Trajectory Specification for Terminal Air Traffic: Pairwise Conflict Detection and Resolution

Russ Paielli and Heinz Erzberger NASA Ames Research Center

> AIAA ATIO Conference Denver, CO June 8, 2017

Outline

- Background
- Trajectory Specification
- Conflict detection
- Conflict resolution
- Pairwise conflict test method
- Results
- Concluding Remarks

Introduction

- NASA is developing the Advanced Airspace Concept (AAC) to automate ATC
 - Applies to both enroute and terminal airspace
 - Goes beyond decision support to enable eventual autonomy (little or no human intervention)
- Trajectory Specification is an enhancement of AAC
 - Has near-term application for trajectory prediction error modeling, but
 - Full concept is far-term because it requires new FMS (Flight Management System) standards

Trajectory Specification: Dynamic "4D" RNP

- Required Navigation Performance (RNP) is based on published routes with fixed crosstrack bounds and real-time conformance monitoring
- Trajectory Specification concept is dynamic and adds vertical and along-track (timebased) bounds

Required Navigation Performance (RNP)

Trajectory Specification: Horizontal Bounds

Trajectory Specification: Vertical Bounds

Related Concepts

Joulia and Le Talle (2011-) "4D" contract with elliptical tolerance "bubble" • Fixed tolerances too restrictive in light traffic • Jackson, et al. (2009-) "4D" trajectory datalink (4DTRAD) Allows altitude bounds at several discrete points Allows one required time of arrival (RTA) Works with existing FMSs Does not explicitly bound trajectory at any time

[Trajectory Specification should not be confused with another tube concept that implements "freeways in the sky"]

Trajectory Specification Features

- Each aircraft constrained to a well defined volume of space at each point in time
- Bounds determined by tolerances relative to a reference "4D" trajectory (position as function of time)
- Tolerances can be piecewise linear function of distance along route (function fixed at time of assignment)
- Tolerances cannot be less than aircraft navigational capability allows but can be as large as current traffic situation permits (without a conflict)

Challenges of Automation

- Failsafe operation required if automated system or datalink goes down (cannot depend on a human controller to take over)
- Trajectories with unbounded prediction errors cannot be guaranteed conflict-free for a sufficient period of time (depends on wind modeling error)

Trajectory Specification Benefits

- Can guarantee conflict-free trajectories for a specified period of time (assuming conformance) -- facilitates failsafe operation
- Provides more reliable strategic planning and less reliance on tactical backup systems and tactical maneuvering during normal operation

Basic Operational Concept

- Pilot enters route/intent into Flight Management System
- FMS computes "4D" trajectory prediction
- FMS downlinks predicted trajectory to ATC as request
- ATC assigns tolerances, checks for conflicts
- ATC modifies trajectory if necessary to resolve conflicts
- ATC uplinks assigned trajectory with tolerances
- FMS flies assigned trajectory to specified tolerances

Trajectory Specification Language (TSL) based on XML to be documented in a NASA Technical Memorandum

Objective

To develop a research software prototype and demonstrate the computational feasibility of Trajectory Specification as applied to conflict detection and resolution for terminal air traffic

Conflict Detection

Anywhere within the bounding space, the aircraft should be sufficiently separated from all other flights (at any point in *their* bounding space).

Conflict Detection

Conflict Detection

- Need to ensure minimum required separation for entire bounding space at each point in time
- Much more computation than simple pointwise separation calculations
- Use coarse checks and large time steps to avoid detailed computation when separation is large
- Horizontal separation of bounding areas can be calculated using polygon approximation
- When horizontal separation of bounding areas is insufficient, use gridded sampling method

Definition of Separation Ratio

Minimum separation standard: 3 nmi horizontal or 1,000 ft (1 kft) vertical

> horiz sep ratio = horiz sep / 3 nmi vert sep ratio = vert sep / 1000 ft

separation ratio = max(horiz, vert) sep ratio

< 1.0 means less than separation standard

Combines horizontal and vertical separation into a single scalar metric (for comparison, ranking, ordering)

