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Motivation (1/2)

MIT’s CarTel project 
(Balakrishnan, Madden)

Explosion of position-aware devices & apps 
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Motivation (2/2)

• CarTel
■ Massive amounts of GPS data
■ Real-time, high insert rates
■ Large spatiotemporal queries

  

➡New class of applications
■ Live feeds from large fleets of mobile objects

• Current solutions (e.g., PostGIS) failed
■ Designed for (relatively) sparse data
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■Motivation
■Large-Scale GPS Data Mining

 

■ Conventional approach
■R-Trees & Trajectory-Segmentation

 

■TrajStore
■Architecture
■Sparse Spatial Index
■Adaptivity
■Compression

 

■Performance
■Conclusions

Outline

4



Inserting [Conventional Approach]
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Querying [Conventional Approach]
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{R11, TrajID, (x1, 
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Issues with Current Systems

• Efficient for sparse data only
• Catastrophic for large, dense, overlapping data

■ Slow inserts
■ Bounding boxes creation
■ Multiple index updates per new trajectory

■ Slow queries
■ Index considers a very high number of overlapping objects
■ Inefficient selects of records

➡ Complex index maintenance & look-up
➡ One disk seek for each trajectory sub-segment
➡ Several minutes/hours to resolve aggregate queries 
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TrajStore

• Adaptive system to store & query very large 
trajectory data sets
■ Sparse, non-overlapping spatial index
■ Chunk-based data organization

■  co-location, dense-packing & compression
■ Buffered, amortized IO operations

➡  Minimization of total IO cost
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Architecture
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Index & Storage

■ Spatial index: quadtree
      

      [new] Optimal quadtree construction 
      [new] Adaptive, index-driven data storage

subtrajectories
indexed and

ordered in time
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TrajStore Queries
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➡ Trivial index look-up
➡ One seek per cell
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• Cost-based, optimal spatial partitioning
■Efficient, hierarchical partitioning 

Sparse Spatial Index (1/2)
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• Basic idea
■Cost-model for query execution times based on 

#cells accessed
■Optimal quadtree construction based on cost-model, 

query workload, local density & page size
■  

  

• Optimal balance between
■Oversized cells
■potentially retrieves data that is not queried

■Undersized cells
■seek not amortized if too little data read
■unnecessary seeks if dense data and relatively large query

Sparse Spatial Index (2/2)

cellSizeopt(Q,D, pageSize)
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System Adaptivity

• Data evolution
■ Adapt the index & storage with every incoming 

trajectory
■ No-op / Split() / Merge()
■ Very fast, incremental operations

• Query evolution
■ Highly-skewed queries in practice
■ Per-cell query statistics
■ EWMA-based re-clustering
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Compression
• Unique opportunities due to high spatial redundancy

■ Intra-segment redundancy
■ High-sampling rate, bounded speed
➡ Delta encoding (lossless)
➡ Linear interpolation (lossy/lossless)

■ Inter-segments redundancy
■ Repeated trips
■ Spatially constraint by roads, paths
➡ Online cluster-detection
➡ Cluster compression (lossy)

■ Combination of approaches based on user needs
■ Bounded total error

δ

➡ 
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Experimental Setup

• Query answering on 40-200M GPS readings 
■ CarTel data
■ Large queries (0.1% / 1% / 10%)

 

• Approaches compared
■ PostGIS
■ Optimal trajectory segmentation
■ TrajStore

 

• TrajStore variants
■ Fixed grid
■ Capacity-bound quadtree
■ Compression schemes

17



Experimental Results (1/2)

• Blazing fast query execution
■ 1 - 2 orders of magnitude faster than existing 

approaches 
 

• Superior indexing scheme 
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Experimental Results (2/2)

• Further results
■ High-insert rate

■ 100K GPS points / s on average
■ Scalable
■ Very resilient to data & query evolution

■ ≠ fixed grid
■ Compression (1m)

■ 1:8 compression ratio
■ 2.5 performance improvement

➡  See paper for full results
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Conclusions

• Explosion of location-aware devices & 
applications
■ Urgent need to support very large-scale GPS analytics

• TrajStore: rethink both index & storage layers in 
combination to provide
■ Sparse, adaptive, non-overlapping index

■ optimal w.r.t. IO cost-model
■ Index-driven data co-location 
■ High compression ratios 

■  intra + inter-segments compression
 

➡System of choice for analytical queries over very 
large collections of trajectories
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