of the subject vehicle

was presented. This allows the trajectory planning controller to

generate feasible and safe trajectories with admissible inputs

even while performing lateral manoeuvres with changing

longitudinal velocity. Numerical results in a Simulink/IPG

CarMaker co-simulation environment demonstrated that the

algorithm is able to fulfil the safety considerations for high

speed overtaking manoeuvre and generate trajectories which

are also compatible with the vehicle dynamics and safety

considerations. Furthermore, comparing the results of the

technique proposed to a normal MPC demonstrated the added

benefits of the robust based approach. As future work the

proposed framework will be extended to (i) more challenging

overtaking scenarios with multiple traffic participants, external

disturbances, etc. and (ii) other manoeuvres under different

road geometries.
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