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1 INTRODUCTION

AN intrinsic property of a successful software applica-
tion is its need to evolve. In order to keep an existing

application up to date, it must be continuously updated.
Usually, the execution of such an update requires the
application to be shut down and subsequently restarted.

This approach has a number of important disadvantages,
which are not always acceptable. First, any state accumu-
lated during the execution of the original version is lost
when the application is shut down. Second, the application
being updated is temporarily unavailable (disruption of
service). At best, these two consequences are annoying: Data
may need to be reentered or lengthy computations repeated.
For many long-lasting or mission-critical applications, the
shutting down of the application is unacceptable as it may
result in loss of revenue or compromised safety. Finally, the
shutting down of the running application strongly hinders
self-adaptation. In research domains such as ubiquitous
computing, applications are expected to adapt to an ever-
changing environment. Such applications may wish to
evolve at runtime by (re)loading parts of their functionality,
depending on the context information they receive from
their surroundings. A solution for this problem can be found

in the domain of dynamic software evolution, in which a

part of the application is updated while it remains active.
In order to guarantee application consistency during the

application update, the system must first be placed in a

consistent state before the runtime change is performed.

After all, the new version of the application must be able to

continue where the old application left off. This is not

always the case if the application is updated at a random

time. For example, if the implementation of a certain method

has drastically changed (for example, a new algorithm is

used), it is likely that no location exists in the new code from

where the new version can complete the work done by the

previous version. Simply waiting until active methods finish

is insufficient too as the presence of transactions may result

in additional consistency requirements.
The issue of when a piece of software is in the

appropriate state for undergoing an update has been the

focus of much research in the past. Most systems for

dynamic updating either disregard the issue or put

constraints on the systems that can be updated, (for

example, they forbid the presence of such transactions).

Of those systems that do address the issue, the work by

Kramer and Magee [16]—who identified the quiescence

criterion and proved that this criterion was sufficient to

guarantee consistency during the update of a distributed

system—was very influential. Their criterion, however, has

the problem that it causes high disruption to the active

program. In this paper, we propose an alternative criterion:

tranquillity. We show that tranquillity drastically reduces

disruption to the running program while remaining a

sufficient condition for consistency. We show that, unlike

quiescence, tranquillity is not proven to be reachable in

bounded time. However, experiments show that, in
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practice, tranquillity is nearly always reached within a short
time frame.

The remainder of our paper is structured as follows: In
Section 2, we present the quiescence criterion originally
introduced by Kramer and Magee. We illustrate the highly
disruptive behavior of this criterion and, in Section 3, we
present our own alternative: tranquillity. We then show that
tranquillity is less disruptive to the running application
while, at the same time, remaining a sufficient condition for
consistency in Section 4. Nothing comes for free and we
give an analysis of the pros and cons of our criterion in
Section 5. To illustrate the practical applicability, we
describe a prototype implementation of our criterion on
top of an existing component framework in Section 6 and
further validate our approach with a case study in Section 7.
We conclude this paper with related work and a summary
of our findings.

2 THE CONCEPT OF QUIESCENCE

In the model by Kramer and Magee, a system is seen as a
directed graph whose nodes are system entities and whose
arcs are connections between those entities. Nodes can only
affect each other’s states via transactions, which consist of a
sequence of messages that must be executed atomically
(that is, either all messages are executed or none of them
are). The node that starts the transaction is referred to as the
initiator of the transaction. The model in [16] assumes that
transactions complete in bounded time and that the initiator
of a transaction is aware of its completion. Kramer and
Magee abstract the status1 of an application into a set of
different configuration statuses for each node and consider
two main statuses for each node, active and passive, whose
definitions are given as follows:

Definition 1 (active status). A node in the active status can
initiate, accept, and service transactions.

Definition 2 (passive status). A node in the passive status
must continue to accept and service transactions, but

1. it is not currently engaged in a transaction that it
initiated and

2. it will not initiate new transactions.

Kramer and Magee identify a passive status as a
necessary but insufficient condition for updatability as a
node may still be processing transactions that were initiated
by other nodes. Therefore, they introduce a stronger
concept:

Definition 3 (quiescence). A node has a quiescent status if

1. it is not currently engaged in a transaction that it
initiated,

2. it will not initiate new transactions,
3. it is not currently engaged in servicing a transaction,

and
4. no transactions have been or will be initiated by other

nodes that require service from this node.

Although quiescence is a sufficient condition for updat-
ability, it has the problem that enforcing quiescence often
causes serious disruption to the running system. Not only
must the node that is to be updated be put in a passive
status, but this is also the case for every node that is directly
or indirectly capable of initiating transactions on this node.
This results in a serious drawback with respect to the
impact the change has on the system [4]. We address this
problem by introducing the concept of tranquillity.

3 THE CONCEPT OF TRANQUILITY

The tranquillity criterion is based on two observations:

1. There is no problem in replacing a node while a
transaction is active as long as the node to be
replaced is not involved in that transaction. This
means that a node that has participated in an
ongoing transaction may be replaced if it is certain
that there will be no more future participation of that
node in the transaction. It is equally permitted to
replace a node that may, at some point in the future,
participate in an ongoing transaction if it has not yet
participated.

