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The article is devoted to a motion control problem for a differentially driven mobile robot in the task of trajectory tracking
in the presence of skid-slip effects. The kinematic control concept presented in the paper is the Vector Field Orientation
(VFO) feedback approach with a nonlinear feed-forward skid-slip influence compensation scheme. The VFO control law
guarantees asymptotic convergence of the position tracking error to zero in spite of the disturbing influence of skid-slip
phenomena. The paper includes a control law design description, stability and convergence analysis of a closed-loop system,
and practical verification of the proposed control concept. The experimental results illustrate control quality obtained on a
laboratory setup equipped with vision feedback, where the Kalman filter algorithm was used in order to practically estimate
skid-slip components.
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1. Introduction

In recent years, due to the growing popularity and im-
portance in many applications of Wheeled Mobile Robots
(WMRs), motion control problems dedicated to WMRs
attracted much attention in the robotics and automation
community. Most wheeled vehicles can be regarded as
mechanical systems with nonintegrable velocity (i.e., non-
holonomic) constraints. Such simplification may be justi-
fied, at least locally, when the vehicle moves with rela-
tively low velocities and accelerations on a firm and ad-
hesive ground. In these motion conditions the dynamic
effects, including wheel-ground interactions, can be re-
garded as a non significant and vanishing disturbance,
and kinematic closed-loop control solutions are sufficient.
However, in some real-life motion tasks, skid-slip phe-
nomena cannot be longer ignored since they may sub-
stantially deteriorate motion accuracy of WMRs which are
controlled using the assumption of nonholonomically con-
strained motion. One can easily find examples of motion
conditions where nonholonomic constraints are violated,
like motion on a sloping and slippery ground or losing
adhesion between wheels and a motion surface when a
vehicle rapidly changes the direction of motion. More-

over, there exists an important group of vehicles equipped
with a multi-wheel drive system known as Skid-Steering
Wheeled Mobile Robots (SSWMRs), where skid and slip
are intrinsic phenomena necessary for proper vehicle op-
eration. For the latter class of underactuated systems, the
set of feasible accelerations is restricted and their dynam-
ics are not integrable (Lewis, 1999).

The issue of skid-slip modeling is a complicated
problem, since it involves the description of forces act-
ing between wheels and a motion surface based on highly
nonlinear physical dynamic effects. Many works in this
field were inspired by automotive industry, see, for exam-
ple, (Pacejka, 2002; Kiencke and Nielsen, 2000; Wong,
2001). Some related works concentrate on improving
motion stability and safety of car-like vehicles (Fukao
et al., 2001), including anti-lock active drive systems
(Mi et al., 2005). However, in the literature focused on
robotics, not much has been written about solving funda-
mental control tasks for WMRs in the presence of slip-
ping and skidding so far. Hence, the motion control
problem for WMRs in skid-slip conditions still remains
a challenge. Especially, there is a growing need for in-
tensive experimental validation of the existing and new
control strategies. Taking into account the skid-slip treat-
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ment for control purposes, one can notice two main al-
ternative approaches. In the first one, the authors con-
centrate on skid-slip description at a dynamic level (Peng
et al., 2004; Motte and Campion, 2000), also with re-
spect to SSWMRs (Lhomme-Desages et al., 2007; Zong
et al., 2006). Though dynamic modeling of skid-slip ef-
fects gives a theoretical possibility of obtaining the best
accuracy and robustness of the control action, model com-
plexity may in fact substantially complicate the over-
all control strategy and make its applicability relatively
demanding. An alternative approach lies in a solely
kinematic description of skid-slip phenomena (Wang and
Low, 2008; Lenain et al., 2006; Corradini et al., 1999).
It seems to be practically attractive (due to its simplicity)
and also justified, since a direct consequence of skid-slip
phenomena, regardless of their possible physical reason,
is always a velocity disturbance on a kinematic level.

Recently, (Wang and Low, 2008) presented a clas-
sification of WMR kinematics from the perspective of
the skid-slip influence on the kinematic model together
with their controllability property. The work (Dixon
et al., 2000) can be an example of the kinematic control
approach, where the smooth control solution was designed
based on the assumption that skid-slip disturbances are not
measured and asymptotic error convergence may be re-
laxed leading to the practical stability result. Experimen-
tal verification of a similar control strategy for SSWMRs
was presented in (Pazderski and Kozłowski, 2008). Other
solutions, which combine both kinematic and dynamic
approaches, have been also proposed, see, for example,
(Leroquais and dAndrea Novel, 1996).

In this paper, we propose an extension of the VFO
kinematic controller described in detail in (Michałek and
Kozłowski, 2009) for a differentially driven mobile vehi-
cle. The VFO controller is adopted here to the tracking
task defined in the presence of limited skid-slip phenom-
ena. The main idea proposed in the paper relies on treating
skid-slip effects solely on a kinematic level and compen-
sating their influence on the robot motion in a nonlinear
feed-forward compensation loop. For practical estimation
of skid-slip components, the velocity and acceleration ob-
server in the form of a discrete Kalman filter using vision
feedback measurement signals is proposed. Theoretical
deliberations are experimentally verified on a laboratory
setup with a differentially driven mobile robot for three
different skid-slip motion conditions.

2. Control task formulation

The nominal model of differentially driven vehicle kine-
matics (simplified here to the unicycle) can be formulated
as follows:

⎡
⎣

θ̇
ẋ
ẏ

⎤
⎦ =

⎡
⎣
1 0
0 cos θ
0 sin θ

⎤
⎦

[
u1

u2

]
⇐ q̇ = G(q)u, (1)

where q = [θ x y]T ∈ R
3 is a state vector describ-

ing the orientation and position coordinates of the vehi-
cle platform in a global frame {X, Y }, respectively (see
Fig. 1). The input vector u = [u1 u2]T ∈ R

2 consists
of an angular and a longitudinal platform velocity, respec-
tively, and q̇ ≡ q̇N is a nominal state velocity. The ex-
pressions nominal model and nominal velocity mean here
that (1) describes vehicle kinematics in the absence of
external disturbances, especially skid-slip effects. It si-
multaneously implies that nonholonomic kinematic con-
straints, described in the Pfaffian form as A(q)q̇ = 0,
A(q) = [0 − sin θ cos θ], are satisfied.

