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Trajectory Sensitivity Analysis of Hybrid Systems
Ian A. Hiskens, Senior Member, IEEE, and M. A. Pai, Fellow, IEEE

Abstract—The development of trajectory sensitivity analysis for
hybrid systems, such as power systems, is presented in the paper.
A hybrid system model which has a differential-algebraic-discrete
(DAD) structure is proposed. This model forms the basis for the
subsequent sensitivity analysis. Crucial to the analysis is the devel-
opment of jump conditions describing the behavior of sensitivities
at discrete events, such as switching and state resetting. The effi-
cient computation of sensitivities is discussed. A number of exam-
ples are presented to illustrate various aspects of the theory. It is
shown that trajectory sensitivities provide insights into system be-
havior which cannot be obtained from traditional simulation.

Index Terms—Dynamic response, hybrid dynamical systems,
power systems, switched systems, trajectory sensitivity.

I. INTRODUCTION

M
ANY PHYSICAL systems exhibit dynamic behavior

which is governed by a mix of continuous-time (pos-

sibly constrained) dynamics, discrete-time and discrete-event

dynamics, switching action, and jump phenomena. Such sys-

tems range from batch processes [1] through to power systems

[2] and have become known generically as hybrid systems.

Some simple examples which illustrate various aspects of

hybrid systems are given in Sections II and VI.

Consider power systems, for example. The behavior of such

systems is governed by the nonlinear dynamics of many com-

ponents, including machines, loads, flexible AC transmission

system (FACTS) devices, and their associated control equip-

ment. Dynamic behavior is constrained by physical laws; for

example, current balance must be maintained at all nodes. Fur-

thermore, protection relays, controller limits, and discrete de-

vices, such as on-load tap changing transformers and switched

shunts, introduce discrete events, switching action, and state re-

setting into the system. Power system behavior can therefore be

quite complicated, yet system integrity is reliant on a thorough

understanding of that behavior. This requires effective and in-

sightful analysis.

The nonlinear nonsmooth dynamics of hybrid systems make

analysis difficult. While Lyapunov-type theory offers analyt-

ical insights for specific applications (see, for example, [1], [3],

and [4]), in general, the analysis of hybrid systems is reliant on

time-domain simulation. The advantage of simulation is that it

is applicable for arbitrarily complicated models. A disadvantage

is that it provides information about a single scenario. Gener-

ally it is not possible to confidently extrapolate results, even for
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small changes in system conditions. Each change to the system

requires another simulation. For large systems, such as power

systems, this often involves large computational costs.

Trajectory sensitivity analysis offers some relief from the

rigors of repetitive simulation. The approach is based upon

linearizing the system around a nominal trajectory rather

than around an equilibrium point. It is therefore possible to

determine directly the change in a trajectory due to (small)

changes in initial conditions and/or parameters. These concepts

are well established for continuous dynamics [5]–[8], while

closely related perturbation analysis theory has been developed

for discrete event dynamic systems (DEDS’s) [10], [11]. An

interesting comparison of these fields is presented in [12]. This

paper makes an important extension to a general hybrid system

model.

Trajectory sensitivities provide valuable insights into the

influence of parameters on the dynamic behavior of systems.

Properties which are not obvious from the actual system

response are often evident in the sensitivities. For example, the

extra information available from trajectory sensitivities was

used in [13] to investigate the relative importance of various

events in a major power system disturbance. The example of

Section VI-C further illustrates this use of trajectory sensitivi-

ties.

Trajectory sensitivities were originally associated with a

number of areas in control and parameter estimation [5], [14].

More recent applications have included stability assessment

of power systems [15], [16]. The ideas presented in this paper

form a basis for the extension of these applications to hybrid

systems.

The paper is organized as follows: Section II presents a gen-

eral hybrid system model, along with a number of diverse ex-

amples. Trajectory sensitivities are introduced in Section III and

their calculation away from discrete events is discussed in Sec-

tion IV. The extension to discrete events, and hence general

hybrid systems, is presented in Section V. Some examples are

given in Section VI. Section VII discusses numerical integration

issues related to the computation of sensitivities. Conclusions

are drawn in Section VIII.

II. MODEL

A. Background

As indicated in Section I, hybrid systems are characterized by

the following:

• continuous and discrete states;

• continuous dynamics;

• discrete events, or triggers;

• mappings that define the evolution of discrete states at

events.

1057–7122/00$10.00 © 2000 IEEE
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Conceptually, such systems can be thought of as an indexed

collection of continuous dynamical systems , along

with a mechanism for jumping between those systems, i.e., for

switching between the various . The continuous and dynamic

states are and , respectively. The jumping reflects the influ-

ence of the discrete event behavior and is dependent upon both

the trigger condition and the discrete state evolution mapping.

Overall system behavior can be viewed as a sequential patching

together of dynamical systems, with the final state of one dy-

namical system specifying the initial state for the next.

A formal presentation of these concepts is given in [17],

where a general hybrid dynamical system is defined as

(1)

and

• is the set of discrete states;

• is the collection of dynamical systems

where each is an arbitrary topolog-

ical space forming the continuous state space of , is

a semigroup over which the states evolve, and gener-

ates the continuous state dynamics;

• , for each , is the collection

of autonomous jump sets, i.e., the conditions which trigger

jumps;

• , where

is the autonomous jump transition map.

