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T
he COVID-19 pandemic has caused unprecedented disrup-
tion to modern societies throughout the world. Since the 
emergence of the disease, it has become clear that the course 

of the disease can vary considerably between individuals1, with 
some experiencing mild or nonexistent symptoms and others expe-
riencing severe outcomes, including hospitalization or even death. 
It has been well documented that several host factors are correlated 
with disease progression, with primary risk factors including sex, 
age, ancestry and the presence of underlying medical conditions2.

Much less is known about the genetic basis of COVID-19 risk, 
both in terms of susceptibility to infection and severity of out-
comes after infection. Genetics plays a role in host susceptibility to 
infection and disease pathogenesis in humans3. Notable examples 
include the protective effects of the CCR5Δ32 mutation on infec-
tion with the human immunodeficiency virus type 1 (ref. 4) and the 
sickle-cell-causing mutation in the HBB gene offering protection 
against the malaria-causing Plasmodium falciparum5. Over the past 
decade, genome-wide association studies (GWAS) have proved to 
be a useful tool for uncovering new infectious disease susceptibility 
loci, identifying loci associated with pathogen clearance or persis-
tence and providing supporting evidence for the role of certain host 
factors implicated in disease progression and severity6,7.

Given the rapid emergence of COVID-19, preexisting genetic 
cohorts offer a path to rapid data collection that can address questions 
surrounding the relationship between host genetics and COVID-19 
in a timely fashion. Among the largest preexisting genetic cohorts 
are those that have been developed via direct-to-consumer genetic 
testing. 23andMe is a direct-to-consumer genetic testing company 
with over 10 million genotyped customers. As part of the 23andMe 
service, customers are genotyped on SNP microarrays and offered 
the opportunity to participate in scientific research; approximately 
80% of customers consent to do so. In general, research participa-
tion is conducted via online surveys, which research participants 

can complete at any time. Research participants are recontactable 
and can be invited to participate in new surveys that are developed 
over time.

In this article, we describe the engagement of the 23andMe 
research cohort to address questions surrounding COVID-19 risk 
factors and host genetics. Having collected data from over 1 million 
research participants, we identified 15,434 individuals who reported 
a positive COVID-19 test, of whom 1,131 reported hospitalization 
with COVID-19 symptoms. We first investigated nongenetic risk 
factors associated with COVID-19 severity and found that lower 
socioeconomic status, African American ancestry, obesity and pre-
existing conditions were associated with a higher risk of hospital-
ization. We subsequently conducted GWAS of phenotypes related 
to both COVID-19 diagnosis and severity. We performed GWAS 
separately in samples of European, Latino and African American 
ancestries and used the resulting data to perform a trans-ancestry 
meta-analysis. We identified a strong association with the ABO 
gene, which appears to be connected with testing positive for 
SARS-CoV-2, and another strong association within a gene-rich 
locus at chromosome 3p21.31, which appears to be connected with 
COVID-19 severity.

Results
Respondent characteristics. Due to the geographically localized 
nature of the COVID-19 outbreak during the study period, we 
geo-targeted the email recruitment campaign to follow the out-
break as it moved through the United States (Fig. 1). As of 25 July 
2020, 1,051,032 research participants had taken the COVID-19 
baseline survey. Respondents were included in this analysis if they 
had consented to research and had a non-missing response to the 
question, ‘Have you been tested for COVID-19?’. Of those, 15,434 
self-reported a positive SARS-CoV-2 test result. Of that group, 1,131 
reported hospitalization (Table 1). Most respondents were currently 
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based in the United States (93.2%), followed by the United Kingdom 
(2.4%), with the remainder responding from other countries around 
the world (4.4%). Most respondents were of European ancestry 
(80.3%), although the study also included substantial representa-
tion from Latino (11.3%, n = 118,787) and African American or 
Black (2.7%, n = 28,592; hereafter referred to as African American) 
ancestries. Study participants were 63% female with a median age 
of 51 years.

Those reporting a positive SARS-CoV-2 test were more likely 
to be male (odds ratio (OR) = 1.22, 95% confidence interval (CI) 
1.18–1.26, P < 2.2 × 10−16), younger on average (43.0 years ver-
sus 51.0 years, P < 0.001) and less likely to be of European ances-
try (70.3% compared to 80.3% of all study participants, P < 0.001;  
Table 1). Living in an urban environment was associated with a 
higher likelihood of reporting a positive test (within the test positive 
population, 95% were urban residents versus 90.5% of all respon-
dents; P < 0.001) as was employment as a healthcare professional 
(within the test positive population, 21.7% were healthcare profes-
sionals versus 9.2% of all respondents, P < 0.001).

In addition to being more likely to report a positive 
SARS-CoV-2 test (1.7% versus 1.4%, P < 2.2 × 10−16; chi-squared 
test), male respondents were more likely to report hospitaliza-
tion (10.1% of males versus 7.4% of females with a positive test, 
P = 4.3 × 10−8; chi-squared test). While the proportion of individu-
als reporting a positive SARS-CoV-2 test declined as a function of 
age, hospitalization rates increased dramatically with age (Fig. 2a).  
Generally, non-European ancestry was associated with higher 
rates of self-reported SARS-CoV-2 infection and higher propor-
tions of hospitalization. For Latinos, the higher proportion of hos-
pitalization was consistent with a higher proportion of individuals 
reporting a positive SARS-CoV-2 test compared to other groups 
(observed to expected ratio (O/E) = 0.93, P = 0.27; chi-squared 
test). However, for African Americans, the proportion report-
ing hospitalization was almost twice as high as expected from the 
proportion reporting a positive SARS-CoV-2 test (O/E = 1.96, 
P = 3 × 10−11; chi-squared test), implying either more severe out-
comes for those who became infected or an underreporting of 
positive test status (Fig. 2b).