Let us now define skid-slip phenomena in relation to
the examined kinematics (1). Because the crucial princi-
ple of the VFO motion control approach presented in this
paper relies solely on kinematic treatment of the unicy-
cle vehicle model, the same should apply to skid and slip.
Thus, we are not interested here in any physical reasons
for skid-slip phenomena, since they are connected with
hardly modeled friction effects between vehicle wheels
and the motion surface. We are interested rather in the
final results of skidding and slipping, which on the kine-
matic level always reduce to the additional velocity distur-
bance vector vs ∈ R

3 called hereafter skid-slip velocity.
The nominal model (1) is rewritten in this case in the dis-
turbed form:

q̇ = q̇N + vs ⇒ q̇ = g1u1 + g2(q)u2 + vs, (2)

where [g1 g2(q)] ≡ G(q) and q̇N = G(q)u (according
to (1)), and vs = [ωs vsx vsy]T = [ωs v∗T

s ]T is the skid-
slip velocity expressed in a global frame with the angular
component ωs ∈ R (yaw rate disturbance) and the driv-
ing component v∗

s ∈ R
2, respectively (cf. Fig. 1). Note

that the general model (2) allows treating the term vs as
a resultant reduced disturbance describing, apart from the
skid-slip influence, also other non-modeled effects like the
dynamics of a vehicle platform or motor drives.

Let us now make the following three assumptions in
relation to the disturbance vs:

A1. The skid-slip velocity components and the skid-slip
angle δs are bounded: ωs, ‖v∗

s‖ , δs ∈ L∞, where

δs
Δ= arg(q̇∗) − arg(q̇∗

N ) = δ − θ (see Fig. 1).

A2. The driving components of the skid-slip velocity are
continuous: ‖ v̇∗

s‖ ∈ L∞.

A3. ωs, v∗
s and v̇∗

s are measurable or can be estimated.

Assumption A1 is fundamental, since it preserves partial
controllability of the system (2) from input u (see (Wang
and Low, 2008)). The boundedness of the skid-slip an-
gle δs is practically justified and means in this case that
admissible skid-slip conditions exclude the persistent ro-
tation of v∗

s vector1. The boundedness of v̇∗
s (A2) is in-

1The authors in (Wang and Low, 2008) postulate even more stringent
assumption, namely, |δs| < π/2.
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Fig. 1. Differentially driven vehicle in the presence of non-zero
skid-slip velocity with the skid-slip angle δs denoted
(notation: q̇∗ = [ẋ ẏ]T , g∗

2(θ) = [cos θ sin θ]T ).

volved by the proposed VFO control strategy to ensure
the boundedness of control inputs in the closed-loop sys-
tem, as will be explained in the sequel. Assumption A3 is
required to physically realize the feed-forward compensa-
tion loop in the proposed control strategy. The latter issue
will be commented in detail in Section 4.

To formulate the main control task, let us assume that
there is given the nominal reference trajectory qt(τ) =
[θt(τ) xt(τ) yt(τ)]T ∈ R

3 which satisfies the equation
(1) for some reference inputs u1t(τ) and u2t(τ) such that
∀τ�0 u2t(τ) �= 0. Define also the posture tracking error
as follows:

e(τ) =
[
eθ(τ)
e∗(τ)

]
Δ=

[
θt(τ) − θ(τ)

q∗
t (τ) − q∗(τ)

]
∈ R

3, (3)

where q∗
t (τ) = [xt(τ) yt(τ)]T and q∗(τ) = [x(τ) y(τ)]T .

The main objective is to propose for the disturbed system
(2) the feedback control law u = u(qt, q, ·), which en-
sures the stability of the closed-loop system with asymp-
totic convergence of the position error e∗(τ) to zero to-
gether with the boundedness of the orientation error eθ(τ)
in the presence of a non-zero skid-slip velocity vs meeting
Assumptions A1–A3.

3. VFO control strategy with skid-slip
compensation

The VFO approach originated from simple and intuitive
geometrical interpretations related to nominal kinematics
(1). A detailed description of the method and its applica-
tion to classical control tasks were presented in (Michałek
and Kozłowski, 2009). Due to the geometrical character
of the VFO strategy and simple interpretations of particu-
lar control components, the original VFO concept can be
adopted also to non-nominal motion conditions like in the
case of the disturbed model (2). This adoption leads to the
position tracking VFO controller with skid-slip influence
compensation by a nonlinear feed-forward loop.

The control strategy together with the stability and
convergence analysis of a closed-loop system will be
described below. For brevity, the explanatory descrip-
tion will be restricted only to the most important issues
which will allow understanding the motivation of partic-
ular control components. For more detailed deliberations
on VFO methodology, the reader is referred to (Michałek
and Kozłowski, 2009) and also to the preliminary work
(Michałek, 2007).

To make our description clear, let us first decompose
the system (2) into two subsystems:

θ̇ = u1 + ωs, (4)

q̇∗ = g∗
2(θ)u2 + v∗

s = q̇∗
N + v∗

s , (5)

where

q̇∗ =
[
ẋ
ẏ

]
, g∗

2(θ) =
[
cos θ
sin θ

]
, v∗

s =
[
vsx

vsy

]
. (6)

One of the crucial elements of the VFO strategy is the so-
called convergence vector field,

h =

⎡
⎣
h1

h2

h3

⎤
⎦ =

[
h1

h∗

]
∈ R

3, h∗ ∈ R
2. (7)

This vector field determines at every time instant the
field of velocity vectors in the vehicle state space. Assume
that at every point q of the vehicle state space h∗(q, qt, ·)
defines the instantaneous2 desired direction, orientation
(connected with the vector sense) and some kind of dis-
tance to the reference position trajectory q∗

t = [xt yt]T .
Simultaneously, the first component, h1, determines the
desired behavior for the first state variable θ. According
to the above description, one can say that h defines the de-
sired instantaneous evolution for the controlled vehicle in
the state space. Hence, to accomplish the control task, it
seems sufficient to make the instantaneous vehicle veloc-
ity q̇ converge (at least at the limit) to the current vector
h, which can be written as

lim
τ→∞ [q̇(τ) − h(q(τ), qt(τ), ·)] = 0. (8)

Substituting to the above limit appropriate compo-
nents from (4), (5) and (7), one can rewrite it into the fol-
lowing form:

lim
τ→∞

⎧
⎨
⎩

u1(τ) + ωs(τ) − h1(τ) = 0,
u2(τ) cos θ(τ) + vsx(τ) − h2(τ) = 0,
u2(τ) sin θ(τ) + vsy(τ) − h3(τ) = 0.

