
 Open access Proceedings Article DOI:10.1109/IROS.2010.5651531

Trajectory planning for robots in dynamic human environments — Source link

Mikael Svenstrup, Thomas Bak, Hans Jørgen Andersen

Institutions: Aalborg University

Published on: 03 Dec 2010 - Intelligent Robots and Systems

Topics: Motion planning, Trajectory, Mobile robot, Robot kinematics and Robot

Related papers:

 A Human Aware Mobile Robot Motion Planner

 Social Force Model for Pedestrian Dynamics

 Unfreezing the robot: Navigation in dense, interacting crowds

 Learning to navigate through crowded environments

 Human-aware robot navigation: A survey

Share this paper:

View more about this paper here: https://typeset.io/papers/trajectory-planning-for-robots-in-dynamic-human-environments-
4lk432kx1g

https://typeset.io/
https://www.doi.org/10.1109/IROS.2010.5651531
https://typeset.io/papers/trajectory-planning-for-robots-in-dynamic-human-environments-4lk432kx1g
https://typeset.io/authors/mikael-svenstrup-4gxpsc5ff5
https://typeset.io/authors/thomas-bak-oo4fvwzfb8
https://typeset.io/authors/hans-jorgen-andersen-4032e1lfil
https://typeset.io/institutions/aalborg-university-3tb7qjr4
https://typeset.io/conferences/intelligent-robots-and-systems-y4ymjudi
https://typeset.io/topics/motion-planning-3av3bdsk
https://typeset.io/topics/trajectory-20z6uugz
https://typeset.io/topics/mobile-robot-1is55hi3
https://typeset.io/topics/robot-kinematics-10c6j8eb
https://typeset.io/topics/robot-2gtn7p2t
https://typeset.io/papers/a-human-aware-mobile-robot-motion-planner-1miap4wyrt
https://typeset.io/papers/social-force-model-for-pedestrian-dynamics-4ehy7f3rfj
https://typeset.io/papers/unfreezing-the-robot-navigation-in-dense-interacting-crowds-385bcui0s4
https://typeset.io/papers/learning-to-navigate-through-crowded-environments-4e330g6jq9
https://typeset.io/papers/human-aware-robot-navigation-a-survey-3rqy6qf00a
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/trajectory-planning-for-robots-in-dynamic-human-environments-4lk432kx1g
https://twitter.com/intent/tweet?text=Trajectory%20planning%20for%20robots%20in%20dynamic%20human%20environments&url=https://typeset.io/papers/trajectory-planning-for-robots-in-dynamic-human-environments-4lk432kx1g
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/trajectory-planning-for-robots-in-dynamic-human-environments-4lk432kx1g
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/trajectory-planning-for-robots-in-dynamic-human-environments-4lk432kx1g
https://typeset.io/papers/trajectory-planning-for-robots-in-dynamic-human-environments-4lk432kx1g

Aalborg Universitet

Trajectory Planning for Robots in Dynamic Human Environments

Svenstrup, Mikael; Bak, Thomas; Andersen, Hans Jørgen

Published in:
Trajectory Planning for Robots in Dynamic Human Environments

DOI (link to publication from Publisher):
10.1109/IROS.2010.5651531

Publication date:
2010

Document Version
Publisher's PDF, also known as Version of record

Link to publication from Aalborg University

Citation for published version (APA):
Svenstrup, M., Bak, T., & Andersen, H. J. (2010). Trajectory Planning for Robots in Dynamic Human
Environments. In Trajectory Planning for Robots in Dynamic Human Environments: Proceedings of the
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2010) (pp. 4293-4298). IEEE
Press. I E E E International Conference on Intelligent Robots and Systems. Proceedings
https://doi.org/10.1109/IROS.2010.5651531

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 - Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 - You may not further distribute the material or use it for any profit-making activity or commercial gain
 - You may freely distribute the URL identifying the publication in the public portal -

Take down policy
If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to
the work immediately and investigate your claim.