2. Using a black-box design for system nodes is a good
approach for enhancing reusability and decoupling
the system parts. This implies that the nodes may
require services from other nodes they are connected
to, but that they may never rely upon their
implementation [19]. If all nodes are a black box by
design, then all participants in a transaction either
are the initiator of the transaction or are directly
connected (adjacent) to the initiator. Nodes that are
indirectly connected to the initiator can, by defini-
tion, not participate in a transaction driven by the
initiator since their existence is unknown to the
initiator. Note that any participant in the transaction
can, in turn, initiate new transactions in response to
a message they process. These subtransactions, how-
ever, are part of the implementation of this partici-
pant and are not known to the original initiator.

These two observations are exploited by the concept of
tranquillity,2 which we introduce as an appropriate status
for updatability:

Definition 4 (tranquillity). A node N is in a tranquil status if

1. it is not currently engaged in a transaction that it
initiated,

2. it will not initiate new transactions,
3. it is not actively processing a request, and
4. none of its adjacent nodes are engaged in a transaction

in which it has both already participated and might
still participate in the future.

Quiescence is a stronger concept than tranquillity in the
sense that quiescence implies tranquillity but not vice versa.
Condition 3 of quiescence implies that the node is neither
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1. Kramer and Magee use the term state instead. In this paper, we choose
to distinguish between the internal state of a node and the status that
describes its condition in relation to the evolution process.

2. As will be shown in Section 5, the tranquillity condition is not stable by
itself. Hence, the name tranquillity may seem a little odd. In retrospect, the
name latency better represents the semantics of our criterion, but it was
decided to retain the current name for consistency with previous
publications on the topic [21], [23].



actively processing a request nor waiting for a new request

in an already active transaction. This trivially implies

Condition 3 of tranquillity. Condition 4 of quiescence states

that none of the adjacent nodes have initiated or will initiate

a transaction in which N participates. Hence, no such

transaction is active, trivially implying Condition 4 of

tranquillity. Tranquility does not imply quiescence, how-

ever, since it does not require that nodes connected with N

may not initiate new transactions that involve N . For

tranquillity, nodes directly connected to N must not reach a

passive status.
Tranquility has the distinct advantage that it is much less

disruptive than quiescence since only the affected node N

must be passivated. Although the third condition of

tranquillity requires some adjacent nodes to finish a certain

transaction, these nodes need not be completely passivated.

4 TRANQUILLITY AS A SUFFICIENT CONDITION FOR

UPDATABILITY

Although a weaker condition than quiescence, tranquillity is

nevertheless a sufficient condition for updatability when two

basic assumptions associated with an application are valid:

1. Like Kramer and Magee, we assume that both the
original and the resulting configurations of the nodes
are correct (that is, the update itself is sane). It is clear
that the replacement of a FileCompressor node
with an ImageViewer node is unlikely to result in a
working system, no matter what update system is
used to execute the update. Our work is only
concerned with the correct execution of a certain
update and not with trying to establish whether the
update is correct in the first place.

2. Since each node should be reusable, it should only
rely on external functionality if this functionality is
declared to be public. This can only be achieved if
the interactions between the nodes are made explicit
and if no other dependencies between the nodes
exist (for example, there may exist no dependencies
between nodes that are not connected to one
another).

The correctness of tranquillity under these assumptions

is clear as a node in a tranquil status is, by definition, not

executing code and can only be involved in an ongoing

transaction if its participation in this transaction is

1) finished, 2) not yet begun, or 3) part of a subtransaction.

In the first case, the update is clearly valid. In the second

case, the validity of the update follows from the assumption

of a valid resulting configuration: Transactions that have

not yet begun may be executed by the new version (since

the new application version contains the new version of the

node). The correctness of the third case follows from a

combination of the black-box principle and the correctness

of the resulting configuration: Subtransactions are indepen-

dent of the original transaction and may be executed by a

different version than the original transaction. For clarity,

we illustrate this principle with two examples.

4.1 First Example

Consider the component-oriented system in Fig. 1, which
consists of four components ðX;Y ; Z; UÞ interconnected
through their ports (denoted by a subscript, for example,
X1). Assume that one wishes to replace component Y with a
new version W . Furthermore, in the compositions shown in
Fig. 1, component X can execute a task for which it requires
the assistance of its adjacent components (Y and Z). The
transaction that realizes the execution of this task is shown
in Fig. 2. In Fig. 2a, the transaction is shown as it is executed
in the current component configuration, whereas Fig. 2b
shows the same transaction from the point of view of X’s
implementation. Note that the subtransaction initiated by Z
is unknown to X.

Assuming that there are no other transactions specified
by either X or Z (Y ’s adjacent components), the only times
that Y can be safely replaced are before and after the
transaction (identified in Fig. 2 by the numbers 1 and 7). The
periods identified by numbers 2 and 6 are characterized by
execution in Y itself and are therefore not suitable for
replacement. Periods 3, 4, and 5 are entirely equivalent from
Y ’s perspective: Y is an inactive and unknowing participant
in a transaction initiated by X.