(9)

The first of the above relations can be met instantaneously
(omitting the limit) defining the first control input as

u1(τ) Δ= h1(τ) − ωs(τ). (10)

2For the trajectory tracking task, the convergence vector field is time-
varying.
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On the other hand, the last two relations from (9) can be
combined in a more compact form yielding the so-called
orienting condition3,

lim
τ→∞ [Atan2 (H3 sgn(u2), H2 sgn(u2)) − θ(τ)] = 0,

(11)
where

H∗ =
[
H2

H3

]
=

[
h2 − vsx

h3 − vsy

]
= h∗ − v∗

s . (12)

The condition (11) cannot generally be satisfied in-
stantaneously due to the integral relation between the vari-
able θ and the input u1 (see (4)). Thus, let us introduce the
auxiliary variable

θa(τ) Δ= Atan2c (H3 sgn(u2t), H2 sgn(u2t)) ∈ R, (13)

where Atan2c (·, ·) : R × R 	→ R is a continuous version
of the function Atan2 (·, ·) : R×R 	→ (−π, π]. In the def-
inition (13), the term sgn(u2) was replaced with sgn(u2t)
in order to guarantee smooth transient behavior of a vehi-
cle in forward as well as backward reference motion4.

Now, to meet the relation (11), it suffices to make the
auxiliary error

ea(τ) Δ= θa(τ) − θ(τ), ea(τ) ∈ R, (14)

tend to zero. This can be accomplished by proper defini-
tion of the first component of h, since it determines the
desired behavior for the θ state variable and, connected
with the proposition (10), will give the final definition for
the input u1.

The components of h can be defined in several ways.
One possible proposition is as follows:

h1(τ) Δ= k1ea(τ) + θ̇a(τ), (15)

h∗(τ) Δ= kpe
∗(τ) + q̇∗

t (τ), (16)

where k1, kp > 0 are the design coefficients, q̇∗
t (τ) =

[ẋt(τ) ẏt(τ)]T is the reference longitudinal velocity vec-
tor, and the feed-forward term

θ̇a(τ) =
Ḣ3(τ)H2(τ) − H3(τ)Ḣ2(τ)

‖H∗(τ)‖2 (17)

results from the time-differentiation of (13). Now one can
determine all the terms needed to compute the first control
input u1 defined in (10).

It remains now to define the second control input u2.
According to the VFO strategy, the input u2 is called push-
ing control, since in geometrical interpretation it pushes

3The terminology comes from the VFO methodology, see (Michałek
and Kozłowski, 2009).

4The value of sgn(u2t) ∈ {−1, +1} remains constant during a
tracking task since ∀τ�0 u2t(τ) �= 0 according to the assumption made
in Section 2.

the substate q∗ in the subsystem (5) along the current di-
rection of g∗

2(θ). From (5) and (7) it can be seen that, to
meet (8), the value of u2 should guarantee that the norm
of q̇∗ is convergent to the norm of the h∗ vector (at least
at the limit). It is equivalent to the convergence of the
nominal velocity q̇∗

N to H∗ (see (12)). Using the heuris-
tic careful pushing strategy, the second input is defined as
follows:

u2(τ) Δ= ‖H∗(τ)‖ cosα(τ) = g∗T
2 (θ(τ))H∗(τ), (18)

where α(τ) = ∠(g∗
2(θ(τ)), H∗(τ)). The definition (18)

admits pushing with intensity proportional to the cur-
rent orthogonal projection of H∗ onto a direction of the
nominal longitudinal velocity q̇∗

N determined by g∗
2(θ)

(cf. (5)). The maximal pushing intensity is thus possi-
ble only when directions of g∗

2(θ) and H∗ are perfectly
matched (|cosα| = 1), which in turn depends on the con-
trol action effectiveness of the input u1.

Summarizing, one can say that the whole feed-
back control process is divided into two subprocesses—
orienting and pushing—connected with the control inputs
u1 and u2, respectively. The orienting control u1 is re-
sponsible for driving the vehicle orientation θ toward the
auxiliary variable θa, which in turn determines the di-
rection of the H∗ vector on a motion plane (see (13)).
On the other hand, the u2 control input is responsible for
driving the vehicle with a proper intensity proportional to
the instantaneous norm of the H∗ vector (in the careful
pushing strategy). Both control inputs cooperate for the
desired final effect where the influence of skid-slip phe-
nomena on the vehicle motion is compensated and, as a
consequence, the resultant longitudinal velocity q̇∗ per-
fectly matches the instantaneous convergence vector h∗,
ensuring asymptotic convergence of the vehicle position
q∗ to the reference one q∗

t . The control concept is also ex-
plained in Fig. 2, where the ideal case of perfect skid-slip
compensation and perfect matching for q̇∗ with h∗ is pre-
sented. Note that the control objective is not the elimina-
tion of skid-slip phenomena, but rather the compensation
of their influence on vehicle position evolution. Collecting
the definitions (10) and (18) with particular terms from
(15) and (6) finally allows presenting the VFO control law
with skid-slip compensation as follows:

u1(τ) := k1ea(τ) + θ̇a(τ) − ωs(τ), (19)

u2(τ) := H2(τ) cos θ(τ) + H3(τ) sin θ(τ), (20)

with H2 and H3 introduced in (12). It is worth noting that
the VFO strategy (19)–(20) differs from the nominal VFO
control law presented in (Michałek and Kozłowski, 2009)
by the introduction of nonlinear feed-forward compensa-
tion of the skid-slip components ωs, vsx and vsy . It means
that simply zeroing the latter leads to the VFO controller
in its nominal form dedicated for a tracking task in the
absence of skid-slip effects.
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Fig. 2. VFO control strategy with skid-slip influence compen-
sation for the ideal case of perfect matching between the
vehicle driving velocity vector q̇∗ and the current con-
vergence vector h∗.