The hybrid state–space of is given by . In this paper we

restrict attention to hybrid systems where is countable, each

, and each .

Other representations of hybrid systems have appeared (see,

for example, [18]). While each representation has its own par-

ticular flavor, they all capture the fundamental aspects of hybrid

systems identified at the beginning of this section.

The level of abstraction of (1) does not suit the development

of trajectory sensitivity analysis. A model which is more con-

ducive to such analysis is presented in the following subsection.

It is then shown that the proposed model is a realization of (1).

B. System Description

Many different types of systems, from manufacturing systems

to power systems, can be generically described by a parameter-

dependent differential-algebraic-discrete (DAD) model of the

form

(2)

(3)

(4)

(5)

(6)

where

...

and are matrices of zeros, except that

each row of each matrix has a single 1 in an appropriate loca-

tion. There is no restriction on and sharing some common

elements. In (5), , , refer to the values of , , and

just prior to the reset condition, while denotes the value of

just after the reset event.

In this model, which is similar to a model proposed in [19],

are continuous dynamic state variables, are algebraic state

variables, are discrete state variables, and are parameters.

As an example, in the power system context would include

machine dynamic states such as angles, velocities, and fluxes,

would include network variables such as load bus voltage mag-

nitudes and angles, could represent transformer tap positions

and/or relay internal states, and could be chosen from a di-

verse range of parameters, from loads through to fault clearing

time.

Note that the model does not allow discontinuities in the dy-

namic states, i.e., impulse effects. This is not a restriction forced

by the analysis. In fact, later analysis is directly applicable to

cases where undergoes jumps. However the model adopts the

philosophy that the dynamic states of real systems cannot un-

dergo step changes.

The proposed model (2)–(6) captures all the important as-

pects of hybrid system behavior, namely, the interaction be-

tween continuous and discrete states as they evolve over time.

Between events, system behavior is governed by the differen-

tial-algebraic (DA) dynamical system

(7)

(8)

where is composed of , together with functions from (4)

chosen depending on the signs of the elements of . Each dif-

ferent composition of is indexed by a unique . An event is

triggered by an element of changing sign and/or an element

of passing through zero. At an event, the composition of

changes and/or elements of are reset. Therefore, in this hybrid

system model, each DA dynamical system is effectively indexed

by and . At an event, this index changes and a jump is made

to the new dynamical system.

The implicit function theorem [20] allows (8) to be solved

(locally) giving

Substitution into (7) yields

(More complete details are given in Section II-C.) This repre-

sentation allows the DAD model to be related directly to the gen-

eral hybrid dynamical system model (1). The discrete states are
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. The dynamical systems are defined by (7)

and (8), with generating the continuous state dynamics.

Each jump set is composed of conditions and

, where , are given by . The general nature

of and, hence, , allows arbitrarily complicated sets of

event triggering conditions to be described for each . The

jump transition map is defined by the change in that

corresponds to each , along with the reset map (5) cor-

responding to each .

Initial conditions for the model (2)–(6) are given by

(9)

(10)

(11)

where is a solution of

(12)

Note that in solving for , the constraint switching described by

(4) must be taken into account. Often will have multiple

solutions. For a given , , and , there may be a number of

possible .

The following examples illustrate the DAD model structure

(2)–(6). Even though they are quite simple, they exhibit many

of the complexities associated with hybrid systems.

Example 1: This example is taken from [1]. The system is

where

The index changes from 1 to 2 when and from

2 to 1 when . Initially and .

The phase portrait and time response are shown in Figs. 1 and

2, respectively.

This model can be rewritten in the DAD form as

when

where , , , and hence,

.

The change between and is achieved by resetting the

matrix elements , whenever a switching surface is encoun-

tered. The switching surfaces are given by the algebraic con-

straints. Alternating between active switching surfaces corre-

sponds to flipping the sign of .

The sensitivity of trajectories to variation of , i.e., the slope

of the steeper switching surface, is presented in Section VI-A.

Fig. 1. Phase portrait for Example 1.

Fig. 2. Time-domain response for Example 1.

Example 2: This example is based on a case given in [21].

The system description is

sgn

when

with . This is a crude model of the bounce of a

ball when the coefficient of restitution is 0.8. The phase portrait

and time response of this system are shown in Figs. 3 and 4,

respectively.

The model can be rewritten in the DAD form of (2)–(6) as

when
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where , , and, hence,

.

In establishing the DAD model structure (2)–(6), we made

a deliberate decision not to allow resetting of the continuous

states. Therefore, to implement the reset condition of this ex-

ample, a discrete state and an algebraic state were intro-

duced and was redefined to be continuous. The discrete state

accumulates the step changes that occur at each reset event.

The algebraic relationship between , , and the redefined

ensures that replicates the behavior of the original (discon-

tinuous) .

The sensitivity of trajectories of this model to variation of ,

the coefficient of restitution, is explored in Section VI-B.

Trajectories of the DAD system (2)–(6) describe the behavior

of the dynamic states , the algebraic states , and the discrete

states over time. To formalize these concepts we define the

flows of , , and , respectively, as

where

and is piecewise constant with step transitions

between the constant sections described by the reset equations

(5).