Combining common risk factors into a single multivariable 
logistic regression model (obesity, type 2 diabetes, fatty liver dis-
ease and high blood pressure), the most significant risk factor for 
hospitalization within the population reporting a positive test for 
COVID-19 was obesity (defined as BMI > 30), which accounted 
for a doubling in the risk of hospitalization (adjusted OR = 2.07, 
95% CI 1.67–2.57) after adjusting for age, sex, ancestry, educa-
tion, household income and other cardiometabolic preexisting 
conditions (Table 2). In this model, African Americans were 82% 
more likely to be hospitalized for COVID-19 (adjusted OR = 1.82, 
95% CI 1.33–2.50). Socioeconomic status was inversely associated 
with hospitalization risk, with a 4% decrease in hospitalization per 
US$10,000 increase in median income in the zip code of residence. 
High school or lower education conferred a 38% increased risk in 
hospitalization (adjusted OR = 1.38, 95% CI 1.10–1.74). Results 
were robust to stratification on the basis of data collection date 
range as well as stratification on the basis of geographical region  
(Supplementary Table 1).

The prevalence of infection, estimated as the number of reported 
positive tests in a state relative to the number of study participants 
in the state, varied across geographical regions. The highest pro-
portions of positive SARS-CoV-2 tests were reported in New York 
(4.4%) and New Jersey (3.3%) and the lowest proportions were 
reported in Maine (0.4%) and West Virginia (0.4%). Since most 
of the case data were collected between late April and early June 
2020, hotspots that developed earlier in the pandemic are better 
represented compared to those that arose later in the course of the 
pandemic (Extended Data Fig. 1a,b). Nonetheless, the self-reported 
prevalence of positive SARS-CoV-2 tests at the US state level was 
reasonably well correlated with the number of positive SARS-CoV-2 
tests reported per capita8 as of July 2020 (Extended Data Fig. 1c; 
Pearson r = 0.85). However, the prevalence of self-reported posi-
tive SARS-CoV-2 test status was higher in the 23andMe database 
than the per-capita estimates, likely reflecting differences in the 
composition of the 23andMe database and the general popula-
tion and potential selection bias arising from individuals with a 
positive test potentially being more likely to choose to participate  
in the study.

April May June July

Baseline survey

1-month follow-up

2-month follow-up

3-month follow-up
No data collection

Geo-targeted data collection

Ongoing data collection

Fig. 1 | Timeline and geo-targeting of study recruitment in the united States during the study period (between 6 April and 25 July 2020). email 

recruitment was conducted at the indicated time points for the states highlighted in red.
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GWAS. Our GWAS analyses included one phenotype aimed at 
understanding SARS-CoV-2 infection and four phenotypes aimed 
at understanding aspects of COVID-19 severity. For the ‘diagnosis’ 
phenotype contrasting test-positive and test-negative individuals, 
our trans-ancestry meta-analysis included 12,972 cases and 101,268 
controls. This analysis identified two loci with robust associations 
(Fig. 3a and Supplementary Table 2). The first locus is located in 
proximity to the ABO gene and the second association is within a 
region of chromosome 3p21.31. Conversely, the 4 ‘severity’ pheno-
types included between 636 and 1,447 cases and between 796,151 
and 797,180 controls, depending on the exact phenotype used 
(Supplementary Table 3). The chromosome 3p21.31 locus appeared 
to be robustly associated at genome-wide significance across all 
phenotypes, whereas the ABO locus only achieved genome-wide 
significance in the test-positive versus test-negative phenotype  
(Fig. 3b, Extended Data Fig. 2 and Supplementary Table 2).

ABO blood group. In our phenotype contrasting SARS-CoV-2 
test-positive and test-negative individuals, we identified an asso-
ciation at chromosome 9q34.2, with the index SNP rs9411378 
(P = 5.3 × 10−20, C allele OR = 0.857; Fig. 4a and Extended Data 
Fig. 3a). While the precision of effect size estimates varied between 
populations, we observed no evidence of effect size heterogeneity 

between populations (Fig. 4b and Supplementary Table 2). This 
index SNP is in linkage disequilibrium (LD) with a functional vari-
ant in the ABO gene, specifically rs8176719 (r2 = 0.57, 0.57 and 0.40 
in the European, Latino and African American populations, respec-
tively), which is a well-known single-nucleotide deletion that usu-
ally confers a type O blood group when present in the homozygous 
form. While multiple rare variants elsewhere within the ABO gene 
can contribute to blood group determination, individuals hetero-
zygous for the deletion are most likely to have blood groups A or 
B, whereas individuals without any copies of the deletion are most 
likely to have blood groups A, B or AB.