Let us now formulate the following proposition.

Proposition 1. Assuming that the reference trajectory
q∗

t (τ) is sufficiently smooth, ‖ q̇∗
t ‖ , ‖ q̈∗

t ‖ ∈ L∞, the
skid-slip velocity vs in (2) satisfies A1–A3, and that for
all τ � 0 there holds ‖H∗(τ)‖ �= 0, the VFO control
law (19), (20) applied to the system (2) guarantees the
stability of the closed-loop system and asymptotic con-
vergence of the position error e∗(τ) in the sense that
‖e∗(τ)‖ , eθ(τ) ∈ L∞ and limτ→∞ ‖e∗(τ)‖ = 0.

Proof. The formal analysis conducted below is an
extended and detailed version of the proof presented in
(Michałek, 2007).

Consider first time-evolution of the auxiliary error
ea(τ). Substituting (19) into (4) yields

ėa(τ) + k1ea(τ) = 0 ⇒ lim
τ→∞ ea(τ) = 0, (21)

which shows the boundedness of ea(τ) and exponential
convergence of the θ state variable to the auxiliary variable
θa. This result will be useful in the subsequent analysis.

In a second step, let us consider the behavior of the
position tracking error e∗(τ). Using the definitions (16)
and (12), one can write

H∗ = h∗ − v∗
s

(16)
=⇒ H∗ = kpe

∗ + q̇∗
t − v∗

s . (22)

As a consequence of the fact that ė∗ = q̇∗
t − q̇∗, using (5)

and substituting q̇∗
t term taken from (22) one obtains the

following equation:

ė∗ = −kpe
∗ + r, where r = H∗ − g∗

2(θ)u2. (23)

It can be shown (see Appendix) that the following rela-
tions hold:

‖ r‖ = ‖H∗‖ γ(θ) and lim
θ→θa

γ(θ) = 0, (24)

where γ(θ) =
√

1 − cos2 α(θ) ∈ [0, 1] and α(θ) =
∠(g∗

2(θ), H∗). Introducing a positive definite function

V (e∗) = 1
2e∗T e∗ and utilizing (23) and (24), one can

estimate the time-derivative V̇ (e∗) as follows:

V̇ = e∗T ė∗ = e∗T (−kpe
∗ + r)

= −kp ‖e∗‖2 + e∗T r

� −kp ‖e∗‖2 + ‖e∗‖ ‖ r‖
= −kp ‖e∗‖2 + ‖e∗‖ ‖H∗‖ γ

= −kp ‖e∗‖2 + ‖e∗‖ ‖ kpe
∗ + q̇∗

t − v∗
s‖ γ

� −kp(1 − γ) ‖ e∗‖2 + γ ‖ e∗‖κ = −W (e∗, γ, κ),

where κ = ‖ q̇∗
t ‖ + ‖v∗

s‖ is bounded by assumption and

W (e∗, γ, κ) = kp(1 − γ) ‖e∗‖2 − γ ‖e∗‖ κ. (25)

The function (25) is positive if the following condition is
met:

‖e∗(τ)‖ > Γ(τ), Γ(τ) =
γ(τ)κ(τ)

kp(1 − γ(τ))
. (26)

Let us analyze the above partial result using the fol-
lowing reasoning: The function Γ from (26) is finite for
γ < 1. The case when γ = 1 may appear, but is tem-
porary and non-attractive (as a direct consequence of the
limit in (24) together with the convergence result obtained
in (21)). It can potentially occur only during a transient
stage for some time instant τ < ∞. In this case, we
have W (τ ) = −‖e∗(τ )‖ κ(τ) < ∞ (we assume that
‖e∗(0)‖ < ∞), which implies that V̇ (τ ) < ∞. Hence, in
the case when γ = 1, the finite time escape for ‖e∗‖ does
not hold.

For all τ �= τ the function Γ(τ) is finite and the norm
‖e∗(τ)‖ is convergent if it becomes greater than Γ(τ).
Since γ(τ) can never get stuck in γ = 1 and, moreover,
∃τγ<∞ : ∀τ>τγγ(τ) < 1 (due to the similar reasons men-
tioned above) and since κ ∈ L∞ (by assumption), one can
conclude that (26) is determined for bounded Γ(τ) almost
always and for all τ > τγ . As a consequence, ‖e∗(τ)‖ ∈
L∞ and V (e∗), V̇ (e∗) ∈ L∞. According to (25), (22)
and (23), also W, ‖H∗‖ , ‖ r‖ ∈ L∞. Now, from the
left-hand side of (23) one concludes that ‖ ė∗‖ ∈ L∞.
Since the norms ‖e∗‖ and ‖ ė∗‖ are bounded, one can
utilize Barbalat’s lemma in the formulation presented in
Appendix. It can be shown that the function W given
by (25) is uniformly continuous and integrable (see Ap-
pendix), W (τ), Ẇ (τ) ∈ L∞, limτ→∞

∫ τ

0 W (ξ)dξ <
∞. According to Barbalat’s lemma, one can conclude
that limτ→∞ W (τ) = 0. It is equivalent (see (25)
and (26)) to limτ→∞ [e∗(τ) − Γ(τ)] = 0. Recalling
now that limτ→∞ γ(τ) = 0 (see the limit from (24)
together with (21)), one may conclude (see (26)) that
limτ→∞ Γ(τ) = 0 and, finally, according to the preceding
reasoning, limτ→∞ ‖ e∗(τ)‖ = 0.

