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�is paper presents a solution to stability and trajectory tracking of a quadrotor system using amodel predictive controller designed
using a type of orthonormal functions called Laguerre functions. A linear model of the quadrotor is derived and used. To check
the performance of the controller we compare it with a linear quadratic regulator and a more traditional linear state space MPC.
Simulations for trajectory tracking and stability are performed in MATLAB and results provided in this paper.

1. Introduction

A quadrotor is a helicopter which has four equally spaced
rotors, usually arranged at the corners of a square body.
When these rotors spin, they push air downwards and in
the process create a thrust force that keeps the quadrotor
alo	. Unlike the conventional helicopter (with two rotors)
which requires a swashplate mechanism in order to have
more degrees of freedom, such mechanism is not needed in
quadrotor systems since the two additional rotors provide the
same level of control as that with conventional helicopters

xed with swashplate mechanism.

�e task to control a quadrotor is a fundamentally
di�icult and interesting problem.With six degrees of freedom
(three translational and three rotational) and only four
independent inputs (rotor speeds), quadrotors are severely
underactuated. In order to achieve six degrees of freedom,
rotational and translationalmotion are coupled.�e resulting
dynamics are highly nonlinear, especially a	er accounting for
the complicated aerodynamic e�ects. Finally, unlike ground
vehicles, quadrotors have very little friction to prevent their
motion, so they must provide their own damping in order
to stop moving and remain stable. Put together, these factors
create a very challenging control problem.

2. Literature Review

Amongst the many control techniques used in quadrotor
control PID, LQR and recently MPC have been widely used.

While PID is the most popular choice for controlling
several types of processes, it turns out that tuning becomes a
big challenge especially forMIMOsystems like the quadrotor.
Several techniques have been used to divide the quadrotor
control problem to several SISO systems. While this has
worked in some cases it has to be pointed out that this takes
away the most natural way of controlling the system and
designing many SISO controllers may make maintenance
more di�cult.

LQR is a relatively modern control method that is very
powerful yet limited to applications where linear system
models are available. To use this method to control non-
linear systems a linear model has to be obtained from the
corresponding nonlinearmodel. To evaluate the performance
of the LQR controller we need to compare it with results
obtained from other control techniques. �is means design-
ing the same system using another control technique which
could be cumbersome. Because of this, LQR is only very
popular to use in inherently linear systems or where results of
control obtained using other control techniques are available
for comparison.
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On the other hand, MPC can handle both linear and
nonlinear systems [1]. Comparisons between the nonlinear
system and its corresponding linearmodel can easily bemade
with very little modi
cation. Compared to PID, tuning MPC
is easier even for complex MIMO systems.

However, in trying to track the reference trajectory in
an optimal way and at the same time obey the constraints
imposed MPC makes much more calculations than either
PID or LQR.�is computation burden makes MPC less suit-
able for “fast” processes. It requires very powerful processors
to be used in hardware implementation. Not surprisingly a
lot of e�ort is being put in to reduce the computations so that
MPC can be faster and easily be implemented even on low
cost processors.

In [2] Wang proposed a method of designing MPC using
orthonormal functions. �is method makes less computa-
tions than the traditional MPC. With reduced number of
computations this technique can be used where rapid system
dynamics are required.We will use this method in our task to
control a quadrotor using MPC.

Other MPC applications to quadrotor can be found in
[3, 4]. In [4] the control structure consists of a controller
based on MPC to track the reference trajectory and a second
one based on a nonlinear �∞ control technique to stabilize
the rotational movements. Similarly in [3] anMPC controller
is designed to control position, and a second feedforward
controller is used to perform stabilization of the quadrotor
system.

In both [3, 4] the control loop uses two controllers: the
controller based onMPC which is used for tracking the posi-
tion reference trajectory and a second controller (which is
designed using other techniques) that is used for stabilization
of the rotational movements. In this paper, MPC is used to
control both the position and rotational movements. �is is
good for uniformity and ease of maintenance.

3. Kinematics and Dynamics of a Quadrotor

A quadrotor is completely described by twelve states. �e

rst six states describe translational motion of the quadrotor.
�ese states are �, �, and � which represent position in
inertial frame and �, V, and � which denote velocity vectors
along the body frame. Similarly, the remaining six variables
describe rotational motions.�ese are �, 	, and 
 commonly
known as Euler angles and �, �, and  which denote angular
velocities.