To further understand the relationship between positive 
SARS-CoV-2 test status and ABO blood group, we used genetically 
determined blood group assignments (Methods) and estimated the 
contribution to risk by comparing each blood group against each 
of the others. For all COVID-19 phenotypes, we found that the O 
blood group was protective compared to the other blood groups, 
whereas blood groups A, B and AB did not differ from each other 
(Fig. 5, Extended Data Fig. 4 and Supplementary Table 4). Direction 
of effect was broadly consistent across populations (Extended Data 
Fig. 5). We observed a similar effect size in both diagnosis and 
severity phenotypes, albeit with severity phenotypes not achieving 
statistical significance. However, the effect size estimates at the ABO 

Table 1 | Demographic and health characteristics of the COVID-19 survey respondents

All study 
participants

Reported a  
SARS-CoV-2 test

Reported a positive 
SARS-CoV-2 test

Reported a positive SARS-CoV-2 
test and hospitalization

Sample size, n 1,051,032 136,555 15,434 1,131

Median age (s.d.) 51.0 (16.9) 50.0 (16.3) 43.0 (15.5)*** 53.0 (17.5)***

Female, n (%) 660,709 (62.9) 84,724 (62.0) 8,991 (58.3)*** 573 (50.7)***

Current country of residence

 United States, n (%) 979,909 (93.2) 127,875 (93.6) 14,159 (91.7)*** 1,021 (94.2)

 United Kingdom, n (%) 25,138 (2.4) 2,222 (1.6) 410 (2.7)* 38 (3.5)

 Other, n (%) 45,985 (4.4) 6,458 (4.7) 865 (5.6)*** 25 (2.3)

Ancestry

 european, n (%) 843,567 (80.3) 105,962 (77.4) 10,849 (70.3) 769 (68.0)

 Latino, n (%) 118,787 (11.3) 18,137 (13.3) 2,882 (18.7)*** 197 (17.4)

 African American, n (%) 28,592 (2.7) 4,331 (3.2) 627 (4.1)*** 75 (6.6)***

 Other non-european, n (%) 60,086 (5.7) 8,395 (6.1) 1,076 (7.0)*** 90 (8.0)

educational level

 High school or lower, n (%) 89,427 (8.5) 9,208 (6.7) 1,233 (8.0) 119 (10.5)***

 Some college or associate degree, n (%) 262,155 (24.9) 33,415 (24.5) 3,906 (25.3)* 302 (26.7)*

 Bachelor’s degree, n (%) 279,873 (26.6) 36,874 (27.0) 4,155 (26.9)* 232 (20.5)***

 Master’s degree or higher, n (%) 246,209 (23.4) 36,096 (26.4) 3,395 (22.0) 243 (21.5)

 Missing educational level, n (%) 173,368 (16.5) 20,962 (15.4) 2,745 (17.8) 235 (20.8)

Median household income in residential zip code US$ (s.d.) 67,950 (28,975) 68,720 (30,230) 69,820 (30,636)*** 67,280 (27,959)***

Metropolitan residential area, n (%) 854,539 (90.5) 113,940 (92.3) 12,975 (94.9)*** 938 (94.5)

Healthcare professional, n (%) 92,929 (9.2) 24,707 (18.8) 3,183 (21.7)*** 174 (15.8)***

Preexisting conditions

 Current smoker, n (%) 85,801 (8.4) 11,222 (8.5) 1,133 (7.6)*** 74 (6.8)

 Type 2 diabetes, n (%) 60,266 (5.8) 8,439 (6.3) 788 (5.2)*** 146 (13.3)***

 High blood pressure, n (%) 298,599 (29.0) 40,060 (29.8) 3,669 (24.3)*** 468 (42.8)***

 Fatty liver disease, n (%) 44,022 (4.3) 7,725 (5.8) 727 (4.8)*** 106 (9.7)***

 Obesity, n (%) 359,220 (35.2) 47,957 (35.9) 5,557 (37.1)*** 568 (52.6)***

Significance was determined from logistic regression models predicting a positive SARS-CoV-2 test (compared to all other study participants) and hospitalization for COVID-19 (compared to all those with 

a positive SARS-CoV-2 test). Ancestry was modeled as a factor variable (reference, european), whereas education was modeled as a dummy variable. Percentages were calculated after exclusion of missing 

data. Symbols correspond to the P significance level of the parameter estimate (Wald test); *P < 0.05, **P < 0.01, ***P < 0.0001.
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locus with the severity phenotypes appeared somewhat sensitive to 
choice of control population and were attenuated when contrast-
ing individuals with severe outcomes to test-positive individuals 
without severe outcomes (Supplementary Note and Extended Data 
Fig. 6), which is consistent with a role in susceptibility rather than 
severity. We also noted that the association with SARS-CoV-2 test 
status was in contrast to the ABO results obtained when considering 
individuals that reported influenza symptoms in the years before 
the COVID-19 pandemic, where the O blood group appeared to be 
a risk factor.

To understand how the association differentiated by test-positive 
or test-negative status, we tested rs9411378 for association contrast-
ing test-positive individuals to individuals who did not report having 
taken a SARS-CoV-2 test and repeated this analysis for test-negative 
individuals. We found that association remained strong for the 
test-positive contrast (P = 1.91 × 10−13, OR = 0.878) but was much 
reduced in the test-negative contrast (P = 0.002, OR = 1.093). This 
suggests that the association at ABO is likely driven by differentia-
tion between the test-positive population and the general popula-
tion, rather than the test-negative population.

Given preliminary reports that the ABO locus has not been 
observed as being associated in other studies of COVID-19 host 
genetics, we investigated the robustness of our association to popu-
lation stratification (Supplementary Note). We did not observe 
evidence for heterogeneity of effect across geographical regions or 
ancestral backgrounds (Extended Data Fig. 7).

