TrajStore: an Adaptive Storage System for Very Large Trajectory Data Sets

Philippe Cudré-Mauroux Eugene Wu Samuel Madden

Computer Science and Artificial Intelligence Laboratory
Massachusetts Institute of Technology

ICDE 2010, March 2 Long Beach, CA, USA

Motivation (1/2)

Explosion of position-aware devices & apps

MIT's CarTel project (Balakrishnan, Madden)

Motivation (2/2)

- CarTel
 - Massive amounts of GPS data
 - Real-time, high insert rates
 - Large spatiotemporal queries

- New class of applications
 - Live feeds from large fleets of mobile objects
- Current solutions (e.g., PostGIS) failed
 - Designed for (relatively) sparse data

Outline

- Motivation
 - Large-Scale GPS Data Mining
- Conventional approach
 - R-Trees & Trajectory-Segmentation
- TrajStore
 - Architecture
 - Sparse Spatial Index
 - Adaptivity
 - Compression
- Performance
- Conclusions

Inserting [Conventional Approach]

Querying [Conventional Approach]

Issues with Current Systems

- Efficient for sparse data only
- Catastrophic for large, dense, overlapping data
 - Slow inserts
 - Bounding boxes creation
 - Multiple index updates per new trajectory
 - Slow queries
 - Index considers a very high number of overlapping objects
 - Inefficient selects of records
 - Complex index maintenance & look-up
 - One disk seek for each trajectory sub-segment
 - Several minutes/hours to resolve aggregate queries

TrajStore

- Adaptive system to store & query very large trajectory data sets
 - Sparse, non-overlapping spatial index
 - Chunk-based data organization
 - co-location, dense-packing & compression
 - Buffered, amortized IO operations
 - → Minimization of total IO cost

Architecture

Index & Storage

Spatial index: quadtree

[new] Optimal quadtree construction
[new] Adaptive, index-driven data storage

TrajStore Inserts

TrajStore Queries

Sparse Spatial Index (1/2)

- Cost-based, optimal spatial partitioning
 - Efficient, hierarchical partitioning

Sparse Spatial Index (2/2)

- Basic idea
 - Cost-model for query execution times based on #cells accessed
 - Optimal quadtree construction based on cost-model, query workload, local density & page size
 - $\blacksquare cellSize_{opt}(\mathcal{Q}, \mathcal{D}, pageSize)$
- Optimal balance between
 - Oversized cells
 - potentially retrieves data that is not queried
 - Undersized cells
 - seek not amortized if too little data read
 - unnecessary seeks if dense data and relatively large query

System Adaptivity

Data evolution

- Adapt the index & storage with every incoming trajectory
 - No-op / Split() / Merge()
 - Very fast, incremental operations

Query evolution

- Highly-skewed queries in practice
- Per-cell query statistics
- EWMA-based re-clustering

Compression

- Unique opportunities due to high spatial redundancy
 - Intra-segment redundancy
 - High-sampling rate, bounded speed
 - Delta encoding (lossless)
 - Linear interpolation (lossy/lossless)

- Inter-segments redundancy
 - Repeated trips
 - Spatially constraint by roads, paths
 - Online cluster-detection
 - Cluster compression (lossy)

- Combination of approaches based on user needs
 - Bounded total error

Experimental Setup

- Query answering on 40-200M GPS readings
 - CarTel data
 - Large queries (0.1% / 1% / 10%)
- Approaches compared
 - PostGIS
 - Optimal trajectory segmentation
 - TrajStore
- TrajStore variants
 - Fixed grid
 - Capacity-bound quadtree
 - Compression schemes

Experimental Results (1/2)

- Blazing fast query execution
 - 1 2 orders of magnitude faster than existing approaches
- Superior indexing scheme

■ No. I/Os ■ Runtime [query size = 1%]

adaptivity & compression turned off

Experimental Results (2/2)

- Further results
 - High-insert rate
 - 100K GPS points / s on average
 - Scalable
 - Very resilient to data & query evolution
 - ≠ fixed grid
 - Compression (1m)
 - 1:8 compression ratio
 - 2.5 performance improvement
- See paper for full results

Conclusions

- Explosion of location-aware devices & applications
 - Urgent need to support very large-scale GPS analytics
- TrajStore: rethink both index & storage layers in combination to provide
 - Sparse, adaptive, non-overlapping index
 - optimal w.r.t. IO cost-model
 - Index-driven data co-location
 - High compression ratios
 - intra + inter-segments compression
- System of choice for analytical queries over very large collections of trajectories