A free body diagram of a quadrotor is shown in Figure 1.
�e force �∗ and moment �∗ (where ∗ = �, �, , and �)
produced by the rotors can be described by their angular

speed (�) as �∗ = �1�2 and �∗ = �2�2, respectively.
Similarly, torques ��, ��, and �� and the thrust force (�) are
related to angular speed of rotors as

(�������) = �(
(

�2��2��2	�2

)
)

, (1)

where� = [ �1 �1 �1 �1
0 −
�1 0 
�1

�1 0 −
�1 0
−�2 �2 −�2 �2

] and � is the length of arm of the

quadrotor.
Equations describing the kinematics of the quadrotor are

given by

(�̇̇�̇�) = " (�, 	, 
)(�
V�) ,

( ̇�̇	
̇) = (1 *�+	 -�+	0 -� −*�0 *�-	 -�-	 )(��) , (2)

where "(�, 	, 
) = [ ���� ����−��� �����+����� ���+���� ����−���
−� ��� ����

], - stands for

cos, * stand for sin, and + stands for tan. Similarly, dynamic
equations can be derived using Newtons laws of motion
which are listed in

(�̇̇
V�̇) = (V − ���� − ��� − �V) + ( −4 sin 	4 cos 	 sin�4 cos 	 cos�) + 15 ( 00−�) ,

(�̇̇�̇) = (((
(

7� − 7�7� �7� − 7�7� �7� − 7�7� ��
)))
)

+((
(

17� ��17� ��17� ��
))
)

, (3)

where 7�, 7�, and 7� are the respectivemoment of inertia about9, :, and ; axes of the quadrotor. For the simulation of the
controller of quadrotor we have considered �, ��, ��, and ��
as the inputs to the system.

3.1. Linearization. In order to design a linear controller it is
vital that (2) to (3) be simpli
ed to linear ones. To do that roll,
pitch, and heading angles are assumed to operate within very
small angles [5] which leads to the following:

( ̈�̈	
̈) = ((
(

17� ��17� ��17� ��
))
)

,
�̈ = 4 − �5,�̇ = −4	,
V̇ = 4�.

(4)

4. Controller Design

In order to control attitude (�, 	, and 
), altitude (�), and
position (�, �), we propose a control architecture given in
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Figure 1: Inertial frame (a) and forces and torques acting on the quadrotor (b).
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Figure 2: Block diagram showing the structure of the controllers.

Figure 2 where we have utilized MPC to design the three
controllers. �e attitude controller generates ��, ��, and ��
actuator signals whereas the altitude controller generates
required thrust for the system. �e position controller con-
trols position in the � and � directions and generates control
signals 	 and � which, when combined with the 
 signal, act
as reference signals to the attitude controller.

In the next section we look at the design of each of the
three controllers.

4.1. Discretization. In this section, discrete-time state-space
equations necessary for altitude, position, and attitude con-
trol are derived.

4.1.1. Altitude Controller. �e linear equations responsible for
altitude control are �̇ = �,�̇ = 4 − �5. (5)

�ese two equations can be combined to give the following
second order ODE: �̈ = 4 − �5. (6)

�is second order ODE can be simpli
ed to�̈ = ?, (7)

where ? = 4 − �/5 or � = 5(4 − ?). Equation (7) can be
written in state-space form as in the following equation:[�̈̇�] = [0 10 0] [�̇�] + [01]?. (8)

Using the forward Euler method and choosing a sampling
interval ΔB, we can express (8) in discrete form as in[ � (� + 1)

V� (� + 1)] = [1 ΔB0 1 ] [ � (�)
V� (�)] + [ 0ΔB]? (�) . (9)

�e states �(�) and V�(�) represent the position and velocity,
respectively, and we could choose a proper output matrix C
depending on which state we are going to measure. In this
paper we are interested in the position and, therefore, we will
use the output matrix C = [1 0].
4.1.2. Position Controller. �e equations responsible for posi-
tion and velocity control in � direction are�̇ = �,�̇ = −4	. (10)