Preliminary reports suggested that the rhesus factor can also 
contribute to differences in susceptibility and severity9. We did not 
detect a genetic association at the RHD locus, which suggests that 
rhesus factor is not a major risk factor by itself independent of ABO 
blood group. To investigate further, we also compared positive and 
negative forms of each ABO blood group and detected no signifi-
cant difference in any comparison (Supplementary Table 5).

Chromosome 3p21.31. We identified an association at chromo-
some 3p21.31, which was shared across all phenotypes (Fig. 6a and 
Extended Data Figs. 3b and 8). The association was strongest in our 
phenotypes related to respiratory symptoms, with the lowest P value 
observed in the severe respiratory symptoms phenotype (index SNP 
rs13078854, alleles A/G, P = 1.6 × 10−18) and with a relatively large 
estimated effect size (G allele OR = 0.592, 95% CI 0.527–0.665). 
Most of the support for this association comes from the European 
population (Fig. 6b), likely reflecting the larger sample size for this 
cohort, but we identified no evidence of effect size heterogeneity 
between populations (Supplementary Table 2). However, the risk 
allele is also more common in the European population, with the 
rs13078854 A allele having a 7.8%, 5.8% and 2.7% frequency in the 
European, Latino and African American populations, respectively. 
As for the ABO locus, we did not observe evidence for heterogene-
ity of effect across geographical regions or ancestral backgrounds 
(Extended Data Fig. 9).

The credible set for this locus overlaps the LZTFL1 gene, although 
none of the variants in the credible set alter the resulting protein. 
The locus also contains other nearby genes that could plausibly be 
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Table 2 | Estimates of hospitalization risk with COVID-19 from a 
multivariate logistic regression model using sociodemographic 
and preexisting health conditions as predictors

Model variable Adjusted OR 95% CI

Sex (female) 0.79 0.68–0.92**

Age (10-year increase) 1.39 1.31–1.46***

Socioeconomic status

  Household income zip code  
(US$10,000 increase)

0.96 0.94–0.99**

 High school or lower education 1.38 1.10–1.74**

BMI

  Underweight BMI (18.5 or less versus 
normal)

1.93 0.94–3.94

  Overweight BMI (24.9–29.9  
versus normal)

1.28 1.02–1.60*

 Obese BMI (30+ versus normal) 2.07 1.67–2.57***

Ancestry

 Latino versus european 1.24 1.01–1.52*

 Other non-european versus european 1.37 1.00–1.88*

 African American versus european 1.82 1.33–2.50***

Preexisting conditions

 High blood pressure 1.29 1.09–1.54**

 Type 2 diabetes 1.48 1.15–1.91**

 Fatty liver disease 1.61 1.24–2.10***

estimates were obtained within the positive SARS-CoV-2 test population. Symbols correspond to 

the P significance of the parameter estimate (Wald test); *P < 0.05, **P < 0.01, ***P < 0.0001.
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driving the association, including SLC6A20, CCR9, FYCO1, CXCR6 
and XCR1.

Given the reported differences in outcome severity between 
males and females, we tested for a difference in effect at the chro-
mosome 3p21.31 locus. Testing rs13078854 separately in males 
and females for the severe respiratory symptoms phenotype gave 
an OR = 0.49 (95% CI 0.41–0.59) in males and OR = 0.69 (95% CI 
0.58–0.82) in females, with the difference being moderately sig-
nificant (P = 0.003; z-test). On the basis of the association between 
ABO and SARS-CoV-2 test status, we further hypothesized that the 
chromosome 3p21.31 locus may show a difference in effect size 
depending on ABO blood type. Conditioning on blood type O, 
we estimated the OR of rs13078854 to be 0.63 (95% CI 0.52–0.77), 
whereas conditioning on any other blood type gave an OR of 0.57 
(95% CI 0.49–0.66). Therefore, we conclude that ABO blood type 

does not modulate the effect at the chromosome 3p21.31 locus 
(P = 0.80; z-test).

Other associations. In addition to the two main associations, 
we observed five weaker associations that, while achieving 
genome-wide significance, typically only included a small number 
of low-frequency variants within the association peak and may rep-
resent false positive associations that should likely only be consid-
ered further on independent validation (Supplementary Table 2).

Discussion
The COVID-19 pandemic represents a unique emergency in recent 
human history and has dramatically accelerated the pace of scien-
tific investigation into the effects of the virus on human health. In 
this article, we utilized a direct-to-consumer research platform to 
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collect data regarding experiences of COVID-19 on a large scale and 
over a compressed timeline.

In this study, both Latino and African American groups reported 
a higher rate of SARS-CoV-2 infection and, as described else-
where2,10,11, were more likely to report hospitalization relative to 
Europeans. For Latino respondents, the higher rate of hospitaliza-
tion in our data was broadly consistent with a higher rate of infec-
tion. However, for African Americans, the risk of hospitalization 
was higher than expected relative to the infection rate and remained 
so after adjusting for socioeconomic characteristics (income and 
education), age, sex and other comorbidities. These results highlight 
the central importance of systemic social factors in altering the risk 
of severe outcomes within minority communities.