Downloaded from vbn.aau.dk on: May 30, 2022

https://doi.org/10.1109/IROS.2010.5651531
https://vbn.aau.dk/en/publications/00980ec8-ada4-40db-9fa8-5967dfec9d9b
https://doi.org/10.1109/IROS.2010.5651531

Trajectory Planning for Robots in Dynamic Human Environments

Mikael Svenstrup, Thomas Bak and Hans Jørgen Andersen

Abstract— This paper presents a trajectory planning algo-
rithm for a robot operating in dynamic human environments.
Environments such as pedestrian streets, hospital corridors,
train stations or airports. We formulate the problem as planning
a minimal cost trajectory through a potential field, defined
from the perceived position and motion of persons in the
environment.

A Rapidly-exploring Random Tree (RRT) algorithm is pro-
posed as a solution to the planning problem, and a new method
for selecting the best trajectory in the RRT, according to the cost
of traversing a potential field, is presented. The RRT expansion
is enhanced to account for the kinodynamic robot constraints by
using a robot motion model and a controller to add a reachable
vertex to the tree.

Instead of executing a whole trajectory, when planned, the
algorithm uses a Model Predictive Control (MPC) approach,
where only a short segment of the trajectory is executed while
a new iteration of the RRT is computed.

The planning algorithm is demonstrated in a simulated
pedestrian street environment.

I. INTRODUCTION

As robots integrate further into our living environments,

it becomes necessary to develop methods that enable them

to navigate in a safe, reliable, comfortable and natural way

around humans.

One way to view this problem is to see humans as dynamic

obstacles that have social zones, which must be respected.

Such zones can be represented by potential fields [1], [2].

The navigation problem can then be addressed as a trajectory

planning problem for dynamic environments with a potential

field representation. Given the fast dynamic nature of the

problem, robotic kinodynamic and nonholonomic constraints

must also be considered.

In the recent decade sampling based planning meth-

ods have proved successful for trajectory planning [3].

They do not guarantee an optimal solution, but are often

good at finding solutions in complex and high dimensional

problems. Specifically for kinodynamic systems Rapidly-

exploring Random Trees (RRT’s), where a tree with nodes

correspond to connected configurations (vertices) of the robot

trajectory, has received attention [4].

Various approaches improving the basic RRT algorithm

have been investigated. In [5], a dynamic model of the robot

and a cost function is used to expand and prune the nodes

of the tree. A Model Predictive Control (MPC) approach is

taken, where only a small part of the trajectory is executed,

M. Svenstrup and T. Bak are with the Department of Electronic Sys-
tems, Automation & Control, Aalborg University, 9220 Aalborg, Denmark
{ms,tba}@es.aau.dk

H.J. Andersen is with the Department of Media Technology, Aalborg
University, 9220 Aalborg, Denmark hja@imi.aau.dk

while a new trajectory is calculated. When expanding a

vertex, a random vertex and a random control input is chosen.

In [6], an approach for better choices of vertices to expand,

is proposed. It is based on a reachable set of configurations

for each vertex.

It is often desirable to run the planning algorithm in real

time, hence requiring bounded solution time. One approach

is to use anytime algorithms, which initially find a quick

suboptimal solution, and then keep improving the solution

until time runs out [7].

Methods for incorporating dynamic environments, have

also been investigated. Solutions include extending the con-

figuration space with a time dimension (C − T space), in

which the obstacles are static [8], as well as pruning and

rebuilding the tree when changes occur [9], [10].

All these result only focus on avoiding collisions with

obstacles. However, there have been no attempts to navigate

through a human crowd taking into account the dynamics of

the environment and at the same time generate comfortable

and natural trajectories around the humans. E. Hall [11] has

analysed how people position themselves socially relative to

each other. He divides the area around a person into four

zones (public, social, personal and intimate). These zones

can be used to plan how a robot should move to make the

motion natural and comfortable.

