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Trajectory tracking and path following for
under-actuated marine vehicles

C. Paliotta, Student Member, IEEE, E. Lefeber, Member, IEEE, K.Y. Pettersen, Fellow, IEEE J. Pinto,

M. Costa and J. Sousa

Abstract—In this paper we present a control strategy
for trajectory tracking and path following of generic paths
for under-actuated marine vehicles. Our work is inspired
and motivated by previous works on ground vehicles. In
particular, we extend the definition of the hand position
point, introduced for ground vehicles, to autonomous sur-
face vehicles (ASVs) and autonomous underwater vehicles
(AUVs) and then use the hand position point as output
for a control strategy based on the input-output feedback
linearization method. The presented strategy is able to
deal with external disturbances affecting the vehicle, e.g.
constant and irrotational ocean currents. Using Lyapunov
analysis we are able to prove that the closed-loop system has
an external dynamics which is globally exponentially stable
(GES) and an internal dynamics which has ultimately
bounded states, both for the trajectory tracking and the
path following control problems. Finally, we present a
simulation case study and experimental results in order
to validate the theoretical results.

I. INTRODUCTION

Autonomous vehicles have drawn the attention of

researchers for the last decades. The use of autonomous

vehicles is appealing for several real world applications.

For instance, autonomous vehicles are particularly suit-

able for execution of tasks which are dull, hard or impos-

sible to execute for humans. Furthermore, autonomous

vehicles are interesting for different fields, and include

unmanned vehicles for ground applications (unmanned

ground vehicles-UGV), unmanned vehicles for aerial

applications (unmanned aerial vehicles-UAV) and un-

manned marine vehicles, that is, autonomous surface

vehicles (ASV) and autonomous underwater vehicles
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(AUV). In each one of the aforementioned fields there

are many examples of applications. We have autonomous

cars which are leading towards profound changes in our

concept of transportation [1, 2]. We have extensive use

of UAVs for exploration, monitoring and surveillance

tasks [3–5]. Also, autonomous vehicles have a large

potential in applications intended to execute tasks in

areas which are inaccessible for humans, for instance

space exploration [6–8], and Arctic [9] or deep water

exploration [10–12].

Marine vehicles, both ASVs and AUVs, are generally

characterized by challenging operational conditions. In

fact, ocean currents and environmental disturbances,

generally referred to as sea loads [13], may seriously

influence the success of a mission. Furthermore, ASVs

and AUVs are generally under-actuated vehicles, i.e.,

the number of independent control inputs is less than

the degrees of freedom in the configuration space. This

characteristic is due to common design rules. In fact,

commercial marine vehicles are equipped just with fixed

stern propellers and a steering rudder, or with two

azimuth propellers. Sometimes they also have tunnel

thrusters for lateral motion during docking, but such

actuators work only at low speeds [14]. Consequently,

the control design for this class of vehicles is challenging

due to the absence of a direct actuation in the side

direction (sway direction). The challenge is even harder

when environmental disturbances affect the system.

Among the several control problems which are studied

for marine vehicles, particularly interesting and challeng-

ing are the trajectory tracking and path following control

problems. These are particularly relevant for several

ASV and AUV applications, e.g., sea-bed scanning or

pipeline inspection tasks [10]. The trajectory tracking

control problem deals with the design of a controller

which steers and stabilizes a vehicle to a geometric path

that is parametrized in time, i.e., the vehicle has to follow

a geometric path respecting a time constraint. Several

works have dealt with this problem, proposing different

approaches [15–23]. The work [21] presents a back-

stepping controller for the trajectory tracking problem

for an ASV. The result is extended in [22] considering



the effect of environmental disturbances. The work [19]

presents a Lyapunov’s direct method approach to solve

the trajectory tracking problem of ASVs. However, all

[19, 21, 22] require the well-known condition of per-

sistence of excitation (PE), i.e., the angular velocity of

the vehicle has to be constantly excited. The controllers

presented in [18, 20] do not need the PE condition.

The path following control problem differs from

the trajectory tracking control problem because of the

parametrization of the geometric path. That is, for the

path following problem the path is left unparametrized

[24–31] or parametrized by a parameter which is inde-

pendent on the time [32–35]. A well-known guidance

control strategy for path following of straight lines is

the line-of-sight (LOS) guidance [24, 25, 27, 36]. The

LOS guidance is based on the approach of experienced

helmsmen who steer the vessel towards a point lying at

a constant distance ahead of the ship along the desired

path. The LOS approach has been further improved with

an integral action in order to be able to counteract

environmental disturbances [26, 28, 37]. A LOS-like

guidance approach for ASV to follow curved paths

is presented in [35], where a linear observer is used

to estimate and counteract the effect of an unknown

constant ocean current.

The results presented in this paper are based on a

different approach to the control problem of trajectory

tracking and path following of marine vehicles. In fact,

all the aforementioned works have in common that the

vehicle has to follow or track a path with respect to

(w.r.t.) the center of mass or the pivot point. The latter

is a point on the center-line of the vehicle such that

its lateral motion (sway motion) is not affected by any

of the control inputs. We here use a different approach

where we extend the definition of hand position, which

has been used for ground vehicles in [38, 39], to ma-

rine vehicles. The definition of the hand position is

further discussed below, but briefly described it is a

point lying along the center-line of the vehicle ahead

of the pivot point. Choosing the hand position motion as

output of our system and using an input-output feedback

linearizing controller, we perform a change of inputs

to our system, which, as typical for feedback-linearized

systems, leads to an external dynamics which is linear,

and in particular to a double integrator. Having a linear

external dynamics facilitates the control design, and one

of our motivations for this is that it is then possible

to apply well developed formation control strategies for

multi-agent systems consisting of under-actuated marine

vehicles, a topic within which there exists very few

results. One example of the usefulness of this approach is

given in [40], where we have presented a synchronization

strategy for marine vehicles based on the hand position

point and the input-output feedback linearizing controller

presented in [41]. The price to pay for a linear external

dynamics is a nonlinear internal dynamics which is

affected by the states of the external dynamics.

In this paper we consider the model of an ASV or

an AUV moving in the horizontal plane affected by

an environmental disturbance, i.e., an unknown constant

ocean current. Note that, as opposed to UGVs which

can be described by a kinematic model, for ASVs and

AUVs we need to consider also the dynamics, since

these vehicles have uncontrolled dynamics. Furthermore,

for marine vehicles the effect of ocean currents are

significant, and the control approach therefore needs

to handle environmental disturbances. We address the

problem of trajectory tracking and path following control

for straight lines and curved paths. For the path following

case we present a novel parametrization of the path that

is dependent on the distance of the vehicle from the path.

The proposed control strategy is based on the definition

of the hand position point and an input-output feedback

linearizing controller. We present a change of coordinates

which is not standard for the input-output feedback

linearizing approach, but that allows us to obtain a

transformed model where the ocean current affects the

system at the level of the linear external dynamics and

can be counteracted with a simple integral action. We

show that the integral state is able to give an estimate

of the ocean current. We prove that our output, i.e., the

hand position point, converges to the desired trajectory

(or path) globally exponentially while the states of the

internal dynamics are ultimately bounded. We show also

that for the case of straight line paths we have almost-

global asymptotic stability (AGAS) of the closed-loop

system. Preliminary results have been presented in [41],

while we here extend these from straight line to generic

paths and include a new strategy for the path following

control problem. Finally, we present experimental results

obtained from a sea trial in which we have tested the

hand position based path following control strategy for

straight line paths.