�ese two equations can be combined to give the second
order ODE: �̈ = −4	. (11)
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Similarly the equations responsible for position and velocity
control in � direction are ̇� = V,

V̇ = 4�, (12)

which give rise to the second order ODE:̈� = 4�. (13)

Equations (11) and (13) can be combined and form a state-
space equation such as

[[[[
�̈̇�̇�̈�]]]] = [[[[

0 1 0 00 0 0 00 0 0 10 0 0 0]]]]
[[[[
�̇��̇�]]]] + [[[[

0 0−4 00 00 4]]]][	�] . (14)

As stated before, we can use the forward Euler method to
express (14) in discrete form. Consider

[[[[
� (� + 1)
V� (� + 1)� (� + 1)
V� (� + 1)]]]] = [[[[

1 ΔB 0 00 1 0 00 0 1 ΔB0 0 0 1 ]]]]
[[[[
� (�)
V� (�)� (�)
V� (�)]]]]

+ [[[[
0 0−4ΔB 00 00 4ΔB]]]][	 (�)� (�)] .

(15)

�e states �(�) and �(�) represent the position while V�(�)
and V�(�) represent velocity. Since we are interested in the

position, we will use the output matrix C = [ 1 0 0 00 0 1 0 ] but
we could have used a di�erent 2 × 4 output matrix if we
were interested in the velocity. But it is important to note
that we can not use a 3 × 4 or 4 × 4 as there is no guarantee
that we will be able to control each of the measured outputs
independently with zero steady state errors. �is is generally
the case for a system with5 inputs, � outputs, and � > 5 [6].

4.1.3. Attitude Controller. In attitude control we are interested
in controlling the roll �, pitch 	, and yaw (heading) 
 such
that we generate appropriate torque signals responsible for
steering the quadrotor in the desired direction with the
required attitude. �e equations responsible for roll control
are ̇� = �,�̇ = 17� ��. (16)

�ese two equations can be combined to give the second
order ODE: ̈� = 17� ��. (17)

Similarly the equations responsible for pitch are given bẏ	 = �,̇� = 17� ��, (18)

which give rise to the second order ODE:̈	 = 17� ��. (19)

Also the equations responsible for heading are expressed as
̇ = ,̇ = 17� ��, (20)

which, like in roll and pitch, give rise to the second order
ODE: 
̈ = 17� ��. (21)

Equations (17), (19), and (21) can be combined and written in
state-space form as in

[[[[[[[[
̇�̈�̇	̈	
̈̇

]]]]]]]]
= [[[[[[[[

0 1 0 0 0 00 0 0 0 0 00 0 0 1 0 00 0 0 0 0 00 0 0 0 0 10 0 0 0 0 0
]]]]]]]]
[[[[[[[[
�̇�	̇	
̇

]]]]]]]]
+ [[[[[[[[

0 0 07−1� 0 00 0 00 7−1� 00 0 00 0 7−1�
]]]]]]]]
[[������]] ,

(22)

where ��, ��, and �� are the torques required to give the
required roll, pitch, and yaw, respectively.

Again, using the forward Eulermethod we express (22) in
discrete form as[[[[[[[[

� (� + 1)
V� (� + 1)	 (� + 1)
V� (� + 1)
 (� + 1)
V� (� + 1)

]]]]]]]]
= [[[[[[[[

1 ΔB 0 0 0 00 1 0 0 0 00 0 1 ΔB 0 00 0 0 1 0 00 0 0 0 1 ΔB0 0 0 0 0 1
]]]]]]]]
[[[[[[[[
� (�)
V� (�)	 (�)
V� (�)
 (�)
V� (�)

]]]]]]]]
+ [[[[[[[[

0 0 0ΔB7−1� 0 00 0 00 ΔB7−1� 00 0 00 0 ΔB7−1�
]]]]]]]]
[[�� (�)�� (�)�� (�)]] .

(23)

Since we are interested in measuring �(�), 	(�), and 
(�), we
will use the output matrix C = [ 1 0 0 0 0 00 0 1 0 0 0

0 0 0 0 1 0
].