In this paper will formulate the problem of navigating

through a dynamic human environment, as planning a tra-

jectory through a potential field. The overall mission of the

robot is, to move forward through the environment with a

desired average speed and direction, which can be set by a

top level planner. This paper contributes by enhancing the

basic RRT planning algorithm to accommodate for naviga-

tion in a potential field and take into account the kinodynamic

constraints of the robot. The RRT is expanded using a control

strategy, which ensures feasibility of the trajectory and a

better coverage of the configuration space. The planning is

done in C−T space using an MPC scheme to incorporate the

dynamics of the environment. To be able to run the algorithm

on-line, the anytime concept is used to quickly generate a

possible trajectory. The RRT keeps being improved until a

new trajectory is required by the robot, which can happen at

any time.

The trajectory planning problem is formulated in Section

II, and the algorithm for generating the trajectory is described

in Section III. Finally in Sections IV-V the algorithm is

demonstrated in an experiment, where the robot plans the

trajectory through a simulated pedestrian street.

The 2010 IEEE/RSJ International Conference on

Intelligent Robots and Systems

October 18-22, 2010, Taipei, Taiwan

978-1-4244-6676-4/10/$25.00 ©2010 IEEE 4293

II. TRAJECTORY GENERATION PROBLEM

A. Robot Dynamics

The robot is modelled as a unicycle type robot, i.e. like a

Pioneer, an iRobot Create or a Segway. A good motion model

for the robot is necessary because it operates in dynamic

environments, where even small deviations from the expected

trajectory may result in collisions. So instead of using a

purely kinematic robot model of the robot, it is modelled as a

dynamical system, with accelerations as input. This describes

the physics better, since acceleration and applied force are

proportional. This dynamical model can be described by the

five states:

x(t) =

x1(t)
x2(t)
x3(t)
x4(t)
x5(t)

=

x(t)
y(t)
v(t)
θ(t)

θ̇(t)

→ x position

→ y position

→ linear velocity

→ rotation angle

→ rotational velocity

(1)

The differential equation governing the robot behaviour is:

ẋ(t) = f (x(t),u(t)) =

ẋ(t)
ẏ(t)
v̇(t)

θ̇(t)

θ̈(t)

=

v(t) cos(θ(t))
v(t) sin(θ(t))

uv(t)

θ̇(t)
uθ(t)

=

x3(t) cos(x4(t))
x3(t) sin(x4(t))

u1(t)
x5(t)
u2(t)

(2)

where u1 = uv is the linear acceleration input and u2 = uθ

is the rotational acceleration input.

Without loss of generality the starting time can be set to

0, and the trajectory is then calculated as:

x(t) = x(0) +

∫ t

0

f (x(τ),u(τ)) dτ (3)

B. Dynamic Potential Field

The value of the potential field, denoted G, at a point in

the environment is calculated as a sum of the cost associated

with three different aspects:

1) A cost related to the robots position in the environment

without obstacles. For example high costs might be

assigned close to the edges.

2) A cost associated with the robot position relative to

humans in the area.

3) A cost rewarding moving towards a goal.

The combined cost can be written as:

G(t) = g1(x(t))) + g2(x(t),P(t)) + g3(x(t)) . (4)

P(t) is a matrix containing the position and orientation of

persons in the environment at the given time. g1(x), g2(x)
and g3(x) are the three cost functions. They are further

described below.

1) Cost related to environment: This cost function is

currently designed for non agoraphobic behaviour of the

robot, i.e. in open spaces, such as a pedestrian street. It has

the shape of a valley, such that it is more expensive to go

towards the sides, but cheap to stay in the middle:

g1(x(t)) = cyy2(t) (5)

where cy is a constant determining how much the robot is

drawn towards the middle.

2) Cost of proximity to humans: This is not a straightfor-

ward calculation, and for more detail, see [2]. The shape

of the potential field is related to how humans position

themselves around others, and is based on Hall’s proxemic

distances [11]. For example the potential is lower in front

of the person than behind, because it is more comfortable to

have other persons, where you can see them.