The paper is organized as follows: Section II presents

the model of the class of vehicles which we consider;

in Section III we describe our control approach; in Sec-

tion IV we formalize the trajectory tracking control prob-

lem and give the control objectives; Section V presents

the proposed controller; in Section VI we present the

main result for trajectory tracking in the form of a

theorem and present a rigorous mathematical proof; then

Section VII presents our approach applied to the path

following problem, our proposed strategy and the result

in the form of a theorem together with a rigorous proof;
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in Section VIII we present simulation results using the

DUNE simulator [42] for the case of path following of

straight lines. This case study is used as a benchmark for

the experimental results presented in Section IX; finally

in Section X the conclusions are given.

II. VEHICLE MODEL

This section briefly describes the 3 degrees of freedom

(DOF) maneuvering model for the motion of an ASV or

an AUV moving in the horizontal plane. For more details

the reader is referred to [36].
First, we list the assumptions on which the model is

based.

A. Assumptions

Assumption 1. The motion of the vehicle is described

in 3 DOF, i.e., surge, sway, yaw.

Assumption 2. The vehicle is port-starboard symmetric.

Assumption 3. The hydrodynamic damping is linear.

Remark 1. Nonlinear damping is not considered since it

would increase the complexity of the controller without

contributing to improving the result. In particular, the

nonlinear damping forces have a passive nature, and

therefore the stability of the vehicle will be further

improved by the nonlinear damping.

Assumption 4. The ocean current in the inertial frame

V = [Vx, Vy]
T is constant, irrotational and bounded,

i.e., ∃Vmax > 0 such that
√

V 2
x + V 2

y ≤ Vmax.

B. The Vessel Model

The North-East-Down (NED) frame convention [36]

for the inertial frame I is used. The position and the

orientation of the vehicle, i.e., the pose, in the NED

frame are given by the vector η = [x, y, ψ]T . The

velocities in the body frame are given by ν = [u, v, r]T ,

which are the surge velocity, the sway velocity and

the yaw rate, respectively (see Figure 1). The rotation

between the body frame and the inertial frame is given

by the rotation matrix R

R =

[
cos(ψ) − sin(ψ) 0
sin(ψ) cos(ψ) 0

0 0 1

]

. (1)

The vector V = [Vx, Vy, 0]
T represents the ocean current

in the NED frame. In the body frame we have that the

ocean current is vc = RTV. The motion of an ASV or

an AUV moving in a horizontal plane, is given by the

following 3 DOF maneuvering model given in [36]:

η̇ = Rνr +V (2a)

Mν̇r +C(νr)νr +Dνr = Bf , (2b)

y
b

x
bX

Y

p

y

x

u
r

CG
v
r

Ψ 

V

V
x

V
y

Fig. 1: Vehicles’ states.

where νr = [ur, vr, r]
T = ν − vc is the vector of the

relative velocities in the body frame. Then f = [Tu, Tr]
T ,

where Tu is the thruster force and Tr is the rudder

angle. Note that f ∈ R
2 and therefore the vehicle is

under-actuated in its configuration space R
3. According

to Assumptions 1-3, the matrices M,D,B have the

following structure

M ,

[
m11 0 0
0 m22 m23
0 m23 m33

]

;D ,

[
d11 0 0
0 d22 d23
0 d32 d33

]

;B ,

[
b11 0
0 b22
0 b32

]

.

(3)

The mass matrix M = MT > 0 includes the hydro-

dynamic added mass. The matrix D gives the linear

damping coefficients, and B ∈ R
3×2 is the actuator con-

figuration matrix. The Coriolis matrix C, which includes

the Coriolis and centripetal effects, can be derived from

M as shown in [36]. For the body fixed frame b we

consider the following assumption to hold

Assumption 5. The body-fixed coordinate frame b (body

frame) is located at a point (x∗P , 0), at a distance x∗P
from the vehicle’s center of gravity (CG) along the

center-line of the ship. This point (x∗P , 0) is chosen to

be the pivot point, i.e., such that M−1Bf = [τu, 0, τr]
T

when the model (2) is written with respect to this point.

Remark 2. The pivot point (x∗P , 0) satisfying Assump-

tion 5 always exists for ships and AUVs with the center of

mass located on the centerline of the vehicle [36]. This

is implied by Assumption 2. Furthermore, the body-fixed

frame can always be translated to a desired location x∗P
[36].
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For convenience, we rewrite (2) in component form

ẋ =ur cos(ψ)− vr sin(ψ) + Vx (4a)

ẏ =ur sin(ψ) + vr cos(ψ) + Vy (4b)

ψ̇ =r (4c)

u̇r =Fur
(vr) + τu (4d)

v̇r =X(ur)r + Y (ur)vr (4e)

ṙ =Fr(ur, vr, r) + τr. (4f)

The expressions for Fur
(ur), Fr(ur, vr, r) are given in

Appendix A. Furthermore, X(ur) = −X1ur + X2,

Y (ur) = −Y1ur − Y2 and X1, X2, Y1, Y2 are reported

in Appendix A. We consider the following assumption

to hold:

Assumption 6. The following bounds hold on Y1, Y2

Y1 >0, Y2 > 0. (5)

Remark 3. Note that Y1, Y2 > 0 implies Y (ur) < 0.

This is a natural assumption since Y (ur) ≥ 0 corre-

sponds to the situation of unstable sway dynamics. That

is, a small perturbation applied along the sway direction

would cause an undamped motion, which is unfeasible

for commercial marine vehicles by design.

III. HAND POSITION: LINE OF REASONING

Before describing the trajectory tracking problem,

in this section we present our different approach to

the general control problem of a marine vehicle. In

particular, we present the considerations which justify

a different choice of the output for the system described

by (4) compared to previous literature. In previous works

on trajectory tracking of ASVs and AUVs the output of

the system has been chosen as either the center of mass

or the pivot point p = [x, y]T , which was then defined as

the origin of the body-fixed frame (cf. Fig. 2). Inspired

by the work of Lawton and Beard [39], we choose the

motion of a certain point on the center line of the vehicle,

which we call the hand position, as the output of the

system.

The work [39] deals with the control problem of first-

order non-holonomic vehicles, in particular unicycles

whose model is

ẋ =u1 cos(ψ) (6a)

ẏ =u1 sin(ψ) (6b)

ψ̇ =u2. (6c)

where u1, u2 are the control inputs, pgv = [x, y]T is

the position in the global frame and ψ is the yaw angle.

In particular, u1 is the forward velocity and u2 is the

yaw rate. The model (6) is similar to (4a-4c). They

y
b

x
b

h

X

Y

p

y

x

ξ
1

ξ
2

r

u
r

r l

U

u
r

Fig. 2: The hand position point.

differ just because of the under-actuated state vr which

is characterized by the uncontrolled dynamics (4e), and

because of the ocean current that affects the system. Note

also that (4) has control inputs in the surge and yaw

directions like in (6), but on the dynamic level instead

of on a purely kinematic level.

The aforementioned similarities between the kine-

matic model of unicycles and ASVs and AUVs motivate

us to choose a different output from the commonly used

pivot point for AUVs and ASVs. Based on this, we

extend the definition of the hand position point to marine

vehicles and similarly to [39] by defining h = [ξ1, ξ2]
T

with

ξ1 =x+ l cos(ψ) (7)

ξ2 =y + l sin(ψ), (8)

where x, y give the position of the pivot point in the

NED frame, ψ is the yaw angle and l > 0 is a constant.

An illustration of the hand position point is given in

Figure 2. For practical applications the constant l may be

chosen such that the point h coincides with the position

of a certain sensor of the vehicle. For instance, in case

of an exploration mission, h may be chosen similar to

the position of a camera, such that h tracks a prescribed

path in order to take specific images of the area which is

explored. From Figure 2 it is also clear that the point h

is indirectly actuated by the control inputs acting on p.