Our study adds to the growing body of literature around the role 
of host genetics in COVID-19 and the data from this study pro-
vide validation for a number of associations that have been reported 
elsewhere (Supplementary Tables 6 and 7). In particular, our data 
strengthen the evidence for a role for ABO in COVID-19 host genet-
ics. The ABO blood group has been reported as a risk factor for both 
COVID-19 susceptibility12 and severity13 and is notable given the 
reported links between COVID-19 and blood clotting complica-
tions14,15. Our data support a role for ABO in susceptibility to infec-
tion, suggesting that blood type O is protective unlike non-O blood 
types. Whereas previous reports suggested protection was limited to 
the rhesus-positive group9, our data do not support that conclusion.

The mechanism by which ABO is associated with COVID-19 is 
unclear but ABO blood groups can play a direct role in pathogen 
infection by serving as receptors and/or coreceptors16. SARS-CoV-2 
is an enveloped virus that carries ABO antigens on the viral spike 
glycoprotein and host envelope glycolipids. Recent work has shown 
the SARS-CoV-2 spike protein interacts with multiple host C-type 
lectin receptors in a glycosylation-dependent manner17,18, which is 
similar to previous work on the SARS-CoV virus from the earlier 
severe acute respiratory syndrome outbreak19,20. Differential glyco-
sylation of the spike protein or envelope glycolipids from expression 
of different ABO glycosyltransferases may then impact the binding 

and propagation of SARS-CoV-2 viral particles in the host. Others 
have speculated that the lower susceptibility of blood type O could 
be linked to anti-A blood antibodies inhibiting the adhesion of 
coronavirus to angiotensin converting enzyme 2 (ACE2)-expressing 
cells, thereby providing protection21.

The ABO locus is also highly pleiotropic22 and exhibits complex 
population structure23. Interestingly, while older literature regard-
ing the association between ABO and influenza is inconsistent24, our 
own data suggest that blood type O is actually a risk factor for sea-
sonal flu. This is notable because SARS-CoV-2 testing in the United 
States was largely restricted to individuals with flu-like symptoms at 
the time we were collecting most of our data. As such, it is possible 
that the population of individuals receiving SARS-CoV-2 tests was 
enriched for influenza cases and the apparent protective nature of 
ABO for COVID-19 could arise from a subtle form of collider bias.

Likewise, our data strengthen the evidence of association at the 
chromosome 3p21.31 gene cluster, first identified by Ellinghaus 
et al.13. The locus contains multiple genes (SLC6A20, LZFTL1, 
CCR9, CXCR6, XCR1, FYCO1) that could be functionally impli-
cated in COVID-19 pathology. In particular, SLC6A20 has been 
noted13 as potentially forming a complex with ACE2, the cell sur-
face receptor for SARS-CoV-2 viral entry25,26. It is possible that 
increased SLC6A20 expression leads to increased ACE2 protein 
levels and greater viral uptake. LZFTL1 has been implicated in cil-
iogenesis and intracellular trafficking of ciliary proteins, which may 
impact airway epithelial cell function. As noted elsewhere13, CXCR6 
promotes natural killer T cell and tissue-resident memory CD8+ 
T cells residence in the lung27 and plays a role in the trafficking of 
T lymphocytes to the bronchial epithelia during respiratory infec-
tion and inflammatory lung disease. CCR9 predominantly regulates 
T cell homing to the gut, which may indirectly impact the response 
in the lung; however, it has also been shown to regulate eosinophil 
recruitment to the lung28. Recent studies have identified elevated 
chemokines and eosinophilia as hallmarks of severe disease29–31 but 
additional work is required to define any functional contribution of 
these genes to the genetic association with COVID-19.
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In phenotypes contrasting individuals with severe COVID-
19 symptoms to controls without a COVID-19 diagnosis, the risk 
variants at the chromosome 3p21.31 locus achieved ORs of approxi-
mately 2.0 in our data, which is relatively large in the context of 
GWAS studies. Given that risk alleles are also relatively common 
(approximately 3–8% frequency, depending on the population), it is 
likely that this locus makes a meaningful contribution to determin-
ing why some individuals experience severe COVID-19 outcomes. 
However, while the population sample sizes in our study differ con-
siderably, we found little evidence to suggest that allele frequency 

differences at this locus could account for the higher rate of severe 
outcomes from COVID-19 for non-European ancestry groups. In 
fact, the primary risk allele at the chromosome 3p21.31 locus is 
most common in European populations and less common in Latino 
and African American populations.

In under four months, over one million research participants 
contributed to this study of a new disease via online surveys. 
However, while this represents a large sample, there are notable 
caveats to relying on self-reported data for a disease with lethal out-
comes. First, cases identified in this study were healthy enough to 
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respond to the survey and therefore likely biased toward a healthier 
case population than otherwise exists. Likewise, survey data can-
not easily ascertain information regarding exposure, which limits 
our ability to analyze true virus susceptibility. In addition, 23andMe 
research participants are a self-selected group and may not reflect 
the general population. Furthermore, the scarcity of testing in 
the United States during our data collection period likely further 
obscured the true picture of SARS-CoV-2 infections, potentially 
resulting in misestimation of risk factors compared to a sample ran-
domly drawn from the broader population with perfect case and 
control classification.
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Methods
Overview of study recruitment and data collection. Participants in this study 
were recruited from the customer base of 23andMe, a personal genetics company. 
All individuals included in the analyses provided informed consent and answered 
surveys online according to our human participants research protocol, which was 
reviewed and approved by Ethical and Independent Review Services, a private 
institutional review board (http://www.eandireview.com).