From the definitions of the flows, it is clear that

Notice that has been defined in terms of and rather

than . This reflects the dependence of on , , and , as

described by (12). Therefore the definitions of , , and

establish the dependence of the flows on , , and .

It is clear that the notation can quickly become unwieldy.

Therefore in the sequel we will generally write the model more

compactly as

(13)

(14)

(15)

(16)

Fig. 3. Phase portrait for Example 2.

Fig. 4. Time-domain response for Example 2.

where

The system flow is defined accordingly as

(17)

Let the times at which events occur be given by

.

Notice that the definition of ensures that and remain

constant away from reset events (16). Further, ensures that

and remain unchanged at a reset event. As with (7) and (8),

over each of the open time intervals the system is

described by a smooth DA model

(18)
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(19)

where is composed of (14) together with functions from (15)

chosen depending on the signs of the elements of . [Recall

that the definition of the ensures that no elements of can

change sign during the period .]

Trajectory sensitivity analysis considers the influence of

(small) variations in the initial conditions , and parameters

, (or equivalently ) on the flow . Sensitivity relationships

are developed in Sections III–V.

C. Properties of DA Systems

Before focusing on sensitivities, it is important to establish

some basic properties of DA systems. This section provides a

brief summary. A much more extensive investigation is pre-

sented in [22].

Consider the DA model (18) and (19) which describes be-

havior between events, say during the open interval .

The algebraic equations define the constraint surface or con-

straint set

(20)

The system is constrained to lie on this surface (in the set ) over

the period . Equation (19) ensures that flows satisfy

the constraints. The differential equations (DE’s) drive the flows

over the constraint surface.

As indicated earlier, the implicit function theorem can be used

to establish a connection between the DA model and a locally

equivalent DE model. If is nonsingular at a point

, then it follows from the implicit function theorem

that there exist neighborhoods of and of

and a vector function such that

and

The function is unique in the sense that if , ,

and then

(21)

Upon substitution of (21) into (18), the DA system reduces to

(22)

i.e., a local DE description of the system. This local result is

valid wherever is nonsingular.

The algebraic equations may have more than one

solution. For a given , there may be a number of such

that . At each point where is nonsin-

gular, the implicit function theorem guarantees the existence of

a unique (in the sense defined above) vector function . A

local DE description

corresponds to each .

At points where is singular, the model may break down.

The conditions of the implicit function theorem are no longer

satisfied, so there is no guarantee of the existence of a well-

defined relationship (21) between and . In general, a system

trajectory cannot continue through a point where is singular.

Such singular points are therefore known as impasse points and

the set of points

(23)

is called the impasse surface [22], [23].

The set contains all points on the constraint surface

which are not impasse points. Therefore, the DA model is well

defined in . This set defines an -dimensional

manifold [22], and has been called the causal region. It is gen-

erally not a connected set though, with different components of

the set corresponding to different .

In the development and use of trajectory sensitivities, we will

be focusing upon cases where model breakdown is not a con-

cern. We therefore make the following assumption.

Assumption 1: All trajectories remain within the causal re-

gion , i.e., is nonsingular along trajectories.

Because Assumption 1 ensures that algebraic singularity is

avoided, the type of jump behavior discussed in [24] cannot

occur. The jumps which are a feature of the DAD model occur

only in response to discrete events.

III. TRAJECTORY SENSITIVITY ANALYSIS

The flow of a system will generally vary with changes in pa-

rameters and/or initial conditions. Trajectory sensitivity analysis

provides a way of quantifying the changes in the flow that result

from (small) changes in parameters and initial conditions. The

development of these sensitivity concepts will be based upon

the compact form of the DAD model (13)–(16). Recall that in

this model, incorporates the initial conditions and , as

well as the parameters . Therefore, the sensitivity of the flow

to fully describes its sensitivity to , , and .

In Section II-B, we defined the system flow in terms of

. The dependence of on is not explicit, but follows from

(12). Therefore, in determining trajectory sensitivities, we will

not directly establish the sensitivity of flows to changes in .

Rather, such sensitivity is given implicitly by sensitivity to .

Trajectory sensitivities follow from a Taylor series expansion

of the flows and . Referring to (17), the expansion for

can be expressed as

higher order terms.

Neglecting the higher order terms and using (17), we obtain

(24)

where . From (24), the sensitivity of the flow

to (small) changes is given by the trajectory sensitivities

.
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A similar Taylor series expansion of yields

higher order terms.

Again neglecting the higher order terms and using (17) results

in

(25)

where . In this case, the sensitivity of the flow

to (small) changes is given by the trajectory sensitivities

.

Once the trajectory sensitivities and are known,

the sensitivity of the system flow to small changes in initial

conditions and parameters, which are described by , can be

determined from

(26)

We have yet to consider the calculation of the trajectory sensi-

tivities. Details are provided in the following sections.

IV. SENSITIVITY EVOLUTION AWAY FROM EVENTS

In this section we discuss the calculation of the trajectory

sensitivities and over the open time intervals

, i.e., away from events. The behavior of sensitivities

at switching and reset events is presented in Section V.

Away from events, the system model is given by (18) and

(19). Differentiating this DA system with respect to the initial

conditions results in

(27)

(28)

Note that , , , are evaluated along the flow

and, hence, are time-varying matrices.