So far we have formulated the necessary equations used to
build the three controllers. Figure 2 shows, in block diagram
form, what we have done so far. But that is not the whole
story. In the next section we will look at exactly how model
predictive control is applied to the quadrotor systemusing the
discrete state-space equations formulated in this section.
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5. Model Predictive Control

One of the many tenets deployed in control of complex
systems like the quadrotor using MPC is to use models
that reduce the computation burden which is a necessity
when it comes to online implementation. It is also agreed
upon that linear models perform better in this respect than
the nonlinear models they represent. In this and subse-
quent sections the performance of a qudrotor controller
designed using Laguerre-based MPC (LMPC) is compared
with that designed using themore common linear state-space
approach presented in [7]. We will call the linear state-space
method SS-MPC.

5.1. Linear State-Space MPC (SS-MPC). Linear state-space
MPC is modeled using a linear state-space relation and
plant constraints are modeled using linear equalities and
inequalities. When combined with convex quadratic cost
function this implies that the desired control action can
be obtained, at each sample interval, via the solution of a
corresponding quadratic program. �is is attractive because
the quadratic programs can be solved e�ciently online [7].
�e general block diagram representing SSMPC is shown in
Figure 3.

5.1.1. Plant. �eplant ismodeled by using the following state-
space system:

��+1 = R�� + S�� + ��,�� = C�� + T�� + V�, (24)

where �� is the state noise and V� is the measurement noise.
Both �� and V� are assumed to be Gaussian distributed with
zero mean, respective covariances of U and V, and cross
covariance ;. �is is represented mathematically as

[��
V�
] ∼ X([00] , [U ;;� V]) . (25)

5.1.2. Observer. Using Gaussian assumptions stated above it
is possible to make optimal predictions of state and output
using the Kalman 
lter as�̂�+1|� = R�̂�|�−1 + S� + \ (�� − �̂�|�−1) ,�̂�|�−1 = C�̂�|�−1 + T��. (26)

�e closed loop gain \ is found by solving the discrete-time
algebraic Riccati equation (DARE):\ = (R^C� + ;) (C^C� + V)−1 ,^ = U + R R̂�− (R^C� + ;) (C^C� + V)−1 (;� + C R̂�) . (27)

5.1.3. Optimal Estimation of State and Output. �e general
equation representing the optimal estimate of state at instant` and written in terms of the initial state �̂�+1|� and future
control inputs ��+�|� is given by

�̂�+�|� = R�−1�̂�+1|� + �−1∑
�=1

R�−�−1S��+�|�. (28)

Similarly the output equation is given by

�̂�+�|� = CR�−1�̂�+1|� + C(�−1∑
�=1

R�−�−1S��+�|�) + T��+�|�.
(29)

�e vector containing all output vectors can be written as

:� = [[[
��+1|�...��+�|�]]] , (30)

while that containing all control actions can be written as

d� = [[[
��+1|�...��+�|�]]] . (31)

�erefore, we can write :� as:� = ��̂�+1|� + Φd�, (32)

where

� = [[[[[[[
CCRCR2...CR�−1

]]]]]]]
,

Φ = [[[[[[[
TCS TCRS CS T...CR�−2S ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ CS T

]]]]]]]
.

(33)
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5.1.4. Cost Function. �e prime goal in MPC is to reject
disturbances whilst tracking a reference signal. But at each
instant it has to ensure that the control signal is within
reasonable range that is practical for actuation. An objective
function that combines these two tasks is

7 (�̂�+1|�, d�) = 12 �∑
�=1

gggg�̂�+�|� − �+�gggg2� + gggg��+�|� − ��+�−1|�gggg2� ,
(34)

where bothh and i are assumed to be symmetric and positive
de
nite.

5.2. Laguerre-Based MPC (LMPC). Model predictive control
designed using Laguerre functions is developed and summa-
rized in [2]. �e author presented this design technique for
both single-variable and multivariable systems. Fortunately,
the derivations for the single-variable case and the multi-
variable case are very similar and knowing one would give
enough insight into the derivation of the other. For brevity
only the single-variable case is presented and it is hoped that
this is enough to set forth the LMPC design technique.