Using the notation θt = arg(q̇∗
t ), θ = arg(q̇∗

N ) (see
(5)) together with the definition of the skid-slip angle as in
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Assumption A1, the boundedness of the eθ(τ) error can be
concluded from the following reasoning. At the limit for
τ → ∞, we have θ = θa and ‖e∗‖ = 0 and, as a direct
consequence, h∗ = q̇∗

t (see (16)) and q̇∗ = h∗ = q̇∗
t .

Proceeding, one obtains δs = arg(q̇∗
t )− arg(q̇∗

N ) = θt −
θ = eθ (compare Fig. 2), which, according to A1, allows
concluding eθ ∈ L∞. �

The assumption about the norm of H∗ made in
Proposition 1 involves a comment. The reason for its in-
troduction comes from the definition (13) and its time-
derivative (17), which are not defined for ‖H∗‖ = 0.
This fact generally makes the VFO law (19)–(20) a dis-
continuous controller. Additional analysis reveals, how-
ever, that occasional violation of the above assumption
does not have to relax the convergence result obtained in
the proof. The equality ‖H∗‖ = 0 concerns two cases
(compare (22), (23) and (16)):

C1. e∗ �= 0 ∧ v∗
s = h∗ (it may happen only during a

transient stage).

C2. e∗ = 0 ∧ v∗
s = q̇∗

t (when a system evolves exactly
along a reference position trajectory q∗

t ).

Since for ‖H∗‖ = 0 also u2 = 0 (see (20)), the only
term which drives the subsystem (5) is the skid-slip ve-
locity v∗

s . As a consequence, Cases C1 and C2 describe
a situation where the disturbance v∗

s drives the subsys-
tem (5) toward5 q∗

t (C1) or along q∗
t (C2), satisfying the

main control objective. Moreover, in Case C1 one ob-
tains (see (23)), r = 0 ⇒ ė∗ + kpe

∗ = 0. Hence the
boundedness and asymptotic convergence of e∗ are still
preserved. It is important that the control discontinuity
set determined by ‖H∗‖ = 0 is non-attractive and non-
persistent.

However, to obtain a well-defined control u1 for the
whole domain of its arguments, one can introduce addi-
tional definitions for the θa and θ̇a components in the as-
sumed small ε-vicinity of the point H∗ = 0. Let us pro-
pose to take

⎧
⎨
⎩

θa(τ) Δ= θa(τ−)

θ̇a(τ) Δ= 0
for ‖H∗(τ)‖ � ε,

where 0 < ε < infτ ‖ q̇∗
t (τ) − v∗

s(τ)‖, and τ− denotes
the time instant when the norm ‖H∗(τ)‖ reaches the ε-
vicinity. The proposed additional definitions together with
(13) allow the control formula (19) to remain unchanged.

4. Experimental verification

4.1. Experimental setup. The experiments were con-
ducted in the experimental setup presented schematically
in Fig. 3. It consists of four main parts: a differentially

5Let us recall that h∗ is an instantaneous convergence vector.
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Fig. 3. Scheme of the experimental setup with the MTv3 mobile
robot and the vision measurement system.

driven mobile robot MTv3, a flat test ground with a slip-
pery surface, a digital vision system playing the role of a
feedback sensor and allowing estimating particular com-
ponents of robot state velocity, and a PC station with a
communication radio module. The vision system works
with a frequency of fv = 64 Hz. The localization of the
mobile robot is possible due to three LED markers which
are detected by the vision system and mounted on a spe-
cial support on the top of the robot platform. The whole
control system is designed in a cascaded form, where the
PC computer plays the role of a supervisory layer com-
puting VFO control signals and then sending the rescaled
wheel velocities ωLd, ωRd as command values to two PI
board controllers, implemented on the mobile robot. The
main computational procedures of the PC station are de-
noted in Fig. 3. Two of them, namely, Robot velocity es-
timation block and Skid-slip estimator, which are crucial
for practical implementation of the proposed control ap-
proach, are described in the next subsection.

4.2. Practical estimation of skid-slip components.
The main challenge in practical implementation of the
control law (19)–(20) comes from the need for effective
estimation of skid-slip components. Apart from the ve-
locity terms ωs, vsx and vsy needed in (19) and (12),
also skid-slip accelerations are required in VFO computa-
tions because they appear in the components of the time-
derivative Ḣ∗ = kpė

∗ + q̈∗
t − v̇∗

s in Eqn. (17). Since
the VFO control concept is a strictly kinematic approach,
the solution to the estimation problem was formulated and
implemented also in this manner.

In the kinematic approach, skid-slip velocities can be
computed as a difference between the state velocity q̇ and
the nominal velocity vector q̇N using the model equations
(4) and (5):

ωs = θ̇ − u1, vsx = ẋ − u2cθ, vsy = ẏ − u2sθ,
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with the notion sθ ≡ sin θ, cθ ≡ cos θ used for compact-
ness. The skid-slip accelerations involved in (17) can be
obtained by formal time-differentiation of the latter two
from the above equations yielding

v̇sx = ẍ + u2θ̇sθ − u̇2cθ, v̇sy = ÿ − u2θ̇cθ − u̇2sθ.