The replacement of Y will not change the transaction
itself since the transaction is entirely specified in X. Based
on the validity of both the original and the resulting
component configuration, this transaction will lead to a
valid result with either Y or W (Y ’s replacement) as the
adjacent component connected to X. However, a valid
result is not guaranteed if the transaction starts with the old
version Y and finishes with the new version W . This
inconsistency occurs when Y supports two symmetrical
operations that are orthogonal to the working of X but are
nevertheless interrelated. For example, suppose Y is a
(de)compression component that offers two methods—
compress and decompress—that return a (de)com-
pressed version of the data supplied by the sender of the
message. Component X may wish to compress input data at
the beginning of its task and decompress it again when it is
done. Although it does not matter which compression
algorithm is used, (indeed, the transaction is valid with both
the old and the new version), correct functionality is not
guaranteed if Y is replaced by another component in the
middle of the transaction. Note that this is the case whether
or not Y is a stateless or stateful component.

In this transaction, both the condition of quiescence and
the condition of tranquillity forbid replacement at times 2 to
6. However, the tranquillity condition allows the replace-
ment of Y at the beginning or the end of the transaction
(times 1 and 7). This is not the case for quiescence as
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Fig. 1. An example of a component configuration before and after an

update. (a) Original configuration. (b) Resulting configuration.



quiescence also requires that no transactions have been or will
be initiated by other nodes that require service from this node,
which requires X (and Z for that matter) to be completely
passivated. Exploiting the validity of the resulting composi-
tion, the tranquillity requirement allows much quicker
replacement while still ensuring consistency.

4.2 Second Example

A slightly more complex scenario is shown in Fig. 3. This
scenario assumes the same initial and resulting component
configuration but assumes a different active transaction. At
time 4, Y may be replaced according to our tranquillity
definition since Y is currently not involved in a transaction
that it initiated, the transaction by Z has not started yet and
further execution of the transaction by X no longer directly

involves Y from X’s point of view. As it turns out, it is
indeed correct that Y can be replaced at this point. This is
shown in Fig. 3b. The transaction initiated by Z is
independent of the transaction initiated by X. Since both
the initial and the resulting configurations are correct, the
transaction of Z leads to correct results using either Y or W

as its participant. The ongoing transaction initiated by X is

unaware of the transaction initiated by Z. Due to their

independence, it is perfectly possible that the transaction

shown in Fig. 3 starts with Y and finishes with the new

version W . A replacement of Y at time 4 is not permitted

using quiescence as a condition since quiescence does not

take into account the independence of the two transactions.

5 REACHABILITY OF THE TRANQUILLITY CONDITION

Although tranquillity is a sufficient condition for applica-

tion consistency during a dynamic reconfiguration, there

are disadvantages to our criterion as well. The most

important drawback is that it is not guaranteed that a

tranquil status will ever be reached for a given component.

This is the case when this component is used in an infinite

sequence of interleaving transactions. An example of such a

case is shown in Fig. 4. The figure shows two interleaving

transactions that are infinitely repeated (only the first and

the beginning of the second iteration are shown). Because Y

is always active in a transaction in which it still needs to

participate, it can never reach tranquillity without directing

X and Z to a passive status, (which would imply

quiescence).
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Fig. 2. A transaction in which Y participates prevents Y from being

updated. (a) Transaction as executed. (b) Transaction as perceived byX.

Fig. 3. Y is used in a transaction from X and in a subtransaction initiated

by Z. (a) Transaction as executed. (b) Transaction as perceived by X

and Z.



A second disadvantage of tranquillity is that the criterion
is not stable by itself. As soon as a node N is in a tranquil
state, all interactions between that node and its environ-
ment must be blocked in order to guarantee that the node
remains in a tranquil state. This is not the case with
quiescence, where the passivation of all nodes that can
directly or indirectly initiate a new transaction on N ensures
that N remains in a quiescent state until the passivated
nodes are explicitly reactivated.

It may seem contradictory that tranquillity is a weaker
condition than quiescence but that it cannot be reached in
bounded time, whereas quiescence can. This is because
tranquillity can occur naturally, whereas a system must be
actively driven in a quiescent status. Clearly, tranquillity is
reachable in bounded time by directing the system to a
quiescent status, but that nullifies the advantages of the
tranquillity criterion.

Nevertheless, because tranquillity does not always occur
in bounded time, any system that implements dynamic
updates using the tranquillity condition must implement a
fallback mechanism to quiescence for when tranquillity is
never reached. It should be noted that these situations are
rather rare in practice [10, pp. 428-429] and that, in most
cases, the tranquillity condition occurs within a short period
of time.

6 IMPLEMENTATION ON COMPONENT MIDDLEWARE

A prototype implementation was developed as an exten-
sion to a general-purpose component middleware plat-
form: DRACO. The implementation allows the middleware
to put active components in a tranquil status upon
demand. To do so, the system simply observes messages
between the components until tranquillity is observed,
after which it blocks all incoming and outgoing messages
by that component. When the tranquillity status cannot be
reached, it transparently falls back to the quiescence
requirement. Although mere observation is theoretically
sufficient, the following sections will show that our

prototype implementation does block messages when
waiting for tranquillity. This is mainly for practical reasons,
such as ensuring that the middleware has sufficient time to
check all conditions and to ease the isolation of the
component as soon as tranquillity is reached.

We begin this section with the introduction of the
main concepts supported by the DRACO methodology. A
full description of the component model, the language, or
its tool chain is outside the scope of this paper and we
restrict ourselves to the core concepts of the methodology
and how these concepts map to the model by Kramer
and Magee. Relevant implementation aspects of the
component middleware environment are discussed in
Section 6.2. Finally, we present a detailed description of
how the Live Update Extension Module (LUM) realizes
updatability using the tranquillity condition.