Consider a plant with � inputs, � outputs, and j states as
described by (35) where the subscript5 stands for model�� (� + 1) = R��� (�) + S�� (�) + S�� (�) ,� (�) = C�� (�) , (35)

where �(�) is the input variable, �(�) is the process output,
and ��(�) is the state vector. �(�) is the input disturbance
and is assumed to be a sequence of integrated white noise.

�e plant described by (35) can be expressed in aug-
mented state-space form [2, 6] as� (� + 1) = R� (�) + SΔ� (�) + S�k (�) ,� (�) = C� (�) , (36)

where R = [ �� 0�×�
���� ��×� ], S = [ ��

���� ], S� = [ ��
���� ] C =[0�×� n�×�], and the state �(�) = [Δ��(�) �(�)]�. k(�) is a

zero mean white noise sequence related to the disturbance by
the di�erence equation k(�) = �(�) − �(� − 1) [6].
5.2.1. Design Framework. In designing MPC using Laguerre
functions the control trajectory Δd is expressed using a set
of orthonormal functions called Laguerre functions. Since the
state and output vectors can also be described in terms ofΔd, it follows that they too can be expressed using Laguerre
functions.

At sampling instant ��, the state variable �(��) is available
through measurement. �e future control trajectory is given
by Δd = [Δ� (��) , Δ� (�� + 1) , . . . , Δ� (�� + X� − 1)] , (37)

whereX� is the control horizon.

Laguerre functions can approximate the incremental
terms contained inΔd.�e �-transfroms of the discrete-time
Laguerre functions are written as

Γ1 (�) = √1 − q21 − q�−1 ,Γ2 (�) = √1 − q21 − q�−1 ( �−1 − q1 − q�−1) ,...
Γ� (�) = √1 − q21 − q�−1 ( �−1 − q1 − q�−1)�−1 .

(38)

In the discrete-time Laguerre network of (38), q is the pole
of the discrete-time Laguerre network and 0 ≤ q < 1 for
stability of the network. �e parameter q is called the scaling
factor and X = 1, 2, 3, . . . is the number of Laguerre terms
used in the network. Note thatΓ� (�) = Γ�−1 (�) ( �−1 − q1 − q�−1) , (39)

with the 
rst term as Γ1(�) = √1 − q2/(1 − q�−1).
Let ��(�) be the inverse �-transform of the `th term in

the discrete Laguerre network and v(�) the vector containing
all inverse �-transform terms. �en taking advantage of (39),
successive inverse �-transform vectors are obtained through
the di�erence equation:v (� + 1) = R 
v (�) . (40)

�ematrixR 
 has sizeX×X and is a function of parametersq and w = 1 − q2. �e initial condition is given byv (0)⊤ = √w [1 −q q2 ⋅ ⋅ ⋅ (−1)�−1 q�−1] . (41)

In the case whereX = 5, matrix R 
 and the initial conditionv(0) are
[[[[[[

q 0 0 0 0w q 0 0 0−qw w q 0 0q2w −qw w q 0−q3w q2w −qw w q
]]]]]] , (42)

v (0) = √w[[[[[[
1−qq2−q3q4
]]]]]] , (43)

respectively.
At sampling instant ��, the control trajectory is described

using Laguerre functions as in

Δ� (�� + �) = �∑
�=1

-� (��) �� (��) , (44)
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where � = 0, 1, 2, . . . , X! with X! as the prediction horizon,X terms used in the expansion and ��(��) is the inverse �-
transform of the `th term in the discrete Laguerre network.

Equation (44) can be rewritten asΔ� (�� + �) = v (�)⊤ z, (45)

where v(�) = [�1(�) �2(�) ⋅ ⋅ ⋅ ��(�)]�, z = [-1 -2 ⋅ ⋅ ⋅ -�]�,
and the coe�cients -1, -2, . . . , -� are obtained from system
data.