Initial conditions for on the first time interval are

obtained by differentiating (9) and (11) with respect to

(29)

where is the identity matrix. Initial conditions for follow

from (28)

In accordance with Assumption 1, is nonsingular so (29)

can be used to obtain

(30)

On other time intervals, say , the initial sensitivities

, are given by the jump conditions described

in Section V.

An equivalent DE model for calculating can be ob-

tained by rearranging (28), taking account of Assumption 1, to

give

(31)

Substituting into (27) results in

(32)

This equation describes the sensitivity of trajectories of the re-

duced DE model given by (22). Given , we can obtain

from (31), keeping in mind that and are time-varying ma-

trices. [Note though that (31) and (32) are not normally used in

the computation of sensitivities. It is more efficient to solve (27)

and (28) simultaneously. Details are given in Section VII.]

Equation (31) highlights the importance of Assumption 1. If

is nearly singular, corresponding to the trajectory being close

to the impasse surface, can become large, even for small

. Under such conditions, a variation in initial conditions or

parameters which causes only a small change in the dynamic

states and may induce a large change in the algebraic states

.

The compact form of the model (13)–(16) is convenient for

developing the trajectory sensitivity equations. However it can

be helpful to revert to the full model description to examine the

sensitivity of the states and to their initial conditions and to

the parameters . Expanding (27) results in

(33)

Initial conditions follow from (29)

It can be seen from (33) that the sensitivities and remain

constant over the intervals between events. However the evolu-

tion of is influenced by all the and sensitivities.

V. SENSITIVITY BEHAVIOR AT EVENTS

A. Preliminary Concepts

In Section IV, we established (27) and (28) describing the

evolution of the sensitivities and over the intervals be-

tween switching and reset events. To fully describe the sensitiv-

ities though, we must quantify their behavior at these discrete

events that are characteristic of hybrid systems. To determine
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this behavior, we will consider the system at a single event. Ac-

cordingly, attention is focused on the model

(34)

(35)

(36)

which is directly related to the compact DAD model (13)–(16).

A number of comments should be made about this model.

• In this model, the switching and reset events are triggered

by the condition rather than by an element of

passing through zero. This modification helps to identify

the role of the triggering condition. We will later revert to

the situation where the event is described by a condition

.

• Notice that both switching and state resetting occur when

. This is the most general case. Sensitivity be-

havior at independent switching and reset events follows

from this general case and will be discussed later.

• We are investigating a single event. However the extension

to the usual case where there are multiple events, each

separated by a finite time interval, is straightforward.

• Coincident events, where two triggering conditions

and are simultaneously satisfied, are nongeneric.

However the analysis can be extended to such a case. This

is considered at the end of Section V-B.

Define the triggering hypersurface as

We are interested in the sensitivity of trajectories which pass

through . It is convenient to assume that the trajectory starts

from a point where passes through , and proceeds

to a point where . There is no loss of generality

in this assumption. Let be such a

trajectory, which starts from , intersects

at the point , and proceeds to the

point . The intersection point

is called the junction point and is called the junction time. We

define time to be the limit as approaches from below

and as the limit as is approached from above.

The concept of trajectories passing through is important.

Sensitivities cannot be defined for trajectories which are tan-

gential to . Consider such a trajectory. Then there exists an

incremental change in the initial conditions such that the in-

tersection point disappears. But for a different small change in

the intersection point persists. Therefore, at the tangent point

the trajectory is infinitely sensitive to initial conditions. To over-

come this difficulty we make the following assumption.

Assumption 2: Trajectories are transversal to the triggering

hypersurface .

It is also necessary to make the next assumption.

Assumption 3: The triggering function has a unique

normal at points in .

These assumptions are commonly made in the analysis of hy-

brid systems (for example, see [17, Assumption 5.3]). They are

also closely related to the DEDS concept of deterministic simi-

larity which underlies infinitesimal perturbation analysis [11].

The transversality condition ensures that trajectories must

cross , i.e., they cannot be tangential to . The condition is

satisfied at a junction point if

(37)

For the trajectory approaching , we have that at time

where is given by . Also, by

differentiating we obtain

At the limit , the transversality condition (37) becomes

(38)

The transversality condition of Assumption 2 ensures that the

junction point depends continuously on initial conditions [8].

We also need to ensure that the switching and reset events

are consistent with changing sign as is crossed. The

following assumption is therefore made.

Assumption 4: At a junction point ,

, .

This assumption is commonly made to ensure triggering

events do not accumulate [17]. It is generically satisfied for

realistic systems. If it was not satisfied, then the trajectory

could reach an impasse at the triggering hypersurface. Upon

encountering , the algebraic equations would switch from

to . However if , the model would be

forced to switch back to , which may result in switching to

again, and so on.

B. Jump Conditions

We now proceed to develop the conditions which govern the

behavior of trajectory sensitivities at discrete events. First, the

dependence of the junction time on will be established.

That is then used to obtain the desired sensitivity jump condi-

tions.

Based on the model presented in Section V-A, at time

(39)

(40)

where

(41)

Also, in the limit

(42)
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From (42) it follows that

(43)

and from (41)

(44)

where all partial derivatives are evaluated at . Rearranging

(44), taking account of Assumption 1, and substituting into (43)

results in

(45)

Now from (39)

(46)

Also, (34) gives

(47)

Therefore, substituting (46) and (47) into (45) yields

Rearranging gives

(48)

Recall that is the time at which the event is triggered and so is

not influenced by the actual event that is subsequently triggered.