Fig. 1 shows a potential field around a person. The person

stands in the point (0, 0) and is looking to the left. A robot

should try to move towards the lower parts of the potential

function, i.e. towards the dark blue areas, and avoid the red

area. The formula for calculating the potential around one

person is a summation of four normalized bi-variate Gaussian

distributions:

g2(x1:2) =
4

∑

k=1

ck exp(−
1

2
[x1:2 − 0]T Σ−1

k [x1:2 − 0]) (6)

where ck are a normalizing constants, x1:2 are the first two

states of the robot state, i.e. the position relative to the person,

where the cost function is evaluated. 0 is the position of the

person, in this case the origin, and Σk are the covariances

of each of the Gaussian distributions. The covariances are

adjusted according to the orientation of the person. The total

cost, g2 is a summation over all of the persons in the area.

Fig. 1. Potential field around a person standing at (0, 0) and looking to
the left. The robot should try to get towards the lower points, i.e. the dark
blue areas. The size of the person in this figure is approximate equal to a
normal human being.

3) Cost of end point in trajectory: The cost at the end

point penalizes if the robot does not move forward, and if the

robot orientation is not in a forward direction. An exponential

function is used to penalize the position. It is set up such that

short distances are penalized much, while it is close to the

4294

same value for larger distances, i.e. it does not change much

if the robot goes 19 or 20 meters from its starting position.

g3(x(t)) = ce1 exp(ce2(x(t) − x̃(0))) + cθθ
4(t) , (7)

where c(·) are scaling constants and x̃(0) is the desired

position at t = 0. The reason that θ is raised to the fourth,

is to keep the term closer to zero in a larger neighbourhood

of the origin. This means that the robot will almost not be

penalized for small turns. On the other hand larger turns, like

going the wrong way, will be penalized more.

C. Minimization Problem

Given the above cost functions a potential landscape may

be formed. Fig. 2 illustrates an example of a pedestrian street

landscape with five persons. The robot is initially positioned

at position (2, 0) and has to move to the right. The area

is bounded to be 20m wide, i.e. 10m to each side of the

robot from the initial position. Examples of three different

randomly chosen trajectories are shown in the figure.

[m]

[m
]

 0 5 10 15 20 25 30 35 40 45
−10

 −5

 0

 5

 10

Fig. 2. Person potential field landscape, which the robot has to move
through. The robot starting point is the green dot at the point (2, 0). Three
examples of potential robot trajectories are shown.

At a first glance it looks like all three trajectories would

run into at least one human, but since the persons move

while the robot advances along the trajectory, this might not

be the case. Conversely the robot may also run into a person,

who was not originally on the path. Therefor it is important

to take into account the dynamics of the obstacles (i.e. the

humans), when planning trajectories.

If the current time is t = 0, the planning problem can

be posed as follows. Given an initial robot state x0, and

trajectory information for all persons until the given time

P̃start:0. Determine the control input ũ0:T , which minimizes

the cost of traversing the potential field, subject to the

dynamical robot model constraints:

minimize I(ũ0:T) = (8)
Z T

0

[g1(x(t)) + g2(x(t),P(t))] dt + g3(x(T))

s.t. ẋ(t) = f (x(t), ut)

where g1(x(t)) = cyx2(t)2

g2(x(t),P(t)) =
p

X

j=1

4
X

k=1

ck exp(−
1

2
[x1:2 − µj]

T Σ−1

j,k
[x1:2 − µj])

g3(x(T)) = ce1 exp(ce2(x1(T) − x1(0))) + cθx4

4(T),

were x1:2 = [x1(t), x2(t)] is the position of the robot at

time t, ũ0:T is the discrete input sequence to the robot. T

is the ending time horizon of the trajectory, gx(·) are cost

functions and p is the number of persons in the area. The

position and orientation of all persons at time t is given by

P(t) and µj is the center of the j-th person at a given time.

To be able to calculate the cost of a trajectory according

to Eq. (8), only the person trajectories remains to be de-

fined. A simple model is that the person will continue with

the same speed and direction [12]. More advanced human

motion models could be used without changing the planning

algorithm, but it is outside the scope of this paper to derive

a complex human motion model.