At an arbitrary future instant 5, the state is described
using Laguerre functions as

� (�� + 5 | ��) = R�� (��) + �−1∑
�=0

R�−�−1Sv ({)� z. (46)

Similarly, the output is described as

� (�� + 5 | ��) = CR�� (��) + �−1∑
�=0

CR�−�−1Sv ({)� z. (47)

5.2.2. Cost Function. �e cost function is used to choose the
optimal control trajectory Δd to bring the predicted output
as close as possible to the set-point. �e cost function

7 = �	∑
�=1

� (�� + 5 | ��)�h� (�� + 5 | ��) + z�""z (48)

minimizes the error between the set-point signal and the
output in the shortest possible time by carefully tuning the
weighting matrices h ≥ 0 and "" > 0.
5.2.3. Cost Function Minimization. �e state variable in (46)
can be rewritten as� (�� + 5 | ��) = R�� (��) + � (5)� z, (49)

where �(5)� = ∑�−1
�=0 R�−�−1Sv({)�.

By substituting (49) into (48) and performing the partial
derivative �7/�z = 0, the Laguerre coe�cients vector is found
to be z = −Ω−1Ψ� (��) , (50)

withΩ = ∑�	
�=1 �(5)h�(5)� + "" and Ψ = �(5)hR�.

5.2.4. Receding Horizon Control. In receding horizon control
(RHC) only the 
rst term in Δd, that is, Δ�(��), is imple-
mented at instant ��. �e rest of the sequence is ignored.
Only the most recent measurement is taken to form the state
vector for calculation of the control signal. �is procedure is
repeated in real-time to give the receding horizon control law
[6, 8].

5.2.5. Stability. In stability analysis we make use of the tech-
nique of exponential data weighting originated by Anderson
and Moore [9] and applied to MPC in [6]. More speci
cally

we will concentrate on the discrete exponential factor �#Δ%
where Δ+ is the sampling interval and the discrete weights

form a geometric sequence {��, ` = 0, 1, 2, . . .}.
�e proposed cost function is similar to the one used

in linear quadratic regulator (LQR) systems but with the
inclusion of discrete weights

7& = �	∑
�=1

�−2�� (�� + ` | ��)�h� (�� + ` | ��)
+ �	∑
�=0

�−2�Δ� (�� + `)� "Δ� (�� + `) . (51)

For � > 1, the exponential weights �−2�, ` = 1, 2, 3, . . . , X!,
put more emphasis on the current state �(�� + ` | ��) and less
emphasis on subsequent future states.

�e exponentially weighted cost function can be
expressed more compactly as

7& = �	∑
�=1

�̂ (�� + ` | ��)�h�̂ (�� + ` | ��)
+ �	∑
�=0

Δ�̂ (�� + `)� "Δ�̂ (�� + `) , (52)

with state equation�̂ (� + 1) = R'�̂ (�) + S'Δ�̂ (�) , (53)

and R' = R/� and S' = S/�.
With h ≥ 0, " > 0, and X! → ∞, minimizing the

cost function 7& is equivalent to the DLQR problem which is
solved using algebraic Riccati equation (54).�epair (R', S')
is assumed to be controllable and (R', C) observable withh = C�C. �en there is a stabilizing state feedback control
gain matrix\&,\& = (" + �−2S� &̂S)−1 �−2S� &̂R,R�� [ &̂ − &̂

S� (" + S�� &̂
S�)−1 S�� &̂] R� + h − &̂ = 0

(54)

that gives a stable closed loop system with all its eigenvalues
inside the unit circle and the the closed loop system being
described by�̂ (�� + ` + 1 | ��) = �−1 (R − S\&) �̂ (�� + ` | ��) . (55)

From (55), the transformed system has all its eigenvalues
inside the unit circle by takingX! → ∞. So�−1 �����max (R − S\&)���� < 1, (56)

which gives �����max (R − S\&)���� < �. (57)

�us by choosing � > 1 there is a great chance that the system
will be stable. Several simulations on the quadrotor system
indicate that a choice of � slightly greater than unity makes
the system stable almost all the time.
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Table 1

Parameter Value

Mass,5 0.7 kg

Length, � 0.275m7� 0.1063 kg⋅m27� 0.1063 kg⋅m27� 0.2122 kg⋅m2

Table 2

Control horizonX� X Required q
10 5 0.6065

15 5 0.7165

20 5 0.7788

25 5 0.8187

50 5 0.9048

6. Simulation Parameters and Results

In order to illustrate the controller’s stability we will check
if the eigenvalues of each of the three individual controllers
appear inside a unit circle. Andwewill use a trajectory in a 3D
plane to check the overall controller’s ability to track a desired
trajectory.