The theoretical formulas presented above cannot be
practically utilized yet, since they involve particular ve-
locity and acceleration components of the robot platform.
In the experimental setup presented in this paper, they are
estimated using the vision measurement system6 in coop-
eration with the set of three Kalman filters designed in-
dependently for every i-th component of the robot state
(q1 = θ, q2 = x, q3 = y). The discrete-time process
model and the output equation for the i-th filter are de-
fined as follows:

zi(n + 1) = Hzi(n) + wi(n), (27)

y(n) = cT zi(n) + εi(n), (28)

where wi = N (0, Wi), Wi = diag{σ2
iq, σ

2
iv, σ2

ia}, εi =
N (0, σ2

yi) are uncorrelated white noises and

zi =

⎡
⎣

ziq

ziv

zia

⎤
⎦ , H =

⎡
⎣

1 Ts 0
0 1 Ts

0 0 1

⎤
⎦ , c =

⎡
⎣
1
0
0

⎤
⎦ ,

with Ts being a sampling time and ziq, ziv and zia de-
noting displacement, velocity and acceleration of the i-th
degree of freedom of the robot platform, respectively, tak-

ing z1q
Δ= θ, z2q

Δ= x, and z3q
Δ= y. The state equation

(27) describes the model of kinematic relations between
the first two finite differences for the i-th robot state vari-
able. The output model (28) indicates that the measured
signals used in the error equation of the Kalman filter are
particular posture coordinates of the robot platform ob-
tained in our case from the vision system (and corrupted
by the measurement noise εi). Practical implementation
of filters is classical7 with the prediction and correction
stages yielding on the output the corrected i-th estimate
ẑi(n) in every n-th discrete time instant.

Using Kalman filter estimates, discrete-time equa-
tions for estimation of skid-slip velocity and acceleration
components were practically implemented as follows:

ω̂s := δω(ẑ1v − u−
1 ), (29)

v̂sx := δx(ẑ2v − u−
2 cos ẑ1q), (30)

v̂sy := δy(ẑ3v − u−
2 sin ẑ1q), (31)

and

ˆ̇vsx := δx(ẑ2a + u2ẑ1v sin ẑ1q − ˆ̇uf
2 cos ẑ1q), (32)

ˆ̇vsy := δy(ẑ3a − u2ẑ1v cos ẑ1q − ˆ̇uf
2 sin ẑ1q), (33)

6In general, also other sensor types like accelerometers or gyroscopes
can be alternatively used.

7For implementation details, the reader is referred to (Bar-Shalom
et al., 2001).

where u−
1 and u−

2 denote control signal samples delayed
by one sample8. The term u̇2 was approximated bu ˆ̇uf

2 as
a filtered (by a first-order linear filter) finite difference of
the control signal u2. The quantities δω, δx, δy ∈ [0, 1]
have been introduced as the so-called cautious compen-
sation coefficients. They turn out to be very important
in practical implementation of the skid-slip compensator.
Their usage is helpful in very demanding motion con-
ditions arising during the tracking task, when the sub-
stantial wheel slip directly limits the possibility of con-
trol input influence on the robot motion. The effect of
cross-coupling between the control action and the slip
phenomenon was been modeled in the kinematic analy-
sis conducted before. Therefore, cautious compensation
coefficients provide a simple way of taking into account
this cross-coupling effect.

In the conducted experiments, the estimates from the
equations (29)–(33) were used in the control law (19)–
(20) instead of their particular theoretical counterparts.

4.3. Experimental results. Experimental tests were
conducted using reference circular trajectory with radius
0.3 m and assuming constant reference linear and angular
velocities u2t (τ) = 0.93 m/s and u1t = 3.1 rad/s, respec-
tively. The gains of the VFO controller were selected as9

k1 = 2 and kp = 1. The coefficients δx, δy and δω used
for cautious skid-slip compensation were chosen based on
trials and errors as follows: δx = δy = 0.4 and δω = 0.45.
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Fig. 4. Ex. A—Norms of position tracking errors: ‖e∗‖ (�) ,
‖e∗‖2 (�).

The experiments were conducted using three differ-
ent plane grounds: A—smooth teflon-like surface, B—
porous veneered surface, and C—smooth varnished sur-
face. For each experiment, during the first 10 s the skid-
slip compensator was switched OFF. At this stage, the ini-
tial tracking errors were bounded and persistent skidding
conditions were obtained. Within the next 80 s, the robot
motion and control signals were recorded and the skid-slip

8To avoid algebraic loops in practical implementation, since skid-slip
velocity estimates are needed in computations of (19) and (20).

9Selected values of VFO gains result from arguments of closed-loop
system stability, which is strongly influenced by the relatively low band-
width of the vision feedback used in the experiments (details of VFO
synthesis rules can be found in (Michałek and Kozłowski, 2009).
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Fig. 5. Ex. A—Orientation tracking error eθ (�), skid-slip an-
gle δs (�).
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Fig. 6. Ex. A—Estimates of skid-slip velocity components ex-
pressed in the local frame: v̂l

sx (�), v̂l
sy (�).
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Fig. 7. Ex. A—Estimate of an angular slip.
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Fig. 8. Ex. A—Control signals: u1 (�), u2 (�).

compensator was toggled ON/OFF with the period of 20 s
according to Table 1. The experimental results obtained
in permanent skid-slip motion conditions for the surfaces
A, B and C are illustrated in Figs. 4–8, 9–13 and 14–18,
respectively.

Figures 4, 9 and 14 reveal the effectiveness of the
VFO control strategy, where substantial decreasing of the
position tracking error norm can be seen in the time inter-
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Fig. 9. Ex. B—Norms of position tracking errors: ‖e∗‖ (�) ,
‖e∗‖2 (�).
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Fig. 10. Ex. B—Orientation tracking error eθ (�), skid-slip an-
gle δs (�).
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Fig. 11. Ex. B—Estimates of skid-slip velocity components ex-
pressed in the local frame: v̂l

sx (�), v̂l
sy (�).
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Fig. 12. Ex. B—Estimate of an angular slip.

vals when the skid-slip compensator is turned ON. Similar
improvement results were obtained for all three types of
slippery ground surfaces used during the tests. Moreover,
they were obtained for the same set of controller param-
eters and the same values of cautious compensation coef-
ficients. A slightly worse result can be seen for the case
C (see Fig. 14), where the highly slippery surface caused
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Fig. 13. Ex. B—Control signals: u1 (�), u2 (�).
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Fig. 14. Ex. C—Norms of position tracking errors: ‖e∗‖ (�) ,
‖e∗‖2 (�).
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Fig. 15. Ex. C—Orientation tracking error eθ (�), skid-slip an-
gle δs (�).
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Fig. 16. Ex. C—Estimates of skid-slip velocity components ex-
pressed in the local frame: v̂l

sx (�), v̂l
sy (�).

that skid-slip phenomena were especially intensive (com-
pare the skid-slip values in Fig. 16) with probably higher
cross-coupling between the control action and the slip ef-
fect. The orientation error evolution illustrated in Figs. 5,
10 and 15 indicates quite a high but bounded level of val-
ues achieved by this signal (even 1 rad). The reason for
high fluctuations of the orientation error is the fact that
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Fig. 17. Ex. C—Estimate of an angular slip.
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Fig. 18. Ex. C—Control signals: u1 (�), u2 (�).