Primary recruitment was carried out by email to approximately 6.7 million 
23andMe research participants over 18 years of age and living in the United States 
or United Kingdom. Additionally, preexisting customers were invited to participate 
in the study through promotional materials on the 23andMe website, the 23andMe 
mobile application and via social media. Study participation consisted solely of 
web-based surveys, including an initial baseline survey and three follow-up surveys 
fielded one month after completion of the baseline survey. Because enrollment is 
ongoing, not all participants would have received or completed all of the follow-up 
surveys. All surveys included questions about symptoms of cold or flu-like illnesses 
from February 2020 onward, COVID-19 diagnosis and testing, hospitalization, 
severity of illness, COVID-19 diagnosis of first- and second-degree family 
members and potential sources of exposure to COVID-19. Other respondent 
characteristics, such as age, sex, preexisting conditions, educational attainment, 
zip code and smoking status had been collected via previously deployed surveys 
for most participants but were also queried in the COVID-19 baseline survey if 
the data were missing. All questions asked within the surveys are reported in the 
Supplementary Note.

We geo-targeted the email recruitment campaign to follow the outbreak as it 
moved through the United States. Emails to each state/country were batched into 
tranches on the basis of the anticipated timing of the hospitalization demand peak 
within each region as assessed from the Institute for Health Metrics and Evaluation 
(IHME) prediction model32. Each tranche was recruited via email a minimum of 
two weeks after the estimated peak hospitalization demand, as determined by the 
IHME predictive models. IHME predictions varied over the course of the study; 
the order in which regions were targeted was adjusted accordingly. The email send 
dates are detailed in Supplementary Table 8.

Social and demographic risk factors for COVID-19 hospitalization. To explore 
nongenetic factors associated with hospitalization for COVID-19, we explored age, 
sex, ancestry, median household income of the residential zip code, educational 
attainment, body mass index (BMI) and preexisting conditions as risk factors 
within US respondents using bivariate and multivariate logistic regression models. 
Ancestry was inferred via a previously described genetic ancestry classification 
algorithm33,34. Since social and demographic factors are strongly associated with 
COVID-19 hospitalization and many of the preexisting conditions, final models 
estimating the relationship between the preexisting condition and COVID-19 
hospitalization were adjusted for age (10-year increments), sex, ancestry, high 
school or lower education and median household income of the residential 
zip code (in US$10,000 increments). Covariates explored but not found to be 
significant in the final model included alcohol intake, urban/rural residence, red 
meat intake and current smoking.

A final multivariate logistic regression model was specified to quantify the risk 
of hospitalization for COVID-19 within the SARS-CoV-2 test-positive population. 
Individuals with missing data were excluded. To ensure that the associations 
observed in the model were robust to variation arising from regional differences, 
we also fitted the hospitalization model having stratified the data into that collected 
during the first and second phases of the study period (April and May versus June 
and July) and separately by stratifying on the basis of US region (south, west, north 
central, and northeast).

The relationship between age and COVID-19 and hospitalization was 
determined by categorizing cases by 10-year age increments between 30 and 80 
and then calculating the percentage of cases in each age group and the percentage 
of cases that reported hospitalization. To describe differences in hospitalization by 
ancestry, age-standardized estimates were calculated by applying the percentage of 
cases hospitalized within the age strata for European, African American and Latino 
respondents and applying that percentage to the age structure of all cases in the 
study population. This resulted in an age-adjusted estimate of COVID-19-related 
hospitalization reflective of this study population, rather than the broader US 
population. While our data also included respondents of other ancestries, such as 
East and South Asian, the sample sizes for these populations were too small for 
robust inferences to be made. All statistical analyses and mapping were conducted 
in R v.3.3.

Phenotype definitions for GWAS. Using the information derived from the 
surveys, we defined a set of phenotypes that aimed to capture aspects of COVID-
19 diagnosis and severity. After preliminary analyses, we defined one ‘diagnosis’ 
phenotype that contrasted positive and negative outcomes from a SARS-CoV-2 test 
and four phenotypes that captured aspects of COVID-19 ‘severity’, and compared 
individuals experiencing pneumonia, hospitalization or the need for respiratory 
support in the form of supplementary oxygen or ventilation to individuals without 
a COVID-19 diagnosis (Supplementary Table 3). Our phenotype definitions were 
motivated from data collected in the early weeks of the study, when we performed 

preliminary analysis to define phenotypes that appeared best powered within a 
GWAS context. From these preliminary analyses, we concluded that cases were best 
defined by requiring a positive SARS-CoV-2 test, which reduced the probability 
of false positive cases (for example, from influenza) arising from symptom-based 
diagnoses alone. Likewise, we determined that large-scale population-based 
controls (who had neither been diagnosed with COVID-19 nor tested positive for 
SARS-CoV-2) performed well within the GWAS context for severity phenotypes, 
which we believe is justified because most individuals within the population are 
not expected to have severe outcomes and more sophisticated control definitions 
relying on exposure information were unlikely to be accurately captured from 
self-reported survey information. Given that data collection occurred early in 
the pandemic, it may be assumed that the population controls represent a largely 
unexposed population. Full derivations of phenotypes from the original survey 
questions are given in the Supplementary Note.