III. RRT BASED TRAJECTORY PLANNING

The structure of the planning algorithm can be seen in

Fig.3. The idea is that while a trajectory is executed, a new

is calculated on-line. Input to the trajectory planner is the

previous best trajectory, the person trajectory estimates, and

the dynamic model of the robot.

Execute Trajectory

in Real World

Seed Tree
Find

Nearest

Vertex

RRT Trajectory Planner

Pick Best

Trajectory

Estimate Person

Trajectories

Dynamic Robot Model

Sample

Random

Point

Extend

Tree

T < Tplanning

T ≥ Tplanning

Fig. 3. The overall structure of the trajectory generator. The blue real
world part and the red trajectory planning part are executed simultaneously.

The minimization problem stated in Eq. (8) is addressed

by RRT’s. A standard RRT algorithm is shown in Algorithm

1, where the lines 4, 5, 6 correspond to the three blocks in

the larger RRT Trajectory Planner box in Fig. 3.

The method presented here differs from the standard

RRT in lines 1, 3, 6, 9, which are marked red. Furthermore,

between line 6 and 7, node pruning is introduced. Since an

MPC scheme is used, only a small portion of the planned

trajectory is executed, while the planner is restarted to plan

a new trajectory on-line. When the small portion has been

executed, the planner has an updated trajectory ready. To

facilitate this, the stopping condition in line 3 is changed.

When a the robot needs a new trajectory, or when certain

maximum number of vertices have been extended, the RRT

is stopped. Even though the robot only executes a small part

of the trajectory, the rest of the trajectory should still be valid.

Therefore, in line 1, the tree is seeded with the remaining

trajectory.

In line 9 the trajectory with the least cost is returned,

instead of returning the trajectory to the newest vertex. The

4295

Algorithm 1 Standard RRT (see [13])

RRTmain()

1: Tree = q.start

2: q.new = q.start

3: while Dist(q.new , q.goal) < ErrTolerance do

4: q.target = SampleTarget()

5: q.nearest = NearestVertex(Tree , q.target)

6: q.new = ExtendTowards(q.nearest,q.target)

7: Tree.add(q.new)

8: end while

9: return Trajectory(Tree,q.new)

SampleTarget()

1: if Rand() < GoalSamplingProb then

2: return q.goal

3: else

4: return RandomConfiguration()

5: end if

tree extension function and the pruning method are described

below.

A. RRT Control Input Sampling

When working with nonholonomic kinodynamic con-
strained systems, it is not straightforward to expand the
tree towards a newly sampled point in the configuration
space (line 6 in Algorithm 1). It is a whole motion plan-
ning problem in itself to find inputs, that drive the robot
towards a given point [14]. The algorithm proposed here
uses a controller to turn the robot towards the sampled point
and to keep a desired speed. A velocity controller is set
to control the speed towards an average speed around a
reference velocity. The probabilistic completeness of RRT’s
in general, is ensured by the randomness of the input. So
to maintain this randomness in the input signals, a random
value sampled from a Gaussian distribution is added to the
controller input. The velocity controller is implemented as
a standard proportional controller. The rotation angle is a

second order system with θ and θ̇ as states, and therefore a
state space controller is used for control of the orientation.
The control input can be written as:

u =

»

u1

u2

–

=

»

kv(µv − v(t))

kθ1(φpoint − θ(t)) − kθ2θ̇

–

+

»

N (0, σv)
N (0, σθ)

–

. (9)

µv is the desired average speed of the robot and φpoint is the

angle towards the sampled point. k(·) are controller constants

and σv, σθ are the standard deviations of the added Gaussian

distributed input.

The new vertex to be added to the tree is now found by

using the dynamic robot motion model and the controller to

simulate the trajectory one time step. This ensures that the

added vertex will be reachable.

B. Tree Pruning and Trajectory Selection

A simple pruning scheme, based on several different

properties of a node, is used. If the vertex corresponding to

the node ends up in a place where the potential field has a

value above a specific threshold, then the node is not added to

the tree. Furthermore a node is pruned if |θ(t)| > π
2 , which

means that the robot is on the way back again, or if the

simulated trajectory goes out of bounds of the environment.