In particular, note that an actuation on p along the surge

direction generates an actuation in the surge direction of

h. Then, an actuation around the yaw axis in p generates

an actuation in the sway direction of h, which is directly

proportional to the constant l. Note that we therefore

have two indirect control inputs available which actuate

the point h with a linear motion in two perpendicular

4



directions, while in p we have available two control

inputs which generate motion in the linear direction of

surge and in the rotational direction of yaw, respectively.
The next step is to apply the output feedback lineariza-

tion method [43] with h chosen as output. Note, how-

ever, that the input-output feedback linearization method

[43] cannot be straightforwardly applied, but needs to

be adjusted because of the unknown ocean current that

affects the system. This adjustment is described later

in this section. First, we need to check if (4) is input-

output feedback linearizable with output h, i.e, we need

to check if the vector relative degree ρ = [ρξ1 , ρξ2 ]
T is

well defined [43] . Deriving ξ1, ξ2 twice we obtain
[
ξ̈1

ξ̈2

]

=
[
cos(ψ) − sin(ψ)
sin(ψ) cos(ψ)

] [
Fu(v,r)−vr−lr

2

ur+X(u)r+Y (u)v+Fr(u,v,r)l

]

+
[
cos(ψ) −l sin(ψ)
sin(ψ) l cos(ψ)

]

︸ ︷︷ ︸

B(ψ)

[
τu
τr

]
. (9)

From (9), we see that the system has a well-defined

vector relative degree since ρξ1 = ρξ2 = 2 for l 6= 0,

since B(ψ) is non-singular for l 6= 0. Note that l = 0
makes B(ψ) singular and therefore the system does not

have a well-defined relative degree when the pivot point

is chosen as output.
Now we define the following change of coordinates

z1 =ψ (10a)

z2 =r (10b)

ξ1 =x+ l cos(ψ) (10c)

ξ2 =y + l sin(ψ) (10d)

ξ3 =ur cos(ψ)− vr sin(ψ)− rl sin(ψ) (10e)

ξ4 =ur sin(ψ) + vr cos(ψ) + rl cos(ψ). (10f)

Note that we cannot choose ξ3 = ξ̇1, ξ4 = ξ̇2 since this

choice would imply that ξ3, ξ4 are functions of the ocean

current, which is unknown. Our change of coordinates

results in ξ3 = ξ̇1 − Vx, ξ4 = ξ̇2 − Vy . Therefore, ξ3, ξ4
are the relative velocities of the vehicle in the global

frame.
Applying (10), (4) becomes

ż1 =z2 (11a)

ż2 =Fz2(z1, ξ3, ξ4) + τr (11b)
[
ξ̇1

ξ̇2

]

=
[
ξ3
ξ4

]

+
[
Vx

Vy

]

(11c)
[
ξ̇3

ξ̇4

]

=
[
Fξ3

(z1,ξ3,ξ4)

Fξ4
(z1,ξ3,ξ4)

]

+
[
cos(z1) −l sin(z1)
sin(z1) l cos(z1)

] [
τu
τr

]

(11d)

where
[
Fξ3

(·)

Fξ4
(·)

]

=
[
cos(ψ) − sin(ψ)
sin(ψ) cos(ψ)

] [
Fur (·)−vrr−lr

2

urr+X(·)r+Y (·)vr+Fr(·)l

]

(12)

and Fz2(z1, ξ3, ξ4) is obtained from Fr(ur, vr, r) substi-

tuting ur = ξ3 cos(z1)+ ξ4 sin(z1), vr = −ξ3 sin(z1)+
ξ4 cos(z1) − z2l, and r = z2. Note that choosing

ξ3 6= ξ̇1, ξ4 6= ξ̇2 in (10) is not a standard approach

for input-output linearization. However, this choice is

necessary to make ξ3, ξ4 independent on the unknown

ocean current. Note also that with this choice for ξ3, ξ4
the environmental disturbance is affecting the system at

the level of the linear external dynamics where, as it

becomes clear from the next sections, it is possible to

counteract it using an integral action.

Now we apply the following change of input in order

to linearize the external dynamics
[
τu
τr

]

=
[
cos(ψ) −l sin(ψ)
sin(ψ) l cos(ψ)

]
−1 [

−Fξ3
(z1,ξ3,ξ4)+µ1

−Fξ4
(z1,ξ3,ξ4)+µ2

]

.

(13)

The terms µ1, µ2 in (13) are new inputs which are to

be defined in Section V in order to solve the trajectory

tracking problem. Substituting (13) in (11) we obtain

ż1 =z2 (14a)

ż2 =−
((
Y1 −

X1−1
l

)
U cos(z1 − φ) + Y2 +

X2
l

)
z2

−
(
Y1
l
U cos(z1 − φ) + Y2

l

)
U sin(z1 − φ)

− µ1 sin(z1)
l

+ µ2 cos(z1)
l

(14b)

ξ̇1 =ξ3 + Vx (14c)

ξ̇2 =ξ4 + Vy (14d)

ξ̇3 =µ1 (14e)

ξ̇4 =µ2 (14f)

where

U =
√

ξ23 + ξ24 (15)

φ =atan2

(
ξ4
ξ3

)

. (16)

Note that z1 appears only as an argument of trigonomet-

ric functions with period 2π. Therefore, we can consider

(14a-14b) to take values on the manifold M = S × R

where S is the one-dimensional sphere.

The main advantage of choosing h as output is clear

from (14). In fact, the transformed model (14) is char-

acterized by a linear external dynamics (14c-14f) and

a nonlinear internal dynamics (14a-14b) as common for

input-output linearized systems. Therefore, as opposed to

considering the model (2), we can consider the external

dynamics, which is linear, for control purposes. The

price to pay is clearly the fact that the inputs µ1, µ2,

which are to be designed in order to fulfill the control

objectives, are affecting also the internal dynamics (14a-

14b), and we have to carefully check the internal stability

properties of the states z1, z2.
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IV. CONTROL OBJECTIVES

In this section the trajectory tracking control problem

is formalized. Based on the arguments in Section III,

our control objective is to make the point h follow an

assigned generic trajectory. Without loss of generality

we consider a trajectory which starts at the origin of

the NED frame. We consider the desired trajectory

Γ(t) = {(ξ1d(t), ξ2d(t), ξ3d(t), ξ4d(t))|t ∈ R
+} to be

parametrized by the time t and where ξ̇1d = ξ3d ,

ξ̇2d = ξ4d . We consider the following assumption to

hold:

Assumption 7. There exist constants

ξ
3
, ξ̄3, ξ4, ξ̄4, ξ

∗

3d
, ξ̄∗3d , ξ

∗

4d
, ξ̄∗4d such that

ξ
3
≤ξ3d(t) ≤ ξ̄3 (17a)

ξ
4
≤ξ4d(t) ≤ ξ̄4 (17b)

ξ∗
3d

≤ξ̇3d(t) ≤ ξ̄∗3d (17c)

ξ∗
4d

≤ξ̇4d(t) ≤ ξ̄∗4d . (17d)

Remark 4. Assumption 7 implies that the desired linear

velocity and acceleration of the vehicle are upper and

lower bounded. The lower bound on the velocity is nec-

essary for the under-actuated vehicle to be controllable.

The upper bound on the velocity is required for the

desired linear velocity to be bounded, and thus create

a feasible trajectory. The bounds on the acceleration

are necessary in order to have a smooth motion of the

vehicle.