Therefore is also independent of the triggered event.

Notice that if the transversality condition (38) is satisfied,

then the denominator in (48) will be nonzero. Conversely, if the

transversality condition is not satisfied, then (48) breaks down

and the junction time becomes infinitely sensitive to initial

conditions . This behavior reflects the discussion which pre-

ceded Assumption 2.

We now proceed to determine the jump conditions describing

the behavior of the trajectory sensitivities at the discrete event.

Referring to (46), we know that

(49)

Substituting in (47) and rearranging gives

(50)

Similarly, we obtain at

(51)

In this case

where now and satisfy

(52)

Hence

(53)

The jump condition in is given by (50) and (53). But first

we must use (36), which gives

i.e.,

(54)

Using (44) yields

(55)

Subtracting (50) from (53) and using (55) results in the jump

condition

where for clarity we have adopted the notation

(56)

Reusing (50) to eliminate gives

Some further manipulation yields

(57)

where and are given by (55) and (48), respectively, as

(58)

(59)
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and , are given by (56). Differentiating and rearranging

(52) gives

(60)

Equations (57)–(60) together describe the trajectory sensitivity

jump conditions.

In developing the jump conditions, we chose to use an arbi-

trary trigger function . It can be seen that this function

influences the jump conditions through . Reverting back to

the original system description (13)–(16), the trigger function

becomes

for some . Therefore and .

Substituting into (59) gives

(61)

The compact form of the model enabled a neat development

and representation of the jump conditions. However, as was the

case at the end of Section IV, it is helpful to consider the jump

conditions in terms of the full model description.

Consider first (58). It follows from the definition of that

(62)

where

and , follow the same pattern.

Now consider the expansion of (57). Recall that

and likewise for . Therefore

(63)

It can be seen from (63) that

, i.e., that . However, we established

in Section IV that remained constant over the intervals be-

tween events. Therefore, because , it follows

that for all time .

The full model description leads to a useful simplification in

the denominator of (61) [and likewise (59)]

The model (34)–(36) used to develop the jump conditions

described a coincident switching and reset event. Consider the

case where the event involves only the resetting of , i.e., the

algebraic equations do not switch from to , but are defined

by a smooth function . Then would be used for the (implicit)

calculation of in both and in (56). Also, all occurrences

of in (58) and (59) [or alternatively (61)] would be replaced

by .

Now consider a switching event where is not reset, i.e.,

. The reset function reverts to .

It follows from (62) that and the jump condition (57)

becomes

(64)

which is consistent with [25]. Also, with no reset event,

and (64) follows directly

from (49) and (51). Because of the structure of and , only

is updated at such an event, with remaining constant

through the event.

This latter case, with no state resetting, enables an intuitive

interpretation of the jump conditions. Let be a small per-

turbation in initial conditions. The corresponding change in the

component of the junction point will be

and in the junction time . It follows from (49)

and (51) that

where for convenience, the notation and

has been adopted. This relationship is shown graphi-

cally in Fig. 5.

The jump conditions occur as a consequence of the differ-

ence between the times when the nominal and perturbed tra-

jectories reach the triggering hypersurface. Referring to Fig. 5
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Fig. 5. Graphical view of jump conditions.

it can be seen that at time , when the nominal trajectory en-

counters the hypersurface, the perturbed trajectory is at the point

. A further time is required for the perturbed

trajectory to evolve from that point to (a point on the

hypersurface). However, during that time interval , the nom-

inal trajectory moves to the point .

The perturbation must therefore ensure that the per-

turbed trajectory is at the point at time ,

while taking into account the progression of the nominal trajec-

tory. This is illustrated in the example of Section VI-A.

A few comments are in order.

• For clarity, Fig. 5 shows the perturbation at time

. However the actual jump in sensitivity from

to occurs at the junction time . There is no incon-

sistency, however, because is small so linearity can be

assumed.

• The discussion has been based on positive . However

the sign of is unimportant.

• If the junction time is independent of changes in , i.e.,

, or if is unchanged at switching, i.e.,

, then there will be no jump in the sensitivities, i.e.,

.

• Underlying the above discussion of jump conditions is the

fact that the algebraic constraints are always satisfied.

(There may be a switching of constraints at the triggering

hypersurface, however.) The algebraic variables follow

directly from solution of at all times.

• The more general jump conditions (57) do not allow such

a clear interpretation of jump behavior. Similar statements

can be made, though the influence of must be taken into

account.

• It is unlikely that a trajectory would encounter two trig-

gering hypersurfaces simultaneously. However the jump

conditions extend naturally to such a nongeneric situation

by introducing a small delay between the junction times

and then taking the limit as that delay approaches zero.

Note that in setting up the fictitious delay, the ordering of

the hypersurfaces must correspond to the order in which

they would be encountered by the perturbed trajectory.

This implies a knowledge of the perturbation .