Table 1. State of the skid-slip compensator within subsequent
time intervals during experiments.

Time range [s] Compensator state

[0, 20) OFF
[20, 40) ON
[40, 60) OFF
[60, 80) ON

the lateral skid as an unmatched disturbance10 cannot be
directly compensated by control inputs like in the case of
matched/input additive disturbances. Thus a substantial
change of robot orientation is the way of compensating
this type of hard disturbance. It is interesting to see that,
when compensation is used (ON), the fluctuation level of
the orientation error value is usually considerably smaller.
Worth noting is the coincidence of the orientation error
with the skid-slip angle ploted in the figure.

The estimates of the driving skid-slip components
presented in Figs. 6, 11 and 16 were expressed in the
local frame attached to the robot body according to the

following relationship:
[
v̂l

sx v̂l
sy

]T = RT (θ) v̂∗
s , where

R (θ) ∈ SO2 denotes a rotation operator on a plane. The
results indicate that v̂l

sx is not significant (at least in the
sense of its mean value), whereas the skid component
in the lateral direction v̂l

sy is persistent and substantial—
about 0.1 m/s in the mean value, but temporarily even
almost 0.2 m/s. Note that skid and slip phenomena are
present during the OFF as well as ON intervals of motion.

10See (Wang and Low, 2008) for details.
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This results from the fact that the compensation scheme
does not aim at attenuating skid-slip effects but only their
influence on the robot motion.

According to Figs. 8, 13 and 18, one can notice
that the most important role in the proposed motion con-
trol, especially when the compensator is switched ON, is
played by the orienting control u1. The pushing control
u2 changes only in a small range about its mean value,
especially when the compensator is turned OFF.

Additional Figs. 19–21 illustrate the position paths
of the robot together with the reference trajectory path for
a long-term vehicle motion in persistent skid-slip condi-
tions with a fixed compensator state (ON or OFF) during
the time interval of 80 s. It is worth noting that the long-
distance measure of the position difference between the
reference path and the robot path seems to be consider-
ably smaller for the case when skid-slip compensation is
used. It is revealed by the more tight robot motion around
the path of the reference trajectory. Let us recall, however,
that this result should be treated rather as a positive side-
effect obtained during the experiments, since the motion
control problem considered in the paper is the trajectory
tracking task, which is more involved in practical realiza-
tion. As a consequence, qualitative comparison of the ge-
ometrical results illustrated in Figs. 19–21 with the time
plots presented in Figs. 4, 9 and 14 must be done with
care, since time parametrization in the former has been
lost.

5. Concluding remarks

In the paper, the VFO tracking controller with the skid-slip
influence feed-forward compensation scheme was pre-
sented. The control strategy assumes treating skid and
slip phenomena in a kinematic manner solely by their di-
rect result in the form of an additional disturbing veloc-
ity vector. The kinematic approach allowed omitting hard
modeling issues concerning the wheel-ground frictional
interaction. An important part of the work was devoted to
experimental validation of the proposed control concept.
The results obtained on a laboratory setup equipped with
the vision feedback and the Kalman filter estimator vali-
dated the effectiveness of the presented strategy, showing

• a visible and substantial improvement in position
tracking accuracy in the case of compensator utiliza-
tion,

• a similar tracking quality obtained for three different
types of slippery ground surfaces for the same set of
controller parameters,

• a positive side-effect of the more tight long-term ve-
hicle movement around the path defined by the refer-
ence trajectory in the case of compensator usage.

The cost of the simplifying approach to the skid-slip treat-
ment appeared as an unmodeled cross-coupling effect be-
tween the kinematic control action and the motion distur-
bance being compensated. This caused the necessity of in-
troducing cautious compensation coefficients, which had
to be properly tuned to guarantee tracking precision im-
provement together with the stability of the closed-loop
system. Automatic (adaptive) tuning of these coefficients
remains an open research problem, which can be taken
into account in the near future.
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OFF (right).
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Fig. 20. Ground type B—Reference (�) and vehicle (�) position paths during long-term motion: compensator ON (left), compensator
OFF (right).
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versity of Technology. He received his M.Sc.
degree in robotics in 2002 from the Faculty of
Electrical Engineering and his Ph.D. degree in
2007 from the Faculty of Computing Science
and Management of the Poznań University of
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Appendix

Derivation of the relations (24). Using the left-hand
side equation from (23) together with (6) and (18) allows
one to write

r = H∗ − g∗
2u2 =

[
H2

H3

]
−

[
u2 cos θ
u2 sin θ

]

= ‖H∗‖
[

H2
‖H∗‖ − cosα cos θ

H3
‖H∗‖ − cosα sin θ

]
.

Thus we obtain

‖ r‖2

= ‖H∗‖2

[
H2

2

‖H∗‖2 − 2H2 cosα cos θ

‖H∗‖
+ cos2 α cos2 θ

+
H2

3

‖H∗‖2 − 2H3 cosα sin θ

‖H∗‖ + cos2 α sin2 θ

]

= ‖H∗‖2

[
1 − 2 cosα

H2 cos θ + H3 sin θ

‖H∗‖ + cos2 α

]

= ‖H∗‖2 (
1 − 2 cosα cosα + cos2 α

)

= ‖H∗‖2 (
1 − cos2 α

)

and, finally, ‖ r‖ = ‖H∗‖√1 − cos2 α = ‖H∗‖ γ.