The control objectives can be formalized as

lim
t→∞

(ξ1 − ξ1d(t)) = 0 (18a)

lim
t→∞

(ξ2 − ξ2d(t)) = 0 (18b)

lim
t→∞

(ξ3 − (ξ3d(t)− Vx)) = 0 (18c)

lim
t→∞

(ξ4 − (ξ4d(t)− Vy)) = 0. (18d)

Note that (18c-18d) require the relative velocities ξ3, ξ4
in the global frame to converge to the values ξ3d −
Vx, ξ4d − Vy . This is necessary because we want the

absolute velocities in the NED frame to converge to

ξ3d , ξ4d , which allow the vehicle to track the desired

trajectory Γ(t). Note that (18c-18d) depend on Vx, Vy
which are unknown, however, as discussed in Section I,

we cope with this by introducing an integral action in

our controller.
We consider the following assumption to hold

Assumption 8. The total relative velocity is such that

Ud =
√

(ξ23d − Vx)2 + (ξ4d − Vy)2 > 0. Furthermore,

the vehicle’s thrusters provide enough power in order to

overcome the ocean current disturbance.

Remark 5. This is a necessary assumption in order

to have forward motion of the vehicle, which again

is necessary for the controllability of under-actuated

marine vehicles.

Remark 6. Note that Assumptions 4 and 7 imply that

Ud ≤ Ud ≤ Ūd, where Ud, Ūd are constants.

V. THE CONTROLLER

In this section we present our choice for the control

inputs µ = [µ1, µ2]
T in (14) which solve the control

problem described in Section IV. In order to make the

point h track the desired trajectory Γ(t) we choose

µ1 =− kvx(ξ3 − ξ3d)− kpx(ξ1 − ξ1d)

− kIx(ξ1I − ξ1dI ) + ξ̇3d (19a)

µ2 =− kvy (ξ4 − ξ4d)− kpy (ξ2 − ξ2d)

− kIy (ξ2I − ξ2dI ) + ξ̇4d (19b)

where kpx , kpy , kvx , kvy , kIx , kIy are positive real gains,

ξiI =
∫ t

0
ξi(τ)dτ where i ∈ {1, 2, 1d, 2d}. The integral

action in (19) is necessary to reject the constant distur-

bance, i.e., the ocean current V, affecting the system

[44].

VI. MAIN RESULT

The main result is presented in this section. The

following theorem gives the conditions under which the

control objectives (18a) are fulfilled using the controller

(13).

Theorem 1. Consider an under-actuated marine vehicle

described by the model (4). Consider the hand position

point h = [ξ1, ξ2]
T = [x+l cos(ψ), y+l sin(ψ)]T , where

[x, y]T is the position of the pivot point of the ship, l is a

positive constant and ψ is the yaw angle of the vehicle.

Then define Ud =
√

(ξ3d − Vx)2 + (ξ4d − Vy)2 > 0
as the desired relative velocity magnitude and φ1 =

arctan
(
ξ4d−Vy

ξ3d−Vx

)

as the crab angle. If Assumptions 1-8

are satisfied and if

0 <Ūd <
Y2

Y1
(20)

kvi >0, kpi > 0, kIi > 0, i ∈ {x, y} (21)

kvikpi >kIi i ∈ {x, y} (22)

l >max

{
m22

m23
,−X2

Y2

}

(23)

Ū∗

d ≤ 2min{a(d− c), b}
Y1Ūd

l
+ 2

(
Y1 − X1−1

l

) (24)

then the controller (13), where the new inputs

µ1, µ2 are given by (19), guarantees the achieve-

ment of the control objectives (18). In particular,
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(ξ1, ξ2, ξ3, ξ4) → (ξ1d , ξ2d , ξ3d , ξ4d) globally expo-

nentially and (z1, z2) are globally ultimately bounded.

Furthermore, the steady state values of the integral

variables give an estimate of the ocean current:

Vx = lim
t→∞

kvx (ξ1I (t)−ξ1Id
(t))

kIx
(25a)

Vy = lim
t→∞

kvy (ξ2I (t)−ξ2Id
(t))

kIy
. (25b)

Remark 7. Notice that we assume an unknown ocean

current and therefore also the crab angle φ, which is

necessary in order to counteract the currents and follow

the trajectory, is unknown. However, the integral action

in (13) takes care of compensating for the unknown value

of the constant disturbance.

Proof. First of all we define the following change of
coordinates

z̃1 = z1 − φ1, ξ̃1I = ξ1I −

∫ t

0

ξ1ddτ −
kIxVx

kvx
, (26a)

z̃2 = z2 − φ̇1, ξ̃2I = ξ2I −

∫ t

0

ξ2ddτ −
kIyVy

kvy
, (26b)

ξ̃1 = ξ1 − ξ1d , ξ̃4 = ξ4 − (ξ4d − Vy) , (26c)

ξ̃2 = ξ2 − ξ2d , ξ̃3 = ξ3 − (ξ3d − Vx) . (26d)

Defining the vectors z̃s = [sin(z̃1), z̃2]
T , ξ̃ =

[ξ̃1I , ξ̃2I , ξ̃1, ξ̃2, ξ̃3, ξ̃4]
T , the closed-loop system be-

comes

˙̃z =Hz̃(z̃1)z̃s +G(z̃, ξ̃3, ξ̃4)ξ̃ +∆(φ̇1, φ̈1, z̃1) (27a)

˙̃
ξ =Hξ̃ ξ̃ (27b)

where G(·) is reported in Appendix A and

Hz̃(z̃) =
[

0 1
−(c cos(z1)+d) −(a cos(z1)+b)

]
(28)

∆(φ̇1, φ̈1, z̃1) =
[

0
δ(φ̇1,φ̈1,sin(z̃1))

]

(29)

δ(·) =− (a cos(z̃1) + b)φ̇1 + φ̈1

+ (ξ̇4d cos(z̃1)− ξ̇3d sin(z̃1)) cos(φ1)

+ (−ξ̇4d sin(z̃1) + ξ̇3d cos(z̃1)) sin(φ1) (30)

a =

(

Y1 −
X1 − 1

l

)

Ud b =Y2 +
X2

l
(31)

c =
Y1U

2
d

l
d =

Y2Ud
l

(32)

Hξ̃ =






0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

−kIx 0 −kpx 0 −kvx 0
0 −kIy 0 −kpy 0 −kvy




 . (33)

Assumption 6 implies c, d > 0 and (20) implies d > c ∀t.
We also have a, b > 0 ∀t because of (23). Note also that

from Ud ≤ Ud ≤ Ūd we have ā > a > a, c̄ > c > c, d̄ >
d > d with ā, a, c̄, c, d̄, d positive constants. Finally, we

have also that δ ≤ δ̄ since δ is a continuous function of

bounded signals. We now study the stability properties of

the external dynamics (27b) and the tracking dynamics

(Equation (27a) with G(z̃, ξ̃3, ξ̃4)ξ̃ = 0) and then the

stability properties of the total system (27).

The external dynamics

The equilibrium point of (27b) is ξ̃ = 0. The matrix

Hξ̃ is Hurwitz for kvi , kpi , kIi respecting (21-22).

Remark 8. From the integral states we obtain an

estimate of the unknown ocean current when the steady

state condition is reached. In particular, we have (25).