Genotyping and SNP imputation. DNA extraction and genotyping 
were performed on saliva samples by Clinical Laboratory Improvement 
Amendments-certified and College of American Pathologists-accredited clinical 
laboratories of Laboratory Corporation of America. Samples were genotyped on 
one of five genotyping platforms. The V1 and V2 platforms were variants of the 
Illumina HumanHap550 BeadChip and contained a total of about 560,000 SNPs, 
including about 25,000 custom SNPs selected by 23andMe. The V3 platform was 
based on the Illumina OmniExpress BeadChip and contained a total of about 
950,000 SNPs and custom content to improve the overlap with our V2 array. The 
V4 platform was a fully custom array of about 950,000 SNPs and included a lower 
redundancy subset of V2 and V3 SNPs with additional coverage of lower-frequency 
coding variation. The V5 platform was based on the Illumina Global Screening 
Array, consisting of approximately 654,000 preselected SNPs and approximately 
50,000 custom content variants. Samples that failed to reach a 98.5% call rate 
were reanalyzed. Individuals whose analyses failed repeatedly were recontacted 
by the 23andMe customer service to provide additional samples, as is done for all 
23andMe customers.

Participant genotype data were imputed using the Haplotype Reference 
Consortium panel35, augmented by the Phase 3 1000 Genomes Project 
panel36 for variants not present in the Haplotype Reference Consortium. We 
phased and imputed data for each genotyping platform separately. For the 
non-pseudoautosomal region of the X chromosome, males and females were 
phased together in segments, treating males as already phased; pseudoautosomal 
regions were phased separately. We then imputed males and females together, 
treating males as homozygous pseudodiploids for the non-pseudoautosomal region.

GWAS. Genotyped participants were included in GWAS analyses on the basis of 
ancestry as determined by a genetic ancestry classification algorithm34. For each 
phenotype, we selected a set of unrelated individuals so that no two individuals 
shared more than 700 cM of DNA identical by descent. For case-control 
phenotypes, if a case and a control were identified as having at least 700 cM of 
DNA identical by descent, we preferentially discarded the control from the sample.

For case-control comparisons, we tested for association using logistic 
regression, assuming additive allelic effects. For tests using imputed data, we used 
the imputed dosages rather than best-guess genotypes. We included covariates for 
age, age squared, sex and sex:age interaction, the top ten principal components 
to account for residual population structure and dummy variables to account 
for genotyping platform. The association test P value was computed using a 
likelihood ratio test, which in our experience is better behaved than a Wald test 
on the regression coefficient. Results for the X chromosome were computed 
similarly, with males coded as if they were homozygous diploid for the observed 
allele. Association testing for the Y chromosome was considered separately 
(Supplementary Note).

We ran the GWAS for each phenotype separately and combined both 
genotyped and imputed data. When choosing between imputed and genotyped 
GWAS results, we favored the imputed result unless the imputed variant was 
unavailable or failed quality control. For imputed variants, we removed variants 
with low imputation quality (r2 < 0.5 averaged across batches or a minimum 
r2 < 0.3) or with evidence of batch effects (analysis of variance (ANOVA) F-test 
across batches, P < 10−50). For genotyped variants, we removed variants only 
present on our V1 or V2 arrays (due to small sample size) that failed a Mendelian 
transmission test in trios (P < 10−20), failed a Hardy–Weinberg test in Europeans 
(P < 10−20), failed a batch effect test (ANOVA P < 10−50) or had a call rate < 90%.

We repeated the GWAS analysis separately in each population cohort for 
which we had sufficient data (European, Latino, African American; Extended 
Data Fig. 10) and the resulting summary statistics were corrected for inflation 
using genomic control when the inflation factor was estimated to be greater than 1 
(Supplementary Table 9). We then performed a trans-ancestry meta-analysis using 
a fixed effects model (inverse variance method37), restricting to variants of at least 
1% minor allele frequency in the pooled sample and again corrected for inflation 
using genomic control where necessary. We tested associated loci for evidence of 
heterogeneity between populations using Cochran’s Q test.

Within each GWAS, we identified regions with genome-wide significant 
associations. We defined the region boundaries by identifying all SNPs with 
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P < 10−5 within the vicinity of a genome-wide significant association and then 
grouping these regions into intervals so that no two regions were separated by 
<250 kilobases (kb). We considered the SNP with the smallest P value within each 
interval to be the index SNP. Within each region, we calculated a credible set using 
the method by Maller et al.38.

We also annotated our findings based on LD with results from published 
GWAS, coding variation and expression quantitative trait loci specifically by 
finding annotations with r2 > 0.5 and within 500 kb of the index SNP.

Blood group analyses. We classified haplotypes into blood groups on the basis of 
genotypes at three SNPs (rs8176747, rs41302905 and rs8176719)13,39. A deletion at 
rs8176719 confers a type O haplotype, as does a T allele at rs41302905. If neither 
rs8176719 nor rs41302905 confers type O, then rs8176747 distinguishes between 
types A and B. This assignment paradigm is described in Supplementary Table 10.

Given the haplotype assignments, individuals were assigned a blood type on 
the basis of their diploid combination of haplotypes, with type O being recessive, so 
that individuals with two O haplotypes were assigned type O, individuals with one 
O and one A haplotype were assigned type A, and so on.

We note that the blood group assignment methodology described above is 
incomplete and there are other rare variants that can influence blood group39. To 
understand the accuracy of the genetic blood group assignments, we compared 
them to self-reported blood groups from over 1.47 million research participants. 
We found that the genetic assignments achieved 86–94% precision and 63–95% 
recall compared to the self-reported data, depending on population and blood 
group (Supplementary Table 11).