The limit from the right-hand side of (24) can
be explained using (6) and recalling that cosα =
(g∗T

2 H∗)/(‖g∗
2‖ ‖H∗‖):

γ2(θ) = 1 − cos2 α(θ) = 1 − (H2 cos θ + H3 sin θ)2

‖H∗‖2 ‖g∗
2(θ)‖2

=
H2

2 + H2
3 − (H2 cos θ + H3 sin θ)2

H2
2 + H2

3

=
(H2 sin θ − H3 cos θ)2

H2
2 + H2

3

.

The definition (13) allows one to write

tan θ
θ→θa−→ H3

H2
⇒ sin θ

θ→θa−→ H3 cos θ

H2
,

which, after substitution into the preceding equation, gives
the conclusion limθ→θa γ(θ) = 0.
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Uniform continuity and integrability of the function
(25). Let us first check uniform continuity of W (τ).
From (25) one can see that W is continuous since all the
terms on the right-hand side are continuous. The time-
derivative of W (τ) can be computed as follows:

Ẇ = −γ̇(kp ‖ e∗‖2 + κ ‖e∗‖)

+ 2kp(1 − γ) ‖e∗‖ d ‖e∗‖
dτ

(34)

− γ

(
d ‖ e∗‖

dτ
κ + ‖ e∗‖ κ̇

)
,

where

d ‖ e∗‖
dτ

=
e∗T ė∗

‖e∗‖ , κ̇ =
d ‖q∗

t ‖
dτ

+
d

∥∥ v∗
sg

∥∥
dτ

,

γ̇ =
A ‖H∗‖2 − (H2sθ − H3cθ)(H2Ḣ2 + H3Ḣ3)

‖H∗‖3 ,

A = (Ḣ2sθ + H2θ̇cθ − Ḣ3cθ + H3θ̇sθ),

Ḣ∗ =
[
Ḣ2 Ḣ3

]T
= kpė

∗ + q̈∗
t − v̇∗

s

with the notation sθ ≡ sin θ, cθ ≡ cos θ, used for com-
pactness. Recalling now the assumptions made in Propo-
sition 1 together with A1–A2 and since |d ‖e∗‖ /dτ | �
‖ ė∗‖ with ‖ ė∗‖ ∈ L∞ (see the Proof), one can conclude
that the time derivative (5) is bounded and, consequently,
the function W (τ) is uniformly continuous.

Let us now consider the integrability of the function
(25) introducing the following decomposition: W (τ) =
w1(τ) + w2(τ), where

w1(τ) = kp(1 − γ(τ)) ‖ e∗(τ)‖2 � 0, (35)

w2(τ) = −γ(τ) ‖ e∗(τ)‖ κ(τ) � 0. (36)

We will analyze the integrability of w1(τ) and w2(τ). For
this purpose, let us introduce an upper bound of κ(τ):

K
Δ= sup

τ�0
κ(τ) = sup

τ�0
(‖ q̇∗

t (τ)‖ + ‖ v∗
s(τ)‖) < ∞,

which exists by assumption, and an upper bound

E
Δ= sup

τ�0
‖e∗(τ)‖ < ∞,

which exists according to the analysis conducted in the
proof. Using the above bounds, one obtains

∫ ∞

0

−w2(τ) dτ � KE

∫ ∞

0

γ(τ) dτ. (37)

Let us assess the upper bound of the integral∫ ∞
0 γ(τ) dτ as follows: According to the notation in-

troduced in the proof, γ(τ) =
√

1 − cos2 α(τ) =
|sin α(τ)| ∈ [0, 1]. Using (13), (14) and since
α(τ) = ∠(g∗

2(θ(τ)), H∗(τ)), one can write |sin α(τ)| =

|sin(ea(τ) ± Nπ)|, where N = 0 for u2t(τ) > 0
and N = 1 for u2t(τ) < 0 (note that N is constant
for the whole control time-horizon, since u2t(τ) cannot
cross zero for all τ � 0 due to the persistent excitation
condition—see Section 2). Thus, for absolute values, one
obtains
∫ ∞

0

γ(τ) dτ =
∫ ∞

0

|sinα(τ)| dτ

=
∫ ∞

0

|sin ea(τ)| dτ

�
∫ ∞

0

|ea(τ)| dτ

=
∫ ∞

0

|ea(0)| exp(−k1τ) dτ =
|ea(0)|

k1
,

where the exponential convergence result from (21) has
been utilized. Since |ea(0)| < ∞ (by assumption) and
k1 > 0, one concludes that the integral

∫ ∞
0 γ(τ) dτ = G

is finite. Proceeding the estimation for (37), one obtains

0 �
∫ ∞

0

−w2(τ) dτ = W2 � KEG < ∞, (38)

which allows concluding about the integrability of w2(τ)
in [0,∞).

Next, we utilize the result from the proof where
we obtained V̇ (τ) � −W (τ), which can be written as
V̇ (τ) � −(w1(τ) + w2(τ)). Integrating both sides of the
latter inequality gives

∫ ∞

0

w1(τ) dτ � −
∫ ∞

0

V̇ (τ) dτ +
∫ ∞

0

−w2(τ) dτ

and, further,

W1 =
∫ ∞

0

w1(τ) dτ � V (0) − V (∞) + W2

� V (0) + KEG < ∞, (39)

with (38) and the non-negativeness of w1(τ) and V (∞)
utilized. Finally, due to (38) and (39) we can conclude
what follows:

∫ ∞

0

W (τ) dτ =
∫ ∞

0

w1(τ) dτ +
∫ ∞

0

w2(τ) dτ

= W1 − W2 < ∞.

The above inequality implies the integrability of the func-
tion W (τ).

Barbalat’s lemma (according to (Khalil, 2002)). Let
φ : R 	→ R be a uniformly continuous function on
[0,∞). Suppose that limτ→∞

∫ τ

0 φ(ξ) dξ exists and is fi-
nite. Then φ(τ) → 0 as τ → ∞.
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