The tracking dynamics

Consider the

˙̃z1 =z̃2 (34a)

˙̃z2 =− (a cos(z̃1) + b)z̃2 − (c cos(z̃1) + d) sin(z̃1)

+ δ(φ̇1, φ̈1, z̃1). (34b)

The subsystem (34) does not have an equilibrium point

at the origin due to the presence of the disturbance δ(·).
Thus, we study the ultimately boundedness of the states

z̃1, z̃2.
Define the following Lyapunov function candidate

(LFC)

W =
1

2
z̃Ts
[
a2+c a
a 1

]

︸ ︷︷ ︸

Pzs

z̃s + (ab+ d)(1− cos(z̃1)). (35)

We have that W > 0 ∀(cos(z̃1), sin(z̃1), z̃2) ∈ M −
{[1, 0, 0]} and W = 0 only for (cos(z̃1), sin(z̃1), z̃2) =
(1, 0, 0). The time derivative is

Ẇ = − z̃
T
s

[
a(d+c cos(z̃1)) 0

0 b

]
z̃s +

∂W

∂z̃s
∆z̃

+ z̃
T
s

[
2ȧa+ċ ȧ

ȧ 0

]
z̃s + (ȧb+ ḋ)(1− cos(z̃1)).

(36)

Note that ȧ, ċ, ḋ all depend on U̇d. Since U̇d ≤ Ū∗

d due to

Assumptions 7-8, we have |ȧ| ≤ ā∗, |ċ| ≤ c̄∗, |ḋ| ≤ d̄∗.

Then we have

Ẇ ≤ − z̃
T
s

[
a(d−c) 0

0 b

]

︸ ︷︷ ︸

Qz̃

z̃s +
∂W

∂z̃s
∆z̃

1

2
(|2ȧ+ ċ|+ |ȧ|)

︸ ︷︷ ︸

ω

‖z̃s‖
2 + (ā∗

b+ d̄
∗)(1− cos(z̃1)).

(37)

From the definition of ∆z̃ we have that
∥
∥
∥
∥

∂W

∂z̃s

∥
∥
∥
∥
‖∆z̃‖ ≤ α1δ̄‖z̃s‖ (38)
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where α1 = max{1, a} and δ̄ is the upperbound of δ(t),
i.e. δ(t) ≤ δ̄ since δ(t) is function of bounded signals.

Then we obtain

Ẇ ≤− (λmin
Qz̃

− ω)
︸ ︷︷ ︸

σ

‖z̃s‖2 + α1δ̄‖z̃s‖+ 2
(
ā∗b+ d̄∗

)

(39)

where λmin
Qz̃

= min{a(d− c), b} is the minimum eigen-

value of Qz̃ . We have σ > 0 when (24) holds. Thus we

obtain

Ẇ ≤− (1− θ)σ‖z̃s‖2 < 0 (40)

∀‖z̃s‖ ≥
α1δ̄ +

√

8σ
(
ā∗b+ d̄∗

)
− α2

1

2θσ

where 0 < θ < 1.

The important conclusion which we can draw from

the considerations above is that the state z̃2, which is the

only one that may grow unbounded on the manifold M,

stays bounded when the external dynamics is at steady

state.

Stability of the complete system

Since (27b) is GES, we have two positive definite

matrices Pξ, Qξ such that they satisfy the Lyapunov

equation HT
ξ Pξ + PξHξ = −Qξ. Thus, we choose the

following LFC

V =W + κ ξ̃TPξ ξ̃ (41)

where W is the same as in (35), and κ > 0 still to be

determined. Deriving (41) along the solutions of (27) we

obtain

V̇ ≤ −z̃Ts Qz̃ z̃s − κ ξ̃TQξ ξ̃ +
∂W

∂z̃
G(·)ξ̃ + ∂W

∂z̃2
δ(·)

(42)

The following bounds hold for G(·) and W :

G(z̃, ξ̃3, ξ̃4) ≤ G1(‖ξ̃‖)‖z̃s‖+G2(‖ξ̃‖) ≤ Ḡ1‖z̃s‖+ Ḡ2

(43)
∥
∥
∥
∥

∂W

∂z̃

∥
∥
∥
∥
≤ ‖z̃s‖

∥
∥
∥

[
a2+c+ ab+d

2 a

a 1

]∥
∥
∥ ≤ α2‖z̃s‖, (44)

where Ḡ1 = G1(ξ̄), Ḡ2 = G2(ξ̄), and ξ̄ is the

upperbound of ‖ξ‖. Let λmin
Pzs

, λmin
Pξ

, λmin
Qz̃

, λmin
Qξ

denote

the minimal eigenvalue of Pzs , Pξ, Qz̃ , Qξ respectively.

The closed-loop external dynamics (27b) is GES, there-

fore there exists a time t∗ such that for all t ≥ t∗:

‖ξ̃(t)‖ ≤ λmin
Qz̃
/(2α1Ḡ1). For t ≤ t∗ and

κ >
α2
1Ḡ

2
2

λmin
Qz̃
λmin
Qξ

+
α1Ḡ1ξ̄λ

min
Pξ

λmin
Pzs

(45)

we have

V̇ ≤− z̃Ts Qz̃ z̃s − κ ξ̃TQξ ξ̃

+ α1‖z̃s‖(Ḡ1‖z̃s‖+ Ḡ2)ξ̃ + α1δ̄‖z̃s‖
≤α1Ḡ1ξ̄‖z̃s‖2 − λmin

Qz̃
‖z̃s‖2 + α1Ḡ2‖z̃s‖‖ξ̃‖

− κλmin
Qξ

‖ξ̃‖2 + α1δ̄‖z̃s‖

≤ − 1

2
λmin
Qz̃

‖z̃s‖2 −
(

α2
1Ḡ

2
2

λmin
Qz̃
λmin
Qξ

+
α1Ḡ1ξ̄λ

min
Pξ

λmin
Pzs

)

λmin
Qξ

‖ξ̃‖2

+ α1Ḡ1ξ̄‖z̃s‖2 + α1Ḡ2‖z̃s‖‖ξ̃‖

− 1

2
λmin
Qz̃

‖z̃s‖2 + α1δ̄‖z̃s‖ (46)

for ‖z̃s‖ ≥ 2α1

λmin
Qz

we have

≤− 1

2
λmin
Qz̃

‖z̃s‖2 + α1Ḡ2‖z̃s‖‖ξ̃‖

− α2
1Ḡ

2
2

λmin
Qz̃

‖ξ̃‖2 −
α1Ḡ1ξ̄λ

min
Pξ

λmin
Pzs

λmin
Qξ

‖ξ̃‖2 + α1Ḡ1ξ̄‖z̃s‖2

≤
α1Ḡ1ξ̄λ

min
Pξ

λmin
Pzs

λmin
Qξ

‖ξ̃‖2 + α1Ḡ1ξ̄‖z̃s‖2 + α1δ̄‖z̃s‖

≤α1Ḡ1ξ̄‖z̃s‖2 +
2α1Ḡ1ξ̄κλ

min
Pξ

λmin
Pzs

‖ξ̃‖2‖

± (ad+ c)(1− cos(z̃1))

≤2α1Ḡ1ξ̄

λmin
Pzs

V + 2(ad+ c), (47)

so for t < t∗∧‖z̃s‖ ≥ 2α1

λmin
Qz

the trajectories are bounded.

For t < t∗∧‖z̃s‖ < 2α1

λmin
Qz

we have V (t) is bounded since

ξ is bounded and ‖z̃s‖ is bounded by assumption.

For t ≥ t∗ we have

V̇ ≤− z̃Ts Qz̃ z̃s − κ ξ̃TQξ ξ̃ + α1‖z̃s‖(Ḡ1‖z̃s‖+ Ḡ2)ξ̃

≤− 1

2
λmin
Qz̃

‖z̃s‖2 + α1Ḡ2‖z̃s‖‖ξ̃‖ − κλmin
Qξ

‖ξ̃‖2

− 1

2
λmin
Qz̃

‖z̃s‖2 + α1δ̄‖z̃s‖

≤ − 1

2
λmin
Qz̃

‖z̃s‖2 + α1Ḡ2‖z̃s‖‖ξ̃‖ − κλmin
Qξ

‖ξ̃‖2

∀‖z̃s‖ >
2α1δ̄

λmin
Qz

, (48)

which is negative definite for κ > α2
1Ḡ

2
2/(λ

min
Qz̃
λmin
Qξ

). We

can conclude that ξ̃ → 0 globally exponentially while

the states z1, z2 are ultimately bounded.