6.1 The DRACO Component Methodology

In DRACO, components are units of functionality that are
implemented as a highly cohesive group of Java classes.
Once instantiated, they represent a tightly coupled group of
objects. Interconnection between components is achieved by
means of connectors. According to Aldrich et al. [1], a
connector is a reusable design element that supports a
particular style of component interactions. DRACO assumes
the interaction style that was defined in the SEESCOA

project [2], [20]. In this model, components communicate
by asynchronously sending messages through external
interfaces that are formally specified using ports. Connec-
tors attach to these ports and implement a pipe-like
construct, which makes relaying or intercepting commu-
nication easy to achieve. The conditions of explicit commu-
nication that were assumed in Section 4 are therefore clearly
met in the DRACO component model.

In order to map our component model onto the model
assumed by Kramer and Magee, it suffices to consider our
components to be the nodes and our connectors to be the
arcs of their directed graph. The bidirectional nature of
connectors can easily be modeled using two directed arcs
with opposite directions. Furthermore, in the DRACO

component model, the state of components can only be
changed by message interaction with other components.
Finally, the DRACO component model ensures that all
message sequences complete in bounded time.

6.2 An Extensible Middleware Platform

The DRACO middleware platform was designed with
extensibility in mind and offers an extensive API that can
be used by extension modules to change the behavior of the
core system. Its architecture consists of five core modules:

1. the component manager, responsible for loading and
instantiating component instances,

2. the message manager, responsible for the message
delivery process,

3. the scheduler, responsible for scheduling messages
that have been sent and that are awaiting execution,

4. the connector manager, responsible for (dis)connect-
ing ports, and

5. the module manager, responsible for adding exten-
sion modules to the core system at runtime.
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Fig. 4. A scenario in which component Y will never reach tranquillity.



Message delivery is achieved in three stages. The first

stage is the transmission of the message by the originating

component. In this stage, the message passes through a

sequence of message handlers (who can transform mes-

sages that pass through it) until it is handed over to the

scheduler. This first stage is executed by the thread

currently active in the originating component. Because

interaction with the scheduler is nonblocking, message

sending is asynchronous. In the second stage, the message

awaits its execution inside a message queue from the

scheduler. Finally, in the third stage, the scheduler’s worker

threads continuously fetch messages, pass these messages

through a similar handler chain, and, finally, deliver them

to the receiving component. The scheduler guarantees that

the order of messages over a given connector is preserved

and that messages are delivered sequentially.
The message handler mechanism opens up the delivery

process as extension modules can insert or remove custom

handlers that change the default behavior. DRACO also

makes extensive use of the observer pattern and allows for

extension modules to subscribe themselves to a large

number of events that are triggered before and after all

important actions such as component (un)loading, (dis)-

connecting, and message sending.

6.3 Live Update Extension Module

LUM is an extension of the core DRACO system that allows

components to be replaced by a new version at runtime.

After the application maintainer has specified that a certain

component C needs to be replaced, LUM places that

component in a tranquil status. The module then transfers

the state contained in the old version to the new version,

rewires the connectors, and activates the new version. This

paper is only concerned with the first step. The following

sections describe how the tranquil status is reached and

how the module falls back to quiescence if tranquillity is not

attainable.

6.3.1 Enforcing Passivity

Since tranquillity encompasses all requirements of passiv-

ity, LUM will first direct C to a passive status before it

enforces the other tranquillity conditions. This passive

status is attained by ensuring that

1. the component is not actively executing a message
and

2. the inflow of new messages to the component is
restricted.

If no messages are executing, the first passivity require-
ment is trivially fulfilled. In addition, no new transactions
can be initiated by C because messages can only be sent out
by a component as part of code execution that in itself is
triggered by a message.

LUM achieves passivity by restricting all incoming
traffic to C. It does so by replacing the standard delivery
message handler on the receiving message chain of each
port of C by a custom delivery message handler (see
Fig. 5). Although Fig. 5 only shows one connected port
on C, the situation is analogous for all other connected
ports. To guarantee that all interactions with C are
controlled, LUM registers itself with the connector
manager to temporarily prevent changes to the connec-
tions of C’s ports. LUM then sends a Freeze message to
a randomly selected connected port of C.

As illustrated in Fig. 5, any number of messages with
component C as their destination can be present in the
scheduler queue at the time the Freeze message is sent out
by LUM. Since the custom delivery message handlers are only
inserted in the chains associated with ports of component C,
messages that are intended for other components are
unaffected by the replacements in the delivery message
chains, which reduces unnecessary overhead.

The custom handler introduced by LUM initially
mimics the behavior of the original delivery handler: It
executes the method associated with the message on the
component and then terminates (thus returning control
through the delivery chain all the way back to the
scheduler). This behavior changes after it encounters the
Freeze message. At that time, the message is executed if
it is supported by the component (allowing the designer
of the component to specify the custom cleanup code) or
ignored otherwise. Afterward, however, control is no
longer returned to the scheduler. In addition, other
custom delivery handlers associated with a port of C

halt before executing the message, effectively terminating
all communication with C. Although no new messages
can reach C, the passivity requirements have not been
fulfilled so far.
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First, the component may still be executing the code in a
dedicated thread. For the sake of brevity, we are not
including a full description of how such threads are
handled by the component system. For this paper, it
suffices to say that the scheduler of DRACO is aware of
such threads and that it can safely preempt the majority of
such threads without leaving the component in an incon-
sistent state. Whether or not DRACO was able to preempt
the thread, LUM delays the update of the component until
its execution has terminated. We refer the reader to [22] for
more details.