VI. EXAMPLES

A. Example 1—Continued

The phase portrait and time-domain response for this example

were presented in Figs. 1 and 2. The sensitivity of that nominal

trajectory to perturbation of , the slope of the steeper switching

surface, is shown in Fig. 6. The two curves of that figure corre-

spond to and . It can be seen that there is zero

sensitivity up to the point where the perturbed switching surface

is first encountered. This is intuitively sensible, as the trajectory

cannot be affected by the switching surface slope before it ac-

tually encounters the surface. At that first switching point and

then at each subsequent switching, both sensitivities

and undergo step changes. The influence of the pertur-

bation diminishes as the equilibrium point is approached.

The analysis of Section III showed that trajectory sensitivities

provide a first-order approximation of the change in a trajectory

that results from parameter changes. The sensitivity of

Fig. 6 is used in Fig. 7 as an illustration. Fig. 7 shows the trajec-

tory corresponding to the nominal parameter value

= 2.75. (This is an enlargement of a portion of Fig. 2.) It also

shows the trajectory which corresponds to the per-

turbed parameter = 3.0. The third curve

uses the sensitivity , evaluated with respect

to the nominal trajectory, to approximate . The ap-

proximation closely matches the perturbed trajectory

over each of the smooth segments of the trajectory,

but diverges when the nominal trajectory switches.
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The approximation and the perturbed trajectory again coincide

when the perturbed trajectory switches.

The mismatch around the switching events is clarified by the

discussion of jump conditions at the end of Section V-B. The

perturbation of the slope parameter from 2.75 to 3.0 results in

a delay in the junction time for each event. The delays are

apparent in Fig. 7, where the switching of lags that of

at each event. The jump conditions at ensure that

the sensitivities accurately reflect trajectory perturbations at and

beyond the delayed junction time . Over the intervening

time interval the sensitivities cannot directly represent per-

turbations.

However, over the switching delay interval , the perturbed

trajectory can be accurately predicted through indirect use of

the sensitivities. A procedure is given in Appendix A. Fig. 8

provides a comparison of the actual trajectory , the

(direct) approximation from Fig. 7, and the approximation ob-

tained using this refinement. The improvement in the approxi-

mation is clearly evident.

B. Example 2—Continued

Figs. 3 and 4 gave the phase portrait and time response of

the nominal trajectory for this example. Fig. 9 illustrates the

sensitivity of that trajectory to perturbation of the coefficient of

restitution . The sensitivities of the algebraic state and the

continuous state are shown. Due to the simple structure of

this example, the sensitivity remains constant between

events. The continuous state is the integral of , so the sen-

sitivity is the integral of the sensitivity . This

can be seen in Fig. 9.

In Fig. 10, the trajectory sensitivity is used to provide

a first-order approximation of the trajectory of obtained when

is perturbed from 0.8 to 0.81. The nominal and perturbed tra-

jectories are shown as and , respectively.

The first order approximation is given by

where the sensitivity is evaluated for the nom-

inal trajectory. The refinement of Appendix A has been used to

improve the estimate over the switching delay intervals.

In this example, the oscillation period, i.e., the interval be-

tween corresponding reset events, decreases over time. In fact,

it approaches zero. As a consequence, a small change in the

coefficient of restitution leads to the nominal and perturbed

trajectories quickly moving out of phase. This can be seen in

Fig. 10. Initially there is an excellent match between and

. However around 5.5 s, the nominal and perturbed

trajectories lose synchronism. The jump conditions still produce

sensitivities which ensure is close to at time

. However, before that time is reached, the nominal tra-

jectory encounters another event, and the sensitivities take an-

other jump. Therefore, beyond 5.5 s, never catches up

to so the approximation is no longer valid.

This is an interesting case in that an equilibrium point is ap-

proached but can never be reached. Instead, the event triggering

times accumulate at a finite time. Beyond that accumulation

Fig. 6. Trajectory sensitivities for Example 1.

Fig. 7. Trajectory approximation for Example 1.

Fig. 8. Refined trajectory approximation for Example 1.

time, the solution is not defined in the usual sense. An alterna-

tive definition is required [26]. A consequence of this behavior
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is that a small increase in results in the accumulation point

being delayed to a time where the nominal trajectory did not

even exist. The perturbed trajectory clearly cannot be approxi-

mated near the delayed accumulation point.

This example was repeated with the sgn function of the

original model replaced by a saturation function

for

for

for .

This modified model approaches the original model as .

However, for any finite an equilibrium point exists and the

solution and trajectory sensitivities are well defined for all time.

In this case, the approximation showed the same initial form

as in Fig. 10. However, once , the error in the

approximation diminished significantly.

C. Example 3—Power System

The small power system of Fig. 11 provides a more practical

example of a system where continuous and discrete dynamics

interact. The active power load has recovery dynamics [27], and

is modeled by

(65)

(66)

where is the load state driving the actual load demand . In

response to a voltage step, the load undergoes an initial transient

step change given by the term , followed by exponential

recovery to the steady-state demand . The rate of recovery

is dictated by the load time constant . In this example, the

reactive power load is zero. Parameter values for the base case

are given in Table I.

An important aim of this example is to illustrate the ability

of the DAD structure (2)–(6) to model logic-based systems.

Therefore, a relatively detailed representation of the automatic

voltage regulator (AVR) of the tap changing transformer has

been adopted. The logic flow of the AVR for low voltages, i.e.,

for increasing tap ratio, is outlined in Fig. 12. The full DAD

model for this system is given in Appendix B. To assist in con-

necting AVR logic with the model, Fig. 12 shows the variables

that are related to particular functions. It is clear that the model

of Appendix B fits the DAD structure (2)–(6). Other power

system control and protection devices have been modeled in a

similar way in [28].