It is not desirable to let the tree grow too far in time, since

the processing power is much better spend on the near future,

because of the uncertainty of person positions further into the

future. Therefore the node is also pruned if the time taken to

reach the node is above a given threshold. Finally, instead of

returning the trajectory to the vertex of the last added node,

the trajectory with the lowest cost (calculated from Eq. (8)),

is returned. But to avoid the risk of selecting a node, which

is not very far in time, all nodes with a small time are thrown

away before selecting the best node.

The final algorithm is shown in Algorithm 2.

Algorithm 2 Modified RRT for human environments

RRTmain()

1: Tree = q.oldBestTrajectory

2: while (Nnodes < maxNodes) and (t < tMax) do

3: q.target = SampleTarget()

4: q.nearest = NearestVertex(Tree , q.target)

5: q.new = CalculateControlInput(q.nearest,q.target)

6: if PruneNode(q.new) == false then

7: Tree.add(q.new)

8: end if

9: end while

10: return BestTrajectory(Tree)

SampleTarget()

1: if Rand < GoalSamplingProb then

2: return q.goal

3: else

4: return RandomConfiguration()

5: end if

IV. SIMULATIONS

The above described algorithm is implemented, and

demonstrated to work on a simulated pedestrian street, as

shown in Fig. 2. The experiments consist of two parts.

First, the algorithm is applied on the environment shown

in Fig. 2. This will demonstrate that the algorithm is capable

of planning a trajectory, which does not collide with any

persons. It will also demonstrate how the tree expands. The

algorithm is compared to an algorithm where a random

vertex and a random control input is chosen, as suggested

in [4] and used to different extends in e.g. [5], [6]. Next,

a simulated navigation through several randomly generated

worlds is performed. This will demonstrate the robustness of

the algorithm over time.

The following parameters for the potential field are used:

cy = 0.1, ce1 = 20, ce2 = −0.1, cθ = 10, and the parameters

for the Gaussian distributions can be seen in [2]. The poles

of the controllers, the reference velocity and the standard

deviation of the velocity input, are the only other parameters

to set. The poles have experimentally been determined, such

that the robot has a relatively quick response, but the exact

pole placement does not influence the trajectory generation

much. The pole of the velocity controller is placed in s =

4296

−2, and both the poles of the rotational controller are placed

in s = −2 as well. The standard deviation of the added

random velocity input is set to σv = 2m
s

and the standard

deviation of the rotational input is set to σθ = 0.5 rad
s

. The

reference velocity is set to 1.5m
s

, which is considered as a

normal human walking speed.

A. Robustness Test

The robustness test is performed in 50 different randomly

generated environments, where the robot has to navigate

forwards in one minute. With an average speed of 1.5m
s

, this

corresponds to the robot moving approximately 90m ahead

along the street. In each simulation the robot’s initial state

is:

x0 = [2 0 0 0 0]T (10)

First the motion of all the persons in the world are simulated.

Initially a random number of persons (between 10 and 20)

are placed randomly in the world. Their velocity is sampled

randomly from a Gaussian distribution. The motion of each

person is simulated as moving towards a goal 10m ahead

of them. The goal position of the y − axis of the street is

sampled randomly, and will also change every few seconds.

Additional Brownian motion is added to each person to

include randomness of the motion. Over time new persons

will enter at the end of the street according to a Poisson

process. This means that at any given time, persons will

appear and disappear at the ends of the street. Because of

this randomness, the number of persons can differ from the

initial number of persons, and ranges from 10 to around 40,

which is different for each simulation.

At each time instant, the robot will only know the current

position and velocity of each of the persons within a range

of 45m in front of the robot, and it has no knowledge about

where the persons will go in the future.

As it is a simulation, there is no real time performance

issues, and nothing has been done to optimize the code for

faster performance. So the tree is set to grow a fixed number

of 2000 vertices at each iteration. The planning horizon is

set to 20 seconds and at each iteration the robot executes 2
seconds of the trajectory, while a new trajectory is planned.