Second, a transaction initiated by C can still be active.
For example, at time 3 in Fig. 2a, component X is inactive
and awaiting a response from Z. This leads us to the
problem that LUM must be able to determine when a
component is actively engaged in a transaction it initiated.
When a transaction consists of asynchronous messages
(which is the case in DRACO), this cannot be determined
automatically unless the component that drives the transac-
tion provides this information. Our implementation as-
sumes that each component implements a method that
returns (a Boolean stating) whether or not the component is
active in a transaction it initiated. LUM queries this
information and resumes message delivery on a message-
per-message basis as long as C is in such a transaction.
After each message, the expression embedded in C is
reevaluated until the component has terminated its transac-
tion. At this moment, C has reached passivity and will
maintain this status since no further messages are allowed
into C.

6.3.2 Ensuring the Additional Tranquillity Constraints

Before the passivated component C may be replaced, the
additional conditions of tranquillity must be met. LUM does
this by querying all adjacent components of C and
determining whether these components are involved in a
transaction they initiated. If so, LUM requests from each of
these components a list of all ports that have participated in
their transaction and a list of those ports that are still
required to finish the transaction.3 If a port of C is attached
to a port present in both lists, the requirements of
tranquillity are not fulfilled.

LUM then starts to monitor all messages entering the
adjacent components of C by replacing their message
delivery handlers. Whenever a message is delivered to
these components, the transaction requirement is reevalu-
ated. As the completion of the transaction requires the
participation of C, it is necessary that C accept messages
involving the transaction. The custom delivery message
handlers associated with the ports of C will therefore
resume message delivery, again on a message-per-message
basis. After each message delivery, both to C and to its
adjacent components, the conditions are rechecked. In the
majority of cases, neither complex systems of interleaved
transactions nor transactions with circular dependencies are
an issue [10, pp. 428-429] and a tranquil point is reached for

C in a relatively short period of time. Once this tranquil
point is reached, all messages to C are prevented and the
tranquillity condition is preserved for the duration of the
update.

6.3.3 Fallback to Quiescence

Because reaching tranquillity in bounded time cannot be
ensured in general (Section 5), LUM also keeps an internal
timer. If, after a predetermined time frame, tranquillity has
not been reached for C, then the system falls back to the
more stringent and invasive requirement of quiescence,
which was proven to be reachable by Kramer and Magee in
[16]. Their model assumes that a node has knowledge of
whether its actions are part of a transaction initiated by
another node. As this assumption is not valid in our
component model, ensuring the reachability of quiescence
in bounded time needs to be examined further.

The problem is caused by dependent transactions, which
Kramer and Magee define as follows:

Definition 5 (dependent transaction). A dependent transac-
tion is a two-party transaction whose completion may depend
on the completion of other consequent transactions.

In other words, ti is a dependent transaction if there
exists a chain of transactions ti; tj; . . . ; ts in which each, with
the exception of ts, may depend for completion on the
completion of its (consequent) successor transaction. De-
pendent transactions and their potential consequent(s) are
denoted as dependent/consequent(s). Cycles are not for-
bidden, but the model by Kramer and Magee does assume
that the transactions still complete in bounded time and that
deadlocks are avoided. It is also required that the initiator of
a dependent transaction be informed of the completion of
consequent transactions because, otherwise, a component
cannot determine when the transactions it has initiated have
been completed and, hence, when it has reached passive
status. Each of these assumptions is reasonable and also
valid in our own component model.

The problem with dependent transactions is that the
passive status may not be reachable for components utilizing
dependent transactions. Assume three components, X, Y ,
andZ, as depicted in Fig. 6. Suppose that componentZ is in a
passive state and X has initiated transaction TRANSðXÞ. In
this situation, transaction TRANSðXÞ cannot be completed
because TRANSðY Þ cannot be completed because TRANSðZÞ
may not be initiated by Z as it is in a passive state.
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3. Although it may seem a large overhead to generate this data, the
information can be automatically generated from a state machine that
describes the transaction. This state machine can be automatically derived
from message sequence charts, such as those used in the figures of this
paper.

Fig. 6. A system with cyclic dependencies.



Consequently, neitherXnorY can move into the passive state
in bounded time.

The solution proposed by Kramer and Magee is to
generalize the definition of passive status to include the
means for dependent transactions to be completed:

Definition 6 (Generalized Passive Status). A component in
the generalized passive status must accept and service
transactions and initiate consequent transactions, but

1. it is not currently engaged in a (nonconsequent)
transaction that it initiated and

2. it will not initiate new (nonconsequent) transactions.

To implement this solution, we have to cope with the fact
that DRACO components are not aware of their participa-
tion in transactions they did not initiate. It is therefore not
possible for a component to identify those transactions that
are consequent and those that are not. Adding this
information to the component code is unacceptable, how-
ever, as this would increase implicit coupling between
components and strongly hinder reuse. In DRACO, this
problem is solved by performing additional bookkeeping
when messages are sent or received [17]. Whenever a
component sends out messages in the context of a
transaction it initiates, it tags these messages. The DRACO

message delivery system recognizes these tags and trans-
parently forwards the tag to all messages sent out as part of
that transaction.