The system was disturbed at s by increasing the

impedance from to . This simulated the loss of

a feeder from the supply point to the transformer. The behavior

of the voltage at bus 3 is shown in Fig. 13, along with the load

demand . The system was clearly stable, although the voltage

underwent a large excursion. The voltage stabilized to a value

that was below the predisturbance level because the transformer

encountered its maximum tap.

Fig. 9. Trajectory sensitivities for Example 2.

Fig. 10. Trajectory approximation for Example 2.

TABLE I
BASE CASE PARAMETER

VALUES

Fig. 11. Power system of Example 3.

Fig. 14 shows the sensitivity of the voltage trajectory to the

parameters and . These sensitivities are used in Fig. 15

to approximate voltage behavior for perturbation of both and

. Fig. 15 shows the trajectory corresponding to

the nominal parameter values = 5, . It also shows



216 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—PART I: FUNDAMENTAL THEORY AND APPLICATIONS, VOL. 47, NO. 2, FEBRUARY 2000

Fig. 12. Transformer AVR logic for increasing tap.

Fig. 13. Voltage and load behavior for Example 3.

the trajectory which corresponds to perturbed pa-

rameters = 5.5 and . The third curve

uses the sensitivities and , evaluated for

the nominal case, to approximate . The procedure

given in Appendix A has been used to estimate behavior over

the periods, i.e., the periods between tapping of the nominal

and perturbed systems. The approximation is clearly very good

along the whole trajectory.

Trajectory sensitivities provide helpful insights in the anal-

ysis of system behavior. Consider first the sensitivity with re-

spect to . It can be seen from Fig. 14 that an increase in

Fig. 14. Trajectory sensitivities for Example 3.

Fig. 15. Trajectory approximation for Example 3.

will lead to an increase in the voltage over the first 80 s of the

trajectory, but after that it will result in a decrease in voltage.

This is consistent with physical intuition. An increase in

corresponds to slower load recovery. During the initial voltage

drop, the load is less than its steady-state value (see Fig. 13).

Therefore, slower load recovery means the load is smaller for

longer, so the voltage is higher. However, over the latter sec-

tion of the transient, whenever the voltage steps up due to a tap

change the load overshoots . So the slower recovery corre-

sponds to the load staying higher for longer and, hence, to re-

duced voltage.

Now consider . From Fig. 14 it can be seen that an in-

crease in leads to a decrease in voltage. Again, this is con-

sistent with intuition. It is clear that the voltage recovery is due

to the increase in the tap ratio. Increasing delays the tap

changes, so the voltage stays lower for longer. The tap delay due

to an increased accumulates with each tap change. There-

fore, the effect on the voltage becomes more pronounced with

each subsequent tap change. This is evident in Fig. 14.



HISKENS AND PAI: TRAJECTORY SENSITIVITY ANALYSIS OF HYBRID SYSTEMS 217

For this simple example, the sensitivities do not provide quali-

tative information beyond that which is intuitively obvious. (Al-

though they do provide quantitative information which is not

otherwise available. For example, it can be seen from Fig. 14

that a 1 s change in would have a larger effect on the voltage

trajectory than a 1 s change in .) However, for more compli-

cated systems where the interpretation of parameter influences

is not so straightforward sensitivities can be extremely useful.

Such a situation is explored in [13].

It is shown in [15] and [25] that sensitivities can be used

as an indicator of the proximity of a trajectory to the stability

boundary. This is based on the fact that trajectories which are

closer to the stability boundary will be more sensitive to param-

eters and initial conditions. This power system example nicely

illustrates the result. Fig. 16 shows the trajectory for three

values of the postdisturbance line impedance , the base

case value of 0.65, along with slightly higher impedances 0.67

and 0.68. It is clear that higher values of line impedance result

in a more stressed less secure system. However, the full signif-

icance of the increase in becomes much more apparent

when the sensitivity of each trajectory to , shown in Fig. 17,

is viewed. When = 0.68 the system is extremely sensi-

tive, indicating close proximity to instability. In fact, the system

is unstable for = 0.69.

VII. NUMERICAL INTEGRATION

A. Introduction

In Section IV, it was shown that the trajectory sensitivities

evolve according to the linear time-varying DA system (27),

(28). This system involves DE’s, along

with algebraic equations. [Recall, however,

that is not interesting, so the number of DE’s is effectively

reduced to .] Therefore, for large systems such

as power systems, the number of equations quickly becomes

prohibitive. Of course, for many applications only a few of the

sensitivities are required. For example, if the sensitivity of the

trajectory to initial conditions and parameters was desired,

then the number of extra DE’s would be ,

along with extra algebraic equations. Even so, the

computational cost may be high.

Fortunately, by using an implicit numerical integration tech-

nique such as trapezoidal integration, the computational burden

of obtaining the trajectory sensitivities can be reduced consider-

ably. The details follow. Section VII-C then discusses the com-

putation of junction points.

B. Trapezoidal Numerical Integration

The trapezoidal approach to numerical integration is quite

standard and can be found in many references. In the power

system context, [29] provides a clear presentation. The appli-

cation to general DA systems is treated rigorously in [30]. A re-

view of the basic ideas highlights a close link between the com-

putation of the trajectory and of the associated sensitivities.