Now we draw our attention to straight line paths and

a constant desired forward velocity. Without loss of gen-

erality, consider a path which is aligned along the x axis

of the NED frame. This implies ξ2d = ξ4d = ξ̇4d = 0.

Furthermore, since we assume that the desired forward

8



velocity is constant, we have ξ̇3d = 0. As a result, we

have δ(φ̇1, φ̈1, sin(z̃1)) = 0 and φ1 is a constant angle.

Under these conditions, we can derive the following

corollary from Theorem 1.

Corollary 1. Consider an under-actuated marine vehicle

described by the model (4), and consider the special

case of control objectives (18) where the desired forward

velocity is constant, and the desired path is a straight

line. Consider the hand position point h = [x1, y1]
T =

[x+l cos(ψ), y+l sin(ψ)]T , where [x, y]T is the position

of the pivot point of the ship, l is a positive constant

and ψ is the yaw angle of the vehicle. Then define Ud =√

(ud − Vx)2 + V 2
y > 0 as the desired relative velocity

magnitude and φ = arctan
(

−Vy

ud−Vx

)

as the crab angle.

If Assumptions 1-8 are satisfied and if

0 <Ud <
Y2

Y1
(49)

kvi >0, kpi > 0, kIi > 0, i ∈ {x, y} (50)

kvikpi >kIi i ∈ {x, y} (51)

l >max

{
m22

m23
,−X2

Y2

}

(52)

then the controller (13), where the new inputs

µ1, µ2 are given by (19), guarantees the achieve-

ment of the control objectives (18). In particular,

(z1, z2, ξ1, ξ2, ξ3, ξ4) → (φ, 0, udt, 0, ud − Vx,−Vy)
almost-globally asymptotically. Furthermore, the steady

state values of the integral variables give an estimate of

the ocean current given by (25).

Proof. The proof follows along the same lines as the

proof of Theorem 1:

The external dynamics

The same considerations given in VI hold here.

The tracking dynamics

The tracking dynamics now becomes

˙̃z1 =z̃2 (53a)

˙̃z2 =− (a cos(z̃1) + b)z̃2 − (c cos(z̃1) + d) sin(z̃1).
(53b)

The system (53) can be studied on the manifold M =
S×R = {(cos(θ), sin(θ), r) | θ ∈ R, r ∈ R}. The system

(53) has two equilibria, and they are

Es = (1, 0, 0) ∈ M, Eu = (−1, 0, 0) ∈ M. (54)

The point Es is a stable node, while Eu is a saddle point

since we assumed d > c. Note that Eu is a hyperbolic

equilibrium. Choosing (35) as Lyapunov function we

obtain

Ẇ = −z̃Ts Qz̃ z̃s ≤ 0 ∀(sin(z̃1), z̃2) 6= (0, 0). (55)

Equation (55) implies that the state (sin(z̃1), z̃2) = (0, 0)
is GAS. However, sin(z̃1) = 0 corresponds either to

cos(z̃1) = 1 or cos(z̃1) = −1 on the one-dimensional

unit sphere. That is, if the vehicle is required to move

along a straight line path it may move forward (cos(ψ) =
1) or backwards (cos(ψ) = −1). But, linearizing (53)

about the origin, we have that the equilibrium Eu =
{cos(z̃1), sin(z̃1), z̃2) = (−1, 0, 0)} ∈ M is unstable

and hyperbolic. Then, recalling [45, Theorem 3.2.1] we

deduce that Eu is characterized by a stable and an

unstable manifold Ws
u,Wu

u , respectively. The unstable

manifold Wu
u is tangent to the eigenspace spanned by

the positive real part eigenvalue of the Jacobian matrix

of the system (53) evaluated at Eu. This manifold is

therefore one-dimensional and converges to the only

other equilibrium point of the system, that is Es =
{cos(z̃1), sin(z̃1), z̃2) = (1, 0, 0)} ∈ M. The stable

manifold Ws
u is also one-dimensional since it is spanned

by the negative real part eigenvalue of the Jacobian

matrix of (53). Since the system (53) evolves on the

manifold M = S × R, which is 2-dimensional (it is a

”pipe-shaped” manifold, that is, it is a cylindrical surface

in the space), we have that Ws
u has one dimension less

than M and has therefore zero Lebesgue measure. At this

point we can conclude that all the trajectories which do

not start on Ws
u converge to the point Es. Furthermore,

since Ws
u has zero Lebesgue measure, we can say that

Es is almost-GAS.

Stability of the total system

The stability of the total system follows from the same

considerations as in Theorem 1. Choosing (41) as LFC

and

κ > α2
1Ḡ

2
2

(

λmin
Qz̃
λmin
Qξ

+
2λmin

Qz̃
α1Ḡ1ξ̄λ

min
Pξ

λmin
Pzs

)
−1

(56)

we obtain that (48) holds ∀‖z̃s‖2 > 0. This proves

that the system always converges to the equilibrium
(
sin(z̃1), z̃2, ξ̃

)
= (0, 0,01×6). The state z̃1 converges

either to z̃1 = 0, or z̃1 = ±π, so we can conclude that

(z̃, ξ̃) = (01×2,01×6) is almost-GAS.

VII. PATH FOLLOWING CONTROL

In this section a path following strategy is presented

based on the hand position approach.

The path following task requires the vehicle to follow

an assigned curve γ(s) = {(x(s), y(s)|s ∈ R}, where s
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Fig. 3: Path following.

is a scalar parameter, and travel along the curve with

a constant speed U > 0 in the global frame. This

task can be fulfilled by an under-actuated vehicle if its

total velocity in the NED frame Ut =
√
u2 + v2 =√

(ξ3 + Vx)
2
+ (ξ4 + Vy)

2
is tangential to the path. The

main difference between the path following task and the

trajectory tracking discussed in Section IV is that for

the path following the path is parametrized by a generic

variable s and not necessarily by the time t. This implies

that the vehicle is not required to be in a given position

along the curve at a specific time instant t, but the vehicle

is required just to converge to the path and move along

it with a prescribed velocity.

We assume that γ(s) is parametrized by the arc length

s. This way we have that the tangent vector T is a unit

vector, that is

T =

[
∂x(s)
∂s
∂y(s)
∂s

]

∧ ‖T‖ =

√
(
∂x(s)
∂s

)2

+
(
∂y(s)
∂s

)2

= 1.

(57)

According to this choice of the parametrization, we can

consider that a virtual frame V F , the Frenet-Serret frame

[46], moves along γ(s). The position along the curve of

the origin of V F , which we call x(s), y(s) is defined

by the parameter s. The x axis of V F is given by the

unit tangent vector to the curve, T . The y axis is given

by the normal vector N and it is chosen by rotation of

T by π/2 radians. The velocity in the NED frame with

which V F moves along γ(s) is given by

UV F = [ẋ (s) , ẏ (s)] =
[
∂x(s)
∂s

ṡ, ∂y(s)
∂s

ṡ
]

. (58)

Note that the total velocity of V F in the NED frame is

UV F = ṡ

√
(
∂x(s)
∂s

)2

+
(
∂y(s)
∂s

)2

= ṡ (59)

because of our choice of the parametrization for γ(s).
Notice that ṡ is left as design parameter to be chosen in

the following.