V. RESULTS

An example of a grown RRT, with 2000 vertices, from the

initial state can be seen in Fig. 4. The simulated trajectories

of the robot are the red lines, and the red dots are vertices

of the tree. It is seen how the RRT is spread out to explore

the configuration space, although only every 10th vertex is

plotted to avoid clutter on the graph. Note that the persons

are static at their initial position on the figure, and some

trajectories seem to pass through persons. But in reality, the

persons have moved when the robot passes the point of the

trajectory. The best of the all trajectories, which is calculated

using Eq. (8), is the green trajectory.

In Fig. 5 a RRT has been run for the same environment,

but by choosing a random vertex to expand, instead of the

one closest to a random sampled point. The algorithm is a

little faster, since it does not have to calculate distances to all

[m]

[m
]

 0 5 10 15 20 25 30 35 40 45
−10

 −5

 0

 5

 10

Fig. 4. An RRT for a robot starting at (2, 0) and the task of moving
forward through the human populated environment. Only every 10th vertex
is shown to avoid clutter of the graph. The vertices are the red dots, and
the lines are the simulated trajectories. The green trajectory is the least cost
trajectory.

vertices. But as can be seen, the tree does almost not expand

over the configuration space.

[m]

[m
]

 0 5 10 15 20 25 30 35 40 45
−10

 −5

 0

 5

 10

Fig. 5. The RRT after 2000 expansions, where a random vertex is chosen
to be expanded. The tree expands very slow over the configuration space.
The lowest cost trajectory is shown in green.

An example of the tree after 2000 expansions, when

choosing the nearest vertex, but using a random control

input , is illustrated in Fig. 6. The configuration space is not

covered very well, since there are only two major branches

of the tree, and the top area above the first person has not

been explored at all. When comparing to Fig. 4, it is clear

that our control sampling method covers the configuration

space much better.

[m]

[m
]

 0 5 10 15 20 25 30 35 40 45
−10

 −5

 0

 5

 10

Fig. 6. An example of choosing random control input. The tree expands
better than if choosing random nodes, but it still does not cover the
configuration space very well. The lowest cost trajectory is shown in green.

In Fig. 7 a typical scene from one of the 50 simulations

can be seen. The blue dots are persons, and the arrows are

4297

velocity vectors, with a length proportional to the speed.

The black star with the red arrow, is the robot position and

orientation.

15 20 25 30 35 40 45 50 55
−10

 −5

 0

 5

 10
Time: 13.5s Number of persons: 39

Distance [m]

D
is

ta
nc

e
[m

]

Fig. 7. A scene from one of the 50 simulations. The blue dots are persons,
with their corresponding current velocity vectors. The black star is the robot.

In none of the 50 simulations the robot ran into a person.

This demonstrates that the algorithm is robust enough to

handle simulated human motion with changing goals and

additional random motion, even though using the simple

human motion model when planning. A few close passes

in the combined 50 minute run, down the pedestrian street,

are seen. But, as seen in Fig. 8, the robot stays out of the

personal zone of any of the persons in more than 97.5% of

the time, and out of the intimate zone (a distance closer than

0.45m) 99.7% of the time. This only occurs on 9 separate

instances of the 50 minutes of driving.

Intimate Personal Social Public
 0

10

20

30

40

50

60

tim
e

in
 %

Zones

0.3 %
d ≤ 0.45 m

2.2 %
0.45 m < d ≤ 1.20 m

45.7 %
1.20 m < d ≤ 3.60 m 54.8 %

d > 3.60 m

Fig. 8. The bar plot shows how large a part of the time the closest person
to the robot has been in each zone. The robot should try to stay out of the
personal and intimate zones. The distance interval for each zone, can also
be seen in the plot.

Except in very densely populated environments, the model

runs approximately one third of real time on a 2.0 GHz CPU

running MATLAB. This is considered to be reasonable, since

no optimization for speed has been done.

In very dense environments, the planning takes longer,

since many new added vertices, are pruned again, and hence

more points has to be sampled before 2000 vertices are

expanded. Additionally the more persons in the area, the

longer it takes to evaluate the cost of traversing the potential

field.

