
TrajStore: an Adaptive Storage System
for Very Large Trajectory Data Sets

Philippe Cudré-Mauroux
Eugene Wu
Samuel Madden

Computer Science and Artificial Intelligence Laboratory
Massachusetts Institute of Technology

ICDE 2010, March 2
Long Beach, CA, USA

Motivation (1/2)

MIT’s CarTel project
(Balakrishnan, Madden)

Explosion of position-aware devices & apps

2

Motivation (2/2)

• CarTel
■ Massive amounts of GPS data
■ Real-time, high insert rates
■ Large spatiotemporal queries

➡New class of applications
■ Live feeds from large fleets of mobile objects

• Current solutions (e.g., PostGIS) failed
■ Designed for (relatively) sparse data

3

■Motivation
■Large-Scale GPS Data Mining

■ Conventional approach
■R-Trees & Trajectory-Segmentation

■TrajStore
■Architecture
■Sparse Spatial Index
■Adaptivity
■Compression

■Performance
■Conclusions

Outline

4

Inserting [Conventional Approach]

R1 R2

R3 R4 R6 R7

R11 R12 R13 R14

R5

R8 R9 R10 R15 R16 R17

R1

R2

R15

R16

R8

R9

R10

R12

R11

R14

R17

R13

R6

R3

R4

R5

R7

R18

R19

R18 R19

5

R18 R19

Querying [Conventional Approach]

R1 R2

R3 R4 R6 R7

R11 R12 R13 R14

R5

R8 R9 R10 R15 R16 R17

R1

R2

R15

R16

R8

R9

R10

R12

R11

R14

R17

R13

R6

R3

R4

R5

R7

R18

R19

R1 R2

R3 R4 R6 R7R5

R11 R12 R13 R14R8 R9 R10 R15 R16

...

...

...
{R11, TrajID, (x1,
y1, t1), (x2, y2,
t2), (x3, y3,t3),
(x4, y4, t4)...}
...

{R12, TrajID, (x1,
y1, t1), (x2, y2,
t2)(x3,y3,t3),...}
...
{R14, TrajID, (x1,
y1, t1), (x2, y2,
t2)(x3,y3,t3),...}
...
...

6

Issues with Current Systems

• Efficient for sparse data only
• Catastrophic for large, dense, overlapping data

■ Slow inserts
■ Bounding boxes creation
■ Multiple index updates per new trajectory

■ Slow queries
■ Index considers a very high number of overlapping objects
■ Inefficient selects of records

➡ Complex index maintenance & look-up
➡ One disk seek for each trajectory sub-segment
➡ Several minutes/hours to resolve aggregate queries

7

TrajStore

• Adaptive system to store & query very large
trajectory data sets
■ Sparse, non-overlapping spatial index
■ Chunk-based data organization

■ co-location, dense-packing & compression
■ Buffered, amortized IO operations

➡ Minimization of total IO cost

8

Architecture

 Storage Manager
 Workload

Query
Processor

Data
retrieval/
insertion

1 -----

2 -----

3 -----

Clusterer

dense-
packing/

compression
schemes

Spatial
QuadTree

disks

Mix of
queries and
trajectory
insertions

Buffered
operations

Split/
Merge
Cell

Cells
info

Pages w/
segments
+ temporal
indices

9

Index & Storage

■ Spatial index: quadtree

 [new] Optimal quadtree construction
 [new] Adaptive, index-driven data storage

subtrajectories
indexed and

ordered in time

10

t4

Densed-Packed /
Compressed chunks

t1
t2

TrajStore Inserts

C1 C2 C3

C4 C5 C6

C7 C7 C9 C10

C1

C2 C3

C4

C5 C6

C7

C8 C9

C10

t3

t5

11

TrajStore Queries

C1 C2 C3

C4 C5 C6

C7 C7 C9 C10

C1

C2 C3

C4

C5 C6

C7

C8 C9

C10

C5

C1 C2 C3

Densed-Packed /
Compressed chunks

t2
t3

t1

➡ Trivial index look-up
➡ One seek per cell

12

• Cost-based, optimal spatial partitioning
■Efficient, hierarchical partitioning

Sparse Spatial Index (1/2)

13

• Basic idea
■Cost-model for query execution times based on

#cells accessed
■Optimal quadtree construction based on cost-model,

query workload, local density & page size
■

• Optimal balance between
■Oversized cells
■potentially retrieves data that is not queried

■Undersized cells
■seek not amortized if too little data read
■unnecessary seeks if dense data and relatively large query

Sparse Spatial Index (2/2)

cellSizeopt(Q,D, pageSize)

14

System Adaptivity

• Data evolution
■ Adapt the index & storage with every incoming

trajectory
■ No-op / Split() / Merge()
■ Very fast, incremental operations

• Query evolution
■ Highly-skewed queries in practice
■ Per-cell query statistics
■ EWMA-based re-clustering

15

Compression
• Unique opportunities due to high spatial redundancy

■ Intra-segment redundancy
■ High-sampling rate, bounded speed
➡ Delta encoding (lossless)
➡ Linear interpolation (lossy/lossless)

■ Inter-segments redundancy
■ Repeated trips
■ Spatially constraint by roads, paths
➡ Online cluster-detection
➡ Cluster compression (lossy)

■ Combination of approaches based on user needs
■ Bounded total error

δ

➡

16

Experimental Setup

• Query answering on 40-200M GPS readings
■ CarTel data
■ Large queries (0.1% / 1% / 10%)

• Approaches compared
■ PostGIS
■ Optimal trajectory segmentation
■ TrajStore

• TrajStore variants
■ Fixed grid
■ Capacity-bound quadtree
■ Compression schemes

17

Experimental Results (1/2)

• Blazing fast query execution
■ 1 - 2 orders of magnitude faster than existing

approaches

• Superior indexing scheme

!"#$%&' ()*"+,+' ()*"+,-'
./01%&'

2$/*%'
342$/*%'

.#$#5*%6

70#"'

34&'8,91' +:-' ;<=' >-?' @@;' >++-' =-;'

A0BCDE' ;>>' +-+<' @<F' @-:+' ==?@' >->+'

F'

+FFF'

-FFF'

>FFF'

;FFF'

=FFF'

?FFF'

@FFF'

:FFF'

!
"
#$
%&

'#
%#
(
)*

+
#,
*
'-
#

34&'8,91' A0BCDE' [query size = 1%]

adaptivity &
compression
turned off18

Experimental Results (2/2)

• Further results
■ High-insert rate

■ 100K GPS points / s on average
■ Scalable
■ Very resilient to data & query evolution

■ ≠ fixed grid
■ Compression (1m)

■ 1:8 compression ratio
■ 2.5 performance improvement

➡ See paper for full results

19

Conclusions

• Explosion of location-aware devices &
applications
■ Urgent need to support very large-scale GPS analytics

• TrajStore: rethink both index & storage layers in
combination to provide
■ Sparse, adaptive, non-overlapping index

■ optimal w.r.t. IO cost-model
■ Index-driven data co-location
■ High compression ratios

■ intra + inter-segments compression

➡System of choice for analytical queries over very
large collections of trajectories

20