We consider the following assumption to hold

Assumption 9. The path γ(s) is a C2 function.

Remark 9. This assumption implies that

∂x (s)

∂s
,
∂y (s)

∂s
,
∂2x (s)

∂s2
,
∂2x (s)

∂s2

are all continuous. Therefore, the curvature κ of γ (s) is

continuous and the curve is smooth.

The control objectives can be formalized as follows

lim
t→∞

(ξ1 − x(s)) = 0 (60a)

lim
t→∞

(ξ2 − y(s)) = 0 (60b)

lim
t→∞

(Ut − U) = 0 (60c)

The control objectives (60) mean that we want the total

velocity of the vehicle Ut converge to a constant value

U , while the point h has to converge to the origin of

V F , i.e., (ξ1, ξ2) → (x(s), y(s)) (see Figure 3).

In order to fulfill the control objectives (60) we

introduce the following controller for (14)

µ1 =− kvx(ξ3 − ẋ(s))− kpy (ξ1 − x(s))

− kIx

(

ξ1I −
∫ t

0

x(s)dτ

)

+ ẍ∗(s) (61a)

µ2 =− kvy (ξ4 − ẏ(s))− kpy (ξ2 − y(s))

− kIy

(

ξ2I −
∫ t

0

x(s)dτ

)

+ ÿ∗(s) (61b)

where

ẋ(s) = ṡ
∂x(s)

∂s
ẍ∗(s) = ṡ U

∂2x (s)

∂2s
(62)

ẏ(s) = ṡ
∂y(s)

∂s
ÿ∗(s) = ṡ U

∂2y (s)

∂2s
. (63)

The terms ẍ∗(s), ÿ∗(s) are two feed-forward terms and

ẍ∗(s) 6= ẍ(s), ÿ∗(s) 6= ẍ(s). We cannot choose ẍ(s) , ÿ(s)
as feed-forward terms since their expressions depend on

s̈, which in turn depends on Vx, Vy , that are unknown.

We have the freedom to choose the dynamics of s such

that the path following task is fulfilled. We choose

ṡ = U

(

1− ǫ tanh(

√

ξ̃21 + ξ̃22

)

(64)

where U > 0 is the desired total velocity of the vehicle

when traveling along the curve, ǫ > 0 is a constant

and ξ̃1 = ξ1 − x(s), ξ̃2 = ξ2 − y(s). The chosen

parametrization (64) means that the frame V F slows

down when the vehicle is far from γ(s) and has constant
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forward velocity U when the vehicle is on γ(s). This

approach facilitates the vehicle to catch up with V F
when the euclidean distance between the vehicle and

V F , i.e.,

√

ξ̃21 + ξ̃22 , is large.

The following theorem presents the main result for the

path following strategy.

Theorem 2. Consider an under-actuated marine ve-

hicle described by the model (4). Consider the hand

position point h = [x1, y1]
T = [x + l cos(ψ), y +

l sin(ψ)]T , where [x, y]T is the position of the pivot

point of the ship, l is a positive constant and

ψ is the yaw angle of the vehicle. Then define

Udγ =

√
(

U
∂xγ(s)
∂s

− Vx

)2

+
(

U
∂yγ(s)
∂s

− Vy

)2

> 0

as the desired relative velocity magnitude and φ1γ =

arctan

(

U
∂xγ (s)

∂s
−Vy

U
∂yγ (s)

∂s
−Vx

)

as the crab angle. If Assumptions

1-6 and 9, inequalities (20-23) are satisfied and if

Udγ > 0 (65)

ǫ <
λmin
Q

2λmax
P

(66)

κ ≤ 2min{a(d− c), b}
(
Y1Ūd

l
+ 2

(
Y1 − X1−1

l

))

U
(67)

then the controller (13), where the new inputs µ1, µ2 are

given by (61), guarantees the achievement of the control

objectives (60).

Remark 10. Note that for the path following case,

the stability of the system depends on a bound on the

curvature κ rather than on a bound on the desired ac-

celeration U̇d. This difference is clear from the definition

of Udγ . In fact, according to the parametrization defined

above, the time derivative of Udγ is U̇dγ = κṡ. In fact,

since we define a desired constant tangential velocity U ,

the desired velocity Udγ changes only according to the

change of the curvature of γ(s).

Proof. We prove that choosing the dynamics ṡ as in (64),

the external dynamics globally exponentially fulfills the

objectives (60). The stability of the tracking dynamics

then follows along the same lines as the proof of

Theorem 1.

The external dynamics

First of all we define the following change of coordi-
nates

ξ̃1I = ξ1I −

∫ t

0

x(s)dτ −
kIx

Vx

kvx
(68)

ξ̃2I = ξ2I −

∫ t

0

y(s)dτ −
kIy

Vy

kvy
(69)

ξ̃1 = ξ1 − x (s) ξ̃3 = ξ3 −
(

U
∂x(s)
∂s

− Vx

)

(70)

ξ̃2 = ξ2 − y (s) ξ̃4 = ξ4 −
(

U
∂y(s)
∂s

− Vy

)

. (71)

We obtain

˙̃
ξ =Hξ̃ ξ̃ +∆pf (ξ̃1, ξ̃2) (72)

with ξ̃ = [ξ̃1I , ξ̃2I , ξ̃1, ξ̃2, ξ̃3, ξ̃4]
T , Hξ̃ like in (33) and

∆pf (·) =ǫ





0
0

∂x(s)
∂s

tanh
(√

ξ̃21+ξ̃
2
2

)

∂y(s)
∂s

tanh
(√

ξ̃21+ξ̃
2
2

)



 . (73)

Note ∆pf (0, 0) = 0 and

‖∆pf (·)‖ ≤ ǫ

∥
∥
∥
∥

[
∂x(s)

∂s
,
∂y(s)

∂s

]∥
∥
∥
∥
‖ξ̃‖ ≤ ǫ‖ξ̃‖. (74)

Since Hξ̃ is Hurwitz because of (21-22) we have that

there exists a positive definite matrix P which satisfies

HT

ξ̃
P + PTHξ̃ = −Q for Q being a positive definite

matrix. Choosing the following LFC

Vpf = ξ̃TP ξ̃ (75)

we have

V̇pf =− ξ̃TQξ̃ +
∂Vpf

∂ξ̃
∆pf (·) (76)

≤− λmin
Q ‖ξ̃‖2 + 2‖P‖‖ξ̃‖ǫ‖ξ̃‖ (77)

≤− λmin
Q ‖ξ̃‖2 + 2ǫλmax

P ‖ξ̃‖2 (78)

which is negative definite choosing ǫ <
λmin
Q

2λmax
P

. Then we

have that ‖ξ̃‖ = 0 is GES.

The internal dynamics

For the internal dynamics we define z̃1 = z1 − φ1γ
and z̃2 = z2 − φ̇1γ . Then we obtain the same form as

in (27a) where the definition of a, b, c, d is the same

as in (31) but with Udγ in place of Ud. The proof that

z1, z2 are bounded follows along the lines of the proof of

Theorem 1 defining a LFC as in (35). Note that the time

derivative of a, b, c and d are also in this case nonzero

since U̇dγ 6= 0. However, according to the inequality

(67), we have U̇dγ ≤ Ū∗

dγ
, where Ū∗

dγ
is a positive

constant. Then the proof follows from the one given in

Section VI.

11



Stability of the complete system

The stability of the complete system follows along the

same lines as the proof of Theorem 1.