On average approximately 1
4 of the sampled points led

to an expansion of the tree and correspondingly 3
4 led to a

pruned node.

VI. CONCLUSIONS

In this paper a new algorithm for trajectory planning for

a kinodynamic constrained robot, has been described. The

robot is navigating in a highly dynamic environment, which

in this case is populated with humans. The algorithm is based

on RRT’s, but with a new trajectory selection method. The

method enables the costs of traversing a potential field to be

minimized, thereby supporting planning of comfortable and

natural trajectories. Further, a new control input sampling

strategy has been presented. This leads to better tree coverage

over the configuration space, than if sampling e.g. a random

control input. Together with a dynamic model of the robot,

an MPC scheme is used to enable the planner to continuously

plan a reachable trajectory on an on-line system.

The algorithm is challenged when the environments be-

come very densely populated, but so are humans. Humans

react by mutual adaptation and allowing violation of the

social zones. This is not done here, where the robot takes

on all the responsibility for finding a trajectory.

Potential future work include real life experiments, and

incorporation of human to human motion correlation into

the algorithm.

REFERENCES

[1] E. Sisbot, A. Clodic, L. Marin U., M. Fontmarty, L. Brethes, and
R. Alami, “Implementing a human-aware robot system,” in The 15th

IEEE International Symposium on Robot and Human Interactive

Communication, 2006. ROMAN 2006., 6-8 Sept. 2006, pp. 727–732.
[2] M. Svenstrup, S. T. Hansen, H. J. Andersen, and T. Bak, “Pose

estimation and adaptive robot behaviour for human-robot interaction,”
in Robotics and Automation, 2009. ICRA ’09. IEEE International

Conference on, Kobe, Japan, May 2009, pp. 3571–3576.
[3] S. LaValle, Planning algorithms. Cambridge Univ Pr, 2006.
[4] S. LaValle and J. Kuffner Jr, “Randomized kinodynamic planning,”

The International Journal of Robotics Research, vol. 20, no. 5, p.
378, 2001.

[5] A. Brooks, T. Kaupp, and A. Makarenko, “Randomised mpc-based
motion-planning for mobile robot obstacle avoidance,” in Robotics and

Automation, 2009. ICRA ’09. IEEE International Conference on, May
2009, pp. 3962–3967.

[6] A. Shkolnik, M. Walter, and R. Tedrake, “Reachability-guided sam-
pling for planning under differential constraints,” in Robotics and

Automation, 2009. ICRA ’09. IEEE International Conference on, May
2009, pp. 2859–2865.

[7] D. Ferguson and A. Stentz, “Anytime, dynamic planning in high-
dimensional search spaces,” in Proc. IEEE International Conference

on Robotics and Automation, 2007, pp. 1310–1315.
[8] J. van den Berg, “Path planning in dynamic environments,” Ph.D.

dissertation, Ph. D. dissertation, Universiteit Utrecht, 2007.
[9] D. Ferguson, N. Kalra, and A. Stentz, “Replanning with rrts,” in Proc.

IEEE International Conference on Robotics and Automation ICRA

2006, 2006, pp. 1243–1248.
[10] M. Zucker, J. Kuffner, and M. Branicky, “Multipartite rrts for rapid

replanning in dynamic environments,” in Proc. IEEE International

Conference on Robotics and Automation, 2007, pp. 1603–1609.
[11] E. T. Hall, “A system for the notation of proxemic behavior,” American

anthropologist, vol. 65, no. 5, pp. 1003–1026, 1963.
[12] A. Bruce and G. Gordon, “Better motion prediction for people-

tracking,” in Robotics and Automation, 2004. ICRA ’04. IEEE Inter-

national Conference on, April 2004.
[13] D. Ferguson and A. Stentz, “Anytime rrts,” in Proc. IEEE/RSJ In-

ternational Conference on Intelligent Robots and Systems, 2006, pp.
5369–5375.

[14] B. Siciliano and O. Khatib, Handbook of Robotics. Springer-Verlag,
Heidelberg, 2008.

4298