As a first step toward placing a component C in a
quiescent state, LUM conveniently makes use of this feature
when it composes a set of ongoing transactions that must
finish before quiescence can be reached. To do so, LUM

queries all of the adjacent components of C, checks which
ongoing transactions involve C as a participant, and stores
them in the Initial List.

Algorithm 1 Receive(m)

if tagðmÞ part of InitialList then

messageThread current thread

outId 0

struct < messageThread; C; tagðmÞ; outId >
ExecuteðmÞ
Rebuild InitialList

if InitialList is empty then

Quiescence Reached

end if

else //Not part of an ongoing transaction

QueueðmÞ at the deliveryMessageHandler

end if

Whenever a message is received by C or by one of its
adjacent components, their message handler intercepts the
message and checks whether the message is a part of a
transaction of the Initial List. If so, the message
handler stores a tuple containing the ID of the current
thread, the ID of the current component, the tag of the
received message, and a new tag for the outgoing message.
Afterward, it executes the message and checks whether the
Initial List is empty, which would mean quiescence
has been reached for C. If the message is not part of a
transaction in the Initial List, it is queued as its
execution is not required for reaching quiescence for C.

Algorithm 2 Send(m)

sendThread current thread

struct LUM:getðsendThreadÞ
if existsðstructÞ then

S.outId++

tagðmÞ  S:tagþ 00:00 þ S:N þ S:outId
end if

messageHandler.deliverðmÞ
Whenever a message is sent by C or one of its adjacent

components, the message handler of the sending compo-
nent intercepts this message, looks for the tuple that
corresponds to the current thread ID, and uses this
information as a basis for a new tag that correctly identifies
the message as part of the transaction.

As soon as all transactions in the initial list have ended,
only tagged messages are delivered to the component. Since
all transactions are assumed to be bound in time, this
moment is certain to occur in bounded time. In the example
in Fig. 7, this moment is identified by label 2. Because all
other messages are queued by the delivery message
handlers, ongoing transactions can be completed, but no
new transactions can be initiated.

The above implementation assumes that all messages
belonging to a transaction are tagged so that, when the
InitialList is constructed, the tags of active transactions
can be retrieved. It is possible to relax this requirement in
order to minimize overhead during normal application
execution. If the components are still aware of the
transactions they have initiated but the messages that
belong to these transactions and the resulting dependent
transactions are not tagged, then LUM can still reach
quiescence, albeit using a slightly more complex algorithm
consisting of two phases (Fig. 7). In the first phase, all
messages are delivered to their destination because it is not
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Fig. 7. Two-phase optimization for achieving quiescence.



known to which transaction each message belongs. In
addition, LUM starts tagging all newly initiated transactions
that involve C. The second phase starts as soon as the
InitialList is empty. At this moment, identified by
label 2, we have the situation assumed in the basic
algorithm described above since all ongoing transactions
involving C are now tagged.

6.4 Atomic Deactivation of Multiple Components

Although our methodology tries to keep dependencies
between different component instances to a minimum,
there are cases where multiple components must be
replaced at the same time. One very common example of
where this functionality is necessary is in the presence of so-
called glue components: a component that was specifically
designed to bridge semantic and/or syntactic gaps between
other components in the composition. Although the DRACO

middleware platform does offer syntactic bridging with
flexible connectors, the presence of glue components is a
side effect of our methodology and cannot be avoided in
complex component scenarios. We consider glue compo-
nents to be the lesser of two evils: The only way to avoid a
glue code is to design different components so that their
interfaces are compatible. This strongly increases implicit
coupling between the components and makes them less
reusable.

Consider the example in Fig. 8 in which a camera
component sends out images in a certain format. In order to
show the feed from this camera using an independently
developed image viewer component, a conversion compo-
nent is likely to be required. It is easy to consider a scenario
in which the image viewer is replaced by an incompatible
version for which another conversion component would be
required.

6.4.1 The Problem: Messages in Transit

Scenarios of atomic replacement of multiple components
complicate the deactivation process. Both the tranquillity
and the quiescence conditions remain valid. However, there
is one important difference from the theory described in the
previous sections: the necessity of taking into account
messages in transit. Assume the component composition in
Fig. 9, which is similar to the evolution scenario in Fig. 1 but
with the additional requirement that both X and Y are to be
replaced atomically.

If both components X and Y are to be replaced
atomically, one must make sure that no messages of X
with destination Y are in transit at the moment when the
replacement takes place. After all, there is no guarantee that
the component composition will behave correctly if
messages from X are received by W (or messages from Y
by V , for that matter). Note that this was not a problem in
the previous section due to the correctness of the resulting
configuration. If only Y is replaced by W , it follows from
the correctness of the resulting composition (which contains

both X and W ) that the reception of a message from X by W
is acceptable from the composition designer’s perspective.
In the new example depicted in Fig. 9, however, neither the
original nor the resulting configuration contains a combina-
tion of either X and W or Y and V . It is clear that the
dynamic update system must therefore prevent messages
being sent out by X from ever reaching W or vice versa.

Fortunately, the criteria of tranquillity and quiescence
are sufficient to detect such problems in the presence of

transactions. Consider Fig. 10, which was modified from
Fig. 2b to reflect the fact that message delivery is not instant.