Remark 11. The path following strategy presented here

is a generalization of the one presented in [41]. In

particular, the approach presented here and based on

the parametrization (64) can be specialized to the case of

straight line paths in [41]. Without loss of generality we

can consider here the case of straight line path aligned

with x axis of the NED frame. Then a straight line

path can be represented as γstrt = {(s, 0) : s ∈ R}.

Generally, straight line paths are left unparametrized for

path following tasks, e.g. [28, 47]. This corresponds to

the case of ǫ = 0 and kpx = kIx = 0 in the controller

(61), i.e., leaving the state ξ1 uncontrolled, regulating ξ2
to 0 and controlling ξ3, ξ4 such that

√
u2 + v2 → U . It is

then possible to verify that the state z2 → 0 and z1 →
arctan

(
Vy

U−Vx

)

[41]. The angle φ = arctan
(

Vy

U−Vx

)

is called the crab angle, and it is necessary when a

disturbance affects under-actuated vehicles in order to

compensate for it [36].

VIII. SIMULATION RESULTS

In this section we present a simulation case study in

order to validate the theoretical results presented above.

We use the model of the LAUV (light autonomous

underwater vehicle) given in [48] and define a lawn-

mower path in order to simulate the path following

case described in Section VII. The simulation is also

used as a benchmark for the sea trial results which

are presented in Section IX, and we therefore consider

the special case of straight line paths which is what

we could implement in the experiments. The choice of

such a kind of path is driven by the fact that lawn-

mower paths are standard for marine vehicles when

required to execute surveillance and scanning tasks in the

ocean. We perform the simulation using the simulator of

DUNE [42], software developed by the Laboratorio de

Sistemas e Tecnologia Subaquatica (LSTS) at University

of Porto, and running on the LAUVs. DUNE has a very

detailed model of the LAUV and there are nodes in the

software which realistically simulate the behavior of the

sensors on-board the real vehicle, i.e., they also simulate

measurement noises.

As regards the desired motion, the vehicle is required

to move with a constant forward velocity of Ud = 1.2
[m/s] while traveling along a lawn-mower path made

of four long straight lines l1 = 130 [m] connected by

three perpendicular straight lines l2 = 27 [m]. The depth

of the path is set to 2 [m] under the surface. We do

not implement any depth controller but rather use the

depth controller already available on the LAUV. In the

simulation we assign an ocean current V = [Vx, Vy]
T =

[0.1, 0.2]T [m/s] which is unknown to the vehicle. For

the point h we choose l = 1 [m]. Since we have chosen

a lawn-mower path we decide to deal with the case of

unparametrized paths as discussed in Remark 11, i.e.,

we define kpx = kIx = ǫ = 0. The other gains are

kvx = kvy = 1, kpy = 0.2, kIy = 0.01. We have required

the vehicle to move from its initial random position in

the environment to the point (−136.5, 106.5)[m] in order

to bring it closer to the defined lawn-mower path. This

action is done just to facilitate the motion of the vehicle

towards the path and limit the saturation of the thrusters

due to a large initial error. Note that the path respects

the assumptions of Theorem 2 along the straight line

segments. Figure 4 shows the motion of the vehicle, and

it is readily seen from this figure that the path following

task is fulfilled. Note that along the short side of the

path the transient is not long enough in order to have

ξ̃2 → 0. This is not a problem for real applications, e.g.

sonar scanning, since the data collection is performed

along the long sides of the path. In Figure 5, the cross-

track error, i.e., the state ξ̃2, is shown and we see that

along the long side of the path it converges to zero. As

mentioned in Remark 11, Figure 5 shows also the state

z̃1 = ψ − φ converging to a constant φ =
(
V cross
y

U

)

,

i.e., the crab angle, where V cross
y is the component of V

acting in the perpendicular direction with respect to the

straight line the vehicle is traveling. We have zoomed the

behavior in the range (200, 300)[s] which characterizes

the motion of the vehicle in the North-East direction.

Note that z̃1 → 0.5◦ and we expect φ = 0.6◦. We have

z̃1 6= φ due to the presence of simulated sensor noise in

DUNE.

IX. SEA TRIAL RESULTS

In this section we present the results from the sea trial.

The experiments have been performed in Porto, Portugal

using the LAUV (see Figure 6) of the LSTS. The LAUV

is a lightweight, one-man-portable under-water vehicle.

It is easy to operate since it requires minimal operational

setup. The LAUV is equipped with a computational

system and navigation sensors. However, its capabilities

can be enhanced adding optional payloads. The task as-

signment for the vehicle is the same as in the simulation

case study described in Section VIII. Note that in the

real trial we do not know the value of the ocean current

so we cannot compute the expected angle φ.

Figure 7 shows the motion of the vehicle compared to

the desired trajectory. We see that the vehicle fulfills the

12
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path following task. This is also confirmed by Figure 8

where the cross-track error is reported, and it is possible

to see how it converges to zero during the motion along

the long sides of the path.

From Figures 7-8, it is also clear that the behavior of

the vehicle from the experimental results is in line with

what to expect from the simulations.

X. CONCLUSIONS

In this paper we have presented a trajectory tracking

and a path following control strategy for under-actuated

marine vehicles. In particular, we have considered the

model of an ASV or an AUV moving in the horizontal

plane. Inspired by works on ground vehicles which have

introduced the definition of the hand position point for

UGVs, we have extended this to marine vehicles. We

13



applied the input-output feedback linearization method

using the hand position as output and developed a

trajectory tracking and a path following strategy for

generic paths, with straight line paths as a special case.

During the analysis we have considered that environ-

mental disturbances, e.g., constant and irrotational ocean

current, affect the vehicle. Rigorous mathematical proofs

for the stability of the closed-loop system have been

given. Simulations and experimental results have also

been presented in order to validate the theoretical results.

APPENDIX A

EQUATIONS

Fur (vr, r) ,
1

m11
(m22vr +m23r)r −

d11
m11

ur, (79)

X1(M) ,
m11m33−m2

23

m22m33−m2
23

X2(M,D) , d33m23−d23m33

m22m33−m2
23

(80)

Y1(M) , (m11−m22)m23

m22m33−m2
23

Y2(M,D) , d22m33−d32m23

m22m33−m2
23

(81)

X(ur) , −X1ur +X2 Y (ur) , −Y1ur − Y2, (82)

Fr(ur, vr, r) ,
m23d22−m22(d32+(m22−m11)ur)

m22m33−m2
23

vr

+m23(d23+m11ur)−m22(d33+m23ur)

m22m33−m2
23

r,
(83)

G(z̃, ξ̃3, ξ̃4) ,
[

0 0 0 0 0 0
g(z̃1) α(z̃,ξ̃3) β(z̃,ξ̃3,ξ̃4)

]

(84)

g(z̃1) =
[

kIx
sin(z̃1)l −

kIy
cos(z̃1)

l

kPx
sin(z̃1)

l
−

kPy
cos(z̃1)

l

]

(85)

α(z̃, ξ̃3) , −
((

Y1 −
X1−1

l

)
z2 +

Y1Ud sin(z̃1)
l

)

cos(z1)
(

−Y1Ud cos(z̃1)
l

− Y2
l
−

Y1(ξ̃3 cos(z1)+ξ̃4 sin(z1))
l

+
kvx

l

)

sin(z̃1 + φ1) (86)

β(z̃, ξ̃3, ξ̃4) , −
((

Y1 −
X1−1

l

)
z2 +

Y1Ud sin(z̃1)
l

)

sin(z1)
(

−Y1Ud cos(z̃1
l

− Y2
l
−

Y1(ξ̃3 cos(z1)+ξ̃4 sin(z1))
l

+
kvy

l

)

cos(z̃1 + φ1) (87)
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