Table 1 shows the parameters of the quadrotor used in
simulation.

6.1. Stability Analysis. In this section we look at the location
of eigenvalues of LMPC and check if they fall within the unit
circle for stability of the system. We also compare them to
those obtained from the optimal DLQR system. To ensure
stability as explained in Section 5.2.5 we use � = 1.2.

By looking at Figure 4 we note that all the eigenvalues
appear inside the unit circle as required. Also the eigenvalues
obtained from LMPC closely match with those of the optimal
DLQR.�is not only shows the system is stable but also shows
the controllers perform optimally.

6.2. Trajectory Tracking. In this section we look at the
performance of LMPC when used to track a 3D trajectory.
Also LMPC is compared to SS-MPC and individual state
trajectories are observed. �e starting point of the trajectory
is (�, �, �) = (0, 0, 0) and 
nal point is (�, �, �) = (5, 5, 10).
Parameter q = 0.8187 whileX = 5. See Figure 5.

Clearly both LMPC and SS-MPC track the desired tra-
jectory very well. See Figures 5, 6 and 7. However, LMPC
performs better than SS-MPC in that it requires only 
ve
parameters (X = 5) to capture the control trajectory
compared to SS-MPC’sminimumof 25 (X� = 25) parameters
(see Table 2 for relationship ofX andX� with q = 0.8187).
6.3. Control Horizon in Relation to q and X. �e control
horizon (X�) is related to the parameters q andX [2] byq ≈ �−�/�
 . (58)
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Figure 4: Eigenvalues for DLQR and LMPC in altitude control.
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Figure 5: Tracking a 3D trajectory.

6.3.1. Constant X. Using (58) and choosing a constant
parameterX = 5 we get Table 2.

�us we can increase the control horizon by increasing
the parameter q without necessarily changing the orderX.

6.3.2. Constant Control Horizon X�. Assuming we want to
achieve a control horizon of 30, we choose one parameter
usually X because it is an integer and directly de
nes the
order of the discrete Laguerre network.�erefater, we simply
use (58) to 
nd the corresponding scaling factor q as shown
in Table 3.
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Figure 6: Tracking � (a) and � in (b).
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Figure 7: Altitude (�) (a) and heading angle (
) (b).
Table 3

Target control horizonX� ChosenX Required q
30 1 0.9672

30 3 0.9048

30 5 0.8465

30 7 0.7919

30 9 0.7408

Figures 8, 9, 10, 11, 12, and 13 compare two LMPC designs
both of which yield a control horizon of 30. One design
uses X = 1 and the other X = 9. �us we can choose a
Laguerre network with lower number of termsX (that gives

lower computation burden) but with a larger scaling factorq to achieve the same control horizon. �e computational
cost is lower if a smaller number of parameters are used.
For X = 1, only one Laguerre term is used to capture the
control trajectory whileX = 9 requires nine Laguerre terms
to capture the same control trajectory.

7. Conclusion

�is paper has presented a solution to stability and trajectory
tracking of quadrotor systems using a model predictive
controller designed by using a special type of orthonor-
mal functions called Laguerre functions. A quadratic cost
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Figure 8: � trajectoryX = 1.
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Figure 9: � trajectoryX = 9.
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Figure 10: � trajectoryX = 1.
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Figure 11: � trajectoryX = 9.
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Figure 12: � trajectoryX = 1.
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Figure 13: � trajectoryX = 9.
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function similar to that used in linear quadratic regulator
(LQR) has been used. In stability analysis LMPC has been
compared to the optimal DLQR system whereas in trajectory
tracking LMPC has been compared to a popular linear state-
space MPC desgin technique in which plant constraints are
modeled using linear equalities and inequalities. �e results
from the simulations indicate that the controller performs
very well and is considered feasible. With this perceived
feasibility LMPCo�ers the added advantage that it can handle
systems where rapid sampling and more complicated process
dynamics are required [5, 10]. By selecting appropriate values
of q andX LMPC reduces the number of parameters required
for accurate prediction when using the traditional (MPC)
approach. �is is a big advantage in that, with the reduced
number of parameters, online implementation might be
possible where the traditional MPC would have failed.
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