At the time indicated on the figure, a message is in
transit from component X to component Z. This causes a
problem if, at this moment, both X and Z are replaced
atomically. However, neither X nor Z can be replaced at
this moment. X is active in a transaction it initiated and Z

fails the last requirement of tranquillity since X (an adjacent
component of Z) is engaged in a transaction in which Z had
already participated and might participate in the future.

Note that, from X’s perspective, Z was already active in the
transaction as soon as the message for Z was sent. In
general, the requirements in Sections 2 and 3 will never
permit the replacement of both parties if a message
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Fig. 9. The two components X and Y are atomically replaced by V and

U, respectively. (a) Original configuration. (b) Resulting configuration.



belonging to a transaction is in transit since, at the very
least, the sender is by definition involved in a transaction it
initiated.

Problems arise, however, when no transactions are
involved. Fig. 11 revisits the Camera-Viewer scenario
introduced earlier in this section and shows three compo-
nents: the camera, the convertor, and the viewer. At the
indicated time, a request is made to replace both the
convertor and the viewer atomically. At the indicated time,
however, two messages are in transit. The first message has
been sent by the camera but has not yet reached the
convertor. This message is not an issue because both the old
and the new convertors are capable of dealing with the
message due to the correctness of the resulting configura-
tion. The second message in transit is logically located in the
connector between the convertor and the viewer. This
message is an issue since the viewer component of the new
configuration may not be equipped to deal with the
message in transit.

6.4.2 A Solution: Virtual Transactions

Two strategies can be used to address messages in transit:

1. Corrective. The corrective approach carries out the
replacement while disregarding potential messages
in transit. After replacement, measurements are
taken to ensure that the messages in transit are
found and transformed before any of them are
delivered to the new version of the receiving
component. This technique has the major drawback
that it requires significant application domain
knowledge to implement the message conversion.
The approach also adds to the complexity and,
hence, the time required to carry out the update and,
therefore, increases disruption in the system.

2. Preventive. The preventive approach ensures that
there are no such messages to begin with. The
approach relies on the update algorithm to ensure
that the message sender (in our example, the
conversion component) terminates its transmissions
and that all messages in transit have been delivered
before the components are updated.

In our work, we have opted for the second choice
because of its fully automatic and application-independent
characteristics. In addition, its implementation allows the
reuse of all algorithms and techniques discussed for single-
component deactivation. The solution is based on the
observation that the problem with messages in transit only
occurs in the absence of transactions. Therefore, if every
message were part of a transaction, the problem would not
occur. This is exactly the approach taken by LUM: virtual
transactions.

LUM considers each message itself as a transaction that
starts at the moment when it is sent (enters the connector)
and ends at the moment when it arrives at its destination
(leaves the connector). Note that the components them-
selves are unaware of these virtual transactions. When LUM

needs to atomically replace multiple components, it just
uses the same algorithms as in the case where only one
component needs to be deactivated. When applied to the
camera example in Fig. 11, the update will not be able to
proceed since the Convertor component is still active in a
transaction it has initiated.

7 EXPERIMENTAL VALIDATION

In order to verify the practical applicability of tranquillity, we
have implemented a component-based Web shop applica-
tion. The application provides the core functionalities for
selling articles over the Web. It consists of five components: a
User Controller, a Currency Converter, a Price

Calculator, a Product Localizer, and an Interac-

tion Module.

7.1 Architecture

Fig. 12 shows the architecture of the Web shop application.
The User Controller coordinates the enquiries and the
purchases of the clients. The Currency Converter

maintains the conversion rates of the different currencies
and performs conversions whenever required. The Price

Calculator contains the business logics of the Web shop.
It is capable of calculating the total price of a client’s
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Fig. 10. The tranquillity and quiescence requirements are sufficient to

deal with messages in transit in the context of transactions.

Fig. 11. At time T , a message sent from the convertor to the viewer is in
transit. Each component implements a simple pipe-and-filter architec-
ture and no transactions are active in the system. The update should not
be allowed to proceed without first halting the message stream between
the convertor and the viewer.



shopping basket, taking into account the current promo-
tions and delivery costs. The Product Localizer main-
tains links to local stock databases. It is responsible for
filtering the items, depending on the location of the user.
The Interaction Module is responsible for interacting
with the users. It provides the graphical user interfaces for
querying and for purchasing products. An important
property of this module is that it always displays the prices
in the user’s preferred currency.

For the sake of brevity, we do not explain the detailed
mechanics of a purchasing scenario. Instead, we focus on
the price conversions that occur in a typical purchasing
scenario (illustrated in Fig. 13). Whenever the user executes
a product query, the Interaction Module shows all
products in the user’s preferred currency. The Price

Calculator, however, expects all items to be priced in
US dollars to accurately compute discounts and shipping. It
is of the utmost importance that the same conversion rate be
used throughout the entire transaction.