Fig. 16. Variation in voltage response with increasing X .

Fig. 17. Variation in trajectory sensitivity with increasing X .

Consider the DA system (18), (19) which describes behavior

over the periods between events. We repeat the equations here

for convenience

(67)

(68)

The trapezoidal approach approximates the DE’s (67) by a set of

algebraic difference equations coupled to the original algebraic

equations (68), i.e.,

(69)

(70)

where

superscript indexes the time instant ;

superscript indexes the time instant ;

integration time step.

Equations (69) and (70) describe the evolution of the states ,

from time instant to the next time instant . Initial condi-
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tions for the time interval are given by

and .

Notice that (69) and (70) form a set of implicit nonlinear al-

gebraic equations. Therefore, to solve for , given ,

requires the use of a nonlinear equation solver. The Newton

iterative technique is commonly used. Rearranging (69) allows

the algebraic equations to be written

(71)

Equation (71) has the form

which is solved iteratively according to

(72)

where is the Jacobian of with respect to , and has the

structure

(73)

Note that indexes the iterations of the equation solver, and is

not related to the time index . When (72) has converged, the

solution provides and .

Now consider the sensitivity equations (27) and (28). Using

trapezoidal integration, they are approximated by

Rearranging gives

(74)

Therefore, and are obtained as the solution of a linear

matrix equation. However, notice that the matrix to be factor-

ized in solving (74) is exactly the Jacobian (73) used in solving

for and at (72). Furthermore, the solution of (72)

requires the factorization of that Jacobian. Therefore, the fac-

tors of the left-hand matrix in (74) are available as a byproduct

of calculating and . With those factors already avail-

able, the solution of (74) involves little extra computation.

C. Computation of Junction Points

Switching and reset events generically do not coincide with

the time instants of the numerical integration process. However,

for many applications is it important to find the exact time be-

tween integration time steps at which the event occurs. This is

possible through a simple modification to the trapezoidal tech-

nique.

Referring to the compact DAD model (13)–(16), let

trigger an event. Say at time instant , but at

instant . Let be the (unknown) time from instant to

the event. The variable can be found by solving (69) and (70)

with free to vary, but with the extra constraint . Because

the extra variable is matched by an extra constraint, the Newton

iterative technique can again be used to find the solution.

Having found the junction point, the appropriate switches in

and/or update to should be made, then (70) resolved to obtain

the postevent values of the algebraic variables . The postevent

values of and provide the initial conditions for the next sec-

tion of the trajectory. It can be convenient to use the time step

for the first step after the event. This aligns subsequent

points with the specified time step .

VIII. CONCLUSIONS

Hybrid systems are characterized by the interaction between

continuous and discrete-event dynamics. Power systems are an

important example. The paper presents a DAD model which

captures the rich variety of behavior that can be exhibited by

such systems. Generally, because of the nonlinear nonsmooth

behavior of hybrid systems, analysis is reliant on time-domain

simulation. However, simulation can be cumbersome for any-

thing beyond single scenarios. This paper develops trajectory

sensitivities for hybrid systems, as a way of augmenting time-

domain analysis.

Trajectory sensitivity analysis involves linearizing the system

around a nominal trajectory, rather than an equilibrium point. It

quantifies the changes in the system flow that result from pertur-

bations in parameters and/or initial conditions. Calculating tra-

jectory sensitivities over smooth sections of the flow is straight-

forward. An efficient numerical algorithm has been presented.

However, discrete events generically induce jumps in the sen-

sitivities. The paper establishes and explores those jump condi-

tions.

In hybrid systems which exhibit accumulation points, the sen-

sitivity information near an accumulation point may not be very

useful. This is due to loss of event synchronism between the

nominal and perturbed trajectories. However trajectory sensi-

tivities still provide a good first-order approximation over the

finite interval before synchronism is lost.

Trajectory sensitivities provide valuable insights into the

influence of parameters on the dynamic behavior of systems.

Properties which are not obvious from the actual system

response are often evident in the sensitivities. This has been

illustrated in the paper through a number of examples. Further,

the gradient-type information given by trajectory sensitivities

can be used in nonlinear least squares algorithms for appli-

cations such as parameter estimation [14], [31] and stability

assessment [16]. This paper forms a basis for the extension of

these and other applications to hybrid systems.
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APPENDIX A

TRAJECTORY APPROXIMATION REFINEMENT

This appendix suggests a procedure for refining the estimate

of the perturbed trajectory over the period to . For

a given perturbation , the switching delay can be es-

timated from (59). Assume initially that . Referring

to Fig. 5, at time the perturbed trajectory is at the point

. It follows that over the period

to , the perturbed trajectory is given by

At time , the perturbed trajectory switches. In the general

case where the event includes state resetting, we obtain

where refers to the reset value. Using (57), we obtain

(75)

Alternatively, because , (75) can

be written

For the perturbed trajectory switches at , i.e.,

before the nominal trajectory. At , just after switching,

is again given by (75). Over the period to , the

perturbed trajectory in this case is given by

At time we obtain

APPENDIX B

MODEL FOR EXAMPLE 3

The model for the system described by Figs. 11 and 12 is

when

plus real and reactive power balance equations for buses 1 and

3.
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