Philippe Cudre-Mauroux
Eugene Wu
Samuel Madden

Computer Science and Artificial Intelligence Laboratory
Massachusetts Institute of Technology

ICDE 2010, March 2
Long Beach, CA, USA

Explosion of position-aware devices & apps

Drive Log
Analyze drives My cars & frionds Plan route Settings. gout

Start time Duration Dist.
0.0 km

MIT's project [egr N I e
Balakrishnan, Madden e X

Select cars to show: ¥ Accord @ TL #iphone —gpsobd
(At least one car must be selected)

Current lozation filters are: Home

Add location fitter: |
Additional fiter.

Plot (" Fuel cansum
calculating the over my drives
showing the resulis by

mpare my driving to: |

Week of Year

CarTel

amounts of GPS data
Real-time, high insert rates
Large spatiotemporal queries

New class of applications
Live feeds from large fleets of mobile objects

Current solutions (e.g., PostGIS) failed
Designed for (relatively) sparse data

Conventional approach
R-Trees & Trajectory-Segmentation

Architecture

Sparse Spatial Index
Adaptivity
Compression

Performance
Conclusions

Querying [Conventional Approach]

, TrajID, (x1,
tl), (x2, y2,
(x3, y3,t3),
¥ (x4, y4, t4)...}

{R12, TrajID, (x1,
yl, tl), (x2, yZ2,
t2)(x3,y3,t3),...}

{R14, TrajID, (x1,
yl, t1), (x2, y2,
t2)(x3,y3,t3),...}

Efficient for sparse data only
Catastrophic for large, dense, overlapping data

Bounding boxes creation
Multiple index updates per new trajectory

Index considers a very high number of overlapping objects
Inefficient selects of records

Complex index maintenance & look-up
One disk seek for each trajectory sub-segment

Several to resolve aggregate queries

Adaptive system to store & query very large
trajectory data sets
Sparse, non-overlapping spatial index

Chunk-based data organization
co-location, dense-packing & compression

Buffered, amortized 1O operations

S —\Workload
e Storage Manager

Mix of dense-
packing/
compression |
schemes
OO W 4/ Spatial
7 QuadTree

queries and
trajectory
insertions

—>
«— Pages w/ Buffered

Data segments operations
Processor | qrievall + temporal P

insertion indices

Query

disks

Spatial Index

Disk Pages

Spatial index clusters
trajectories into a
collection of cells

Spatial index: quadtree

Time Subtrajectory
1 (1,1) (2,2)

subtrajectories
indexed and
ordered in time

2 (4,3) (5,7)
3 (2,3) (4,5)
4 (9,2) (9,9)

I : v

Each cell represented
by one or more pages
on disk

Storage Cell

[new] Optimal quadtree construction
[new]| Adaptive, index-driven data storage

tl
t2
t3

Densed-Packed /
Compressed chunks

Densed-Packed /
Compressed chunks

tl
t2
t3

Trivial index look-up
One seek per cell

Cost-based, optimal spatial partitioning
Efficient, hierarchical partitioning

Basic idea

for query execution times based on
#cells accessed

Optimal quadtree construction based on cost-model,
query workload, local density & page size
cellSizeopt (Q, D, pageSize)

Optimal balance between

cells
potentially retrieves data that is not queried

cells
seek not amortized if too little data read
unnecessary seeks if dense data and relatively large query

Adapt the index & storage with every incoming
trajectory

No-op / Split() / Merge()

Very fast, incremental operations

Highly-skewed queries in practice
Per-cell query statistics
EWMA-based re-clustering

Unique opportunities due to high spatial redundancy

-segment redundancy
High-sampling rate, bounded speed
Delta encoding (lossless)

Linear interpolation (lossy/lossless)

-segments redundancy
Repeated trips
Spatially constraint by roads, paths
Online cluster-detection
Cluster compression (lossy)

Combination of approaches based on user needs
Bounded total error

Query answering on 40-200M GPS readings
CarTel data
Large queries (0.1% / 1% / 10%)

Approaches compared
PostGIS
Optimal trajectory segmentation
TrajStore

TrajStore variants
Fixed grid
Capacity-bound quadtree
Compression schemes

1 - 2 orders of magnitude faster than existing
approaches

)
E
<]
E
-
~N
n
o
=
o
2

0 —
i . Clust. ., | Capacity
Adapt. | Grid1/1 | Grid1/2 Split NoSplit Quad

No.1/Os| 182 495 326 774 3112 524 adaptivity &

M No.l/Os “Runtime [query size = 1%] TN

Further results

100K GPS points / s on average
Scalable
Very resilient to data & query evolution
fixed grid
Compression (1m)
1:8 compression ratio

2.5 performance improvement

See paper for full results

of location-aware devices &
applications
Urgent need to support very large-scale GPS analytics

TrajStore: rethink both index & storage layers
to provide

Sparse, adaptive, non-overlapping index
optimal w.r.t. 10O cost-model
Index-driven data co-location

High compression ratios
intra + inter-segments compression