7.2 Runtime Adaptation Experiment

In our experiment, we update the CurrencyConvertor

component with new rates. Note that it does not matter
whether this change is anticipated (that is, the component
provides functionality to update its state) or requires a
component replacement. In both cases, the Currency-

Convertor must be in a tranquil state in order to preserve

application consistency. We implemented and executed this
change scenario on the DRACO component middleware
platform introduced earlier and recorded how long it took
to reach a tranquil state during the replacement of the
CurrencyConvertor. The update of the CurrencyCon-

vertor was executed under different system loads: 10, 50,
and 100 concurrent clients, respectively, each emitting one
request per second with random pauses of 100 ms in order
to ensure a more realistic and homogeneous system load.
Each of these three scenarios was measured 10 times and
both the mean and the standard deviation of the measured
durations are shown in Table 1. The duration is measured
from the moment the update is requested by the user until
tranquillity occurs. It is expressed both in absolute time
(seconds) and in relative terms with respect to the number
of messages inspected before tranquillity is attained (number
of ticks). The data in Table 1 clearly illustrate that the time
required to reach a tranquil status varies significantly
between different experiments, even for identical setups.
This is because tranquillity is heavily influenced by the
order in which requests from different clients arrive and
whether the transactions of the clients heavily overlap.
Despite this high degree of variability, the theoretical
scenario where tranquillity is never reached does not often
present itself in reality. Actually, in none of the 40 execu-
tions of our evolution scenario did we require a fallback to
quiescence to accomplish the update. Another important
result from our tests, although not shown in Table 1, is that,
in every test case, a consistent application condition was
reached after the update.

If the distribution of the data in Table 1 is known, the
data can be used to calculate additional information, such as
a 95 percent percentile upper bound (a time frame in which
tranquillity will be reached 95 percent of the time) or the
probability that tranquillity will not be reached within a
user-specified time frame. Since the statistical distribution
of the data in Table 1 cannot be derived from 10 experi-
ments, we have executed an additional 200 experiments
under the light system load (10 concurrent clients). The
histogram that summarizes the results from these addi-
tional experiments is shown in Fig. 14. The assumption of a
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Fig. 12. The component-based Web shop.

TABLE 1
Experimentally Measured Durations to Reach a Tranquil State

Fig. 13. The different currency conversions.



normal distribution was not contradicted by the One-
Sample Kolmogorov-Smirnov Test for normality. Note that
the mean value and standard deviation roughly correspond
to the data in Table 1, which indicates that the 10 original
experiments are reasonable approximations for the higher
system loads as well.

8 RELATED WORK

Although we are weakening the notion of quiescence, there
are others who have implemented the notion of quiescence
as presented in [16]. The work in [5] shows an implementa-
tion of the quiescence model for distributed component
systems. Gerlach and Baelen [8] present resource-aware
components. These are components that are aware of their
environment and can react to changes in it. Taking this
further brings us to the world of ambient software, where
components adapt their behavior using information from
the outer world [24]. These approaches, however, consis-
tently break the black-box design principle, thus lowering
reusability.

The notion of tranquillity is not only applicable in
component systems [18], [19] but also in all other paradigms
that allow modularization and explicit interaction. We have
found applications of the notion of quiescence in procedural
programming, in service-oriented programming, and in
object-oriented systems. In all of these approaches, the
notion of tranquillity could be introduced for enhancing the
dynamic updatability.

As early as 1976, Fabry presented a system allowing for
dynamic changes of abstract data types written in proce-
dural languages [6]. Other systems in this area were
developed by Gupta [11], Hicks [13], and Hofmeister. The
latter even stated in [14] that the notion of quiescence is too
strong and that entities can be safe without enforcing
quiescence. Her approach still does not offer support for
black-box entities, however.

Service-oriented systems [3] are decomposed into differ-
ent entities that provide and request services. Two entities

are connected by service contracts [7]. This explicit linking
of entities enhances the decoupling. This explains why Ketfi
and Belkhatir [15] introduce the notion of quiescence for
service-oriented systems.

Our approach is also applicable to ordinary object-
oriented systems. The Dynamically Alterable System (DAS)
[9] is an operating system from the late 1970s. It supports
the replacement of an object by another one with the same
interface. In DAS, the in and out-operations on objects are
first class, ensuring less coupling between the objects and
allowing data restructuring. In [12], Gupta et al. show how
object-oriented systems should be updated dynamically.
They also claim that the programs should be in a quiescent
state before the updates can be carried out.

9 CONCLUSION

This paper addresses the problem of state consistency
before and after a dynamic change. The problem was
originally identified by Kramer and Magee [16], who
introduced the notion of quiescence as a sufficient and
necessary condition to ensure state consistency. Although
they have proved that quiescence is reachable and sufficient
for ensuring state consistency, their approach causes serious
disruption in the application that is being updated due to
the large number of nodes that need to be passivated.

In this paper, we have overcome this drawback by using
the notion of tranquillity. By exploiting the properties of
black-box nodes, tranquillity is able to separate subtransac-
tions from their cause. Although not guaranteed to be
reachable, tranquillity can be achieved quickly in the
majority of cases. We have shown that tranquillity—when
reached—is a sufficient condition for ensuring state con-
sistency. In the few cases where tranquillity cannot be
reached in bounded time, a fallback mechanism to quies-
cence can easily be implemented.

The advantages of tranquillity over quiescence are
twofold. First, tranquillity has a much smaller disruption
than quiescence since a node in a tranquil status does not
require all of its adjacent nodes to be in a passive status.
Second, tranquillity allows the replacement of nodes at
times when it is semantically correct to do so, even when
the quiescence condition does not hold.

We have shown that tranquillity can be implemented on
top of existing component frameworks. When a fallback to
quiescence is required, transparent message tagging can be
used in order to avoid breaking the black-box nature of nodes.
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