Plan view of bounding spaces at a point in time

[Each grid point has an altitude range]

Calculate separation ratio for each pair of grid points and record minimum

Conflict Resolution Maneuver Types

- Temporary Altitude
- Speed Reduction
- Reroute
- Takeoff Delay
- Other

Pairwise Conflict Resolution

- Conflict resolution must avoid conflicts with all traffic
- Pairwise conflict resolution is simpler but is a logical first step
- This paper is limited to pairwise conflict resolution, but a future paper will address general conflict resolution in realistic traffic

Test Environment

- Trajectories generated using NASA simulators:
 - Airspace Concepts Evaluation System (ACES)
 - Kinematic Trajectory Generator (KTG)
- One full day of (unresolved) trajectories generated for DFW and DAL airports
 - DFW arrivals routed direct to final approach
 - Default tolerances applied
- Trajectories modified to simulate maneuvers for resolving conflicts

Pairwise Resolution Tests

- 52 unique routes (30 departure, 22 arrival)
- One trajectory to represent each route
- 52 x 51 / 2 = 1326 trajectory pairs
- Each pair time shifted in steps of 30 sec
- 1325 pairwise conflicts resulted
- One flight maneuvered per conflict
- All conflicts successfully resolved
- Run time < 1 sec per pairwise conflict (with parallel processing on an Intel 32-core processor)

Concluding Remarks

- Trajectory Specification is dynamic "4D" RNP (Required Navigation Performance)
- Each flight constrained to a well-defined volume of space at each point in time
- Tolerances can be as large as current traffic situation permits (without a conflict)
- Makes ATC more failsafe and less dependent on backup systems and tactical maneuvers
- Computational feasibility of pairwise conflict detection and resolution demonstrated

Questions?

Russ.Paielli@nasa.gov

Backup Slides

Simplified Longitudinal Flight Control

Enhanced Longitudinal Flight Control

Altitude Bounds Example

Terminal Area Spacing and Separation Requirements

- Terminal areas (airspace within ~40 nmi of a major airport) requires both
 - \circ In-trail spacing for wake vortex (3 6 nmi) and
 - o general separation (3 nmi lateral or 1000 ft vertical)
- Delay maneuvers for wake vortex spacing also resolve most general separation conflicts
- A proven strategy is to first delay for the necessary arrival spacing, then apply other maneuvers when necessary to achieve general separation

Default Tolerances

- Cross-track: 0.6 nmi constant
- Vertical:
 - Departures: 500 ft constant
 - Arrivals: 500 increasing to 800 ft

• Along-track:

Departures: 0.2 increasing to 1.0 nmi
Arrivals: 1.0 decreasing to 0.2 nmi

Terminal Areas

- Class B airspace within approximately 40 n. miles (nmi) of a major airport
- Managed in US by Terminal Radar Approach Control facilities (TRACONs)
- Minimum separation standard: 3 nmi horizontally or 1,000 ft vertically
- Have more constraints than enroute airspace and have more and larger turns
- Terminal ATC is currently very tactical, with many heading vectors and speed/altitude clearances
- Throughput limited mainly by wake-vortex spacing requirements (3-6 nmi, depending on weight classes)

Background

- Air Traffic Control (ATC) is currently done by human controllers with radar displays and voice communication
- Controllers are human and make mistakes (over 1,800 operational errors in one recent year, including 55 serious cases)
- Automation can reduce human error and increase airspace capacity but is difficult due to complexity and safety criticality

Trajectory Prediction and Specification

Maneuver Type Counts

maneuvered: other:	arr arr	arr dep	dep dep	dep arr	sum
temp alt	11	245	311	282	849
speed dec	173	0	2	0	175
reroute	55	3	27	79	164
new level alt	5	22	53	11	91
takeoff delay	0	0	40	6	46