We tested for the association between ABO blood group and COVID-19 
phenotypes in each population using logistic regression, testing blood group pairs 
separately (for example, individuals with blood group O versus individuals with 
blood group A) and only testing unrelated individuals. We included covariates for 
age, age squared, sex, sex:age interaction and the top ten principal components. 
We meta-analyzed across populations using a fixed effects model. We repeated 
these analyses using self-reported blood group assignments in place of genetically 
determined assignments and found the results to be qualitatively similar.

We performed a similar analysis between ABO blood groups and experience of 
influenza by considering research participants who answered the question: Have 
you had influenza (flu) in the past 12 months? Common symptoms of flu are fever 
over 100° F (38° C), muscle aches, chills and sweats, headache, dry cough, fatigue, 
nasal congestion and sore throat. Compared to the common cold, symptom onset 
for influenza is faster, more severe and can last 1–2 weeks. To avoid overlap with 
individuals reporting experiences with COVID-19, we tested for association 
between influenza and the ABO blood groups using a sample of individuals who 
answered the question during either the 2017–2018 flu season, defined as starting 
in October 2017 and ending in September 2018, or the 2018–2019 flu season, 
defined as starting in October 2018 and ending in September 2019.

To test for differences between rhesus-positive and rhesus-negative blood 
groups, we used the structural variant esv3585521 to obtain rhesus type. This 
variant, located within the RHD gene, has a 39.4% frequency in European 
populations and associates very strongly with self-reported rhesus type in 23andMe 
data (OR = 22.1, P = 1.8 × 10−298). We took individuals imputed as homozygous 
for the deletion as being rhesus-negative. Within each blood group, we tested for 
an association between rhesus type and COVID-19 phenotypes in the European 
ancestry population using logistic regression. We included covariates for age, age 
squared, sex, sex:age interaction and the top ten principal components.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
The full set of de-identified summary statistics can be made available to qualified 
investigators who enter into an agreement with 23andMe that protects participant 
confidentiality. Interested investigators should visit the COVID-19 Dataset Access 
Program at https://research.23andme.com/covid19-dataset-access/. Summary 

statistics for the SNPs with P < 1 × 10−4 within the trans-ancestry meta-analysis are 
provided as a Supplementary Data file.
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ARTICLESNATURE GENETICS

Extended Data Fig. 1 | SARS-CoV-2 prevalence in the 23andMe study and comparison to nationally reported data. a, Proportion of SARS-CoV-2 test 

positive study respondents in the continental United States combining all reported cases from February-July 2020. The map has been smoothed using 

a weighted local sum for each county combining data from 15 neighboring counties and weighting by sample size. b, Unsmoothed estimated prevalence 

of COVID-19 test positive individuals on a per-county basis within the continental United States. c, Scatter plot of state-level COVID-19 test positive 

prevalence as assessed in the 23andMe database compared to that obtained from national statistics. The blue line denotes a line of best fit, with the 

greyed area indicating the 95% confidence band.
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Extended Data Fig. 2 | Manhattan and QQ plots from the trans-ethnic meta-analysis for three phenotypes. a, The ‘hospitalized’ phenotype. b, The 

‘respiratory support’ phenotype. c, The ‘pneumonia’ phenotype. The nearest gene to each index SnP is indicated above each association peak. SnPs 

achieving genome-wide significance are highlighted in red.
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Extended Data Fig. 3 | Regional plots of association at the ABO and chr3 loci for each population. a,b, Regional plots within each population around the 

ABO locus within the ‘test positive vs. negative’ phenotype (a) and the chr3 locus within the ‘severe respiratory symptoms’ phenotype (b). Colors indicate 

strength of linkage disequilibrium relative to the index SnP from the trans-ethnic meta-analysis. Imputed variants are indicated with ‘+’ symbols or ‘x’ 

symbols for coding variants. Where imputed variants were not available, directly genotyped variants are indicated by ‘o’ symbols or diamond symbols for 

coding variants.
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Extended Data Fig. 4 | Comparison of AB blood group to other ABO blood groups in the trans-ethnic meta-analysis. Maximum likelihood point estimates 

are indicated by square points, with statistically significant associations (P < 0.001; likelihood ratio test) highlighted in red.
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Extended Data Fig. 5 | Comparison of blood groups across phenotypes and across populations (European, African American, and Latino). Maximum 

likelihood point estimates are indicated by square points, with statistically significant associations (P < 0.001; likelihood ratio test) highlighted in red. 

note that the estimate for the O vs. A comparison within the ‘respiratory support’ phenotype and African American population did not converge and was 

therefore excluded.
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Extended Data Fig. 6 | Effect size estimates at the chr3 and ABO loci within the severity phenotypes with different control definitions. For each 

phenotype, we estimated the effect size using both the original control definition (phenotypes with the _dx_negative_controls suffix), and again using 

controls that report a SARS-CoV-2 positive test but not a severe outcome (phenotypes with the _test_positive_controls suffix). Maximum likelihood point 

estimates are indicated by square points, with error bars indicating 95% confidence intervals.
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Extended Data Fig. 7 | See next page for caption.
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Extended Data Fig. 7 | Comparison of ABO index SNP effect sizes within different strata. a-c, The index SnP (rs9411378) effect sizes in the ‘test positive 

vs. negative’ phenotype as estimated within european ancestry groups (a), US states (b), and US regions (c). For all plots, points indicate the maximum 

likelihood estimate, error bars indicate 95% confidence intervals, and numbers within brackets indicate the numbers of cases and controls within the given 

group.
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Extended Data Fig. 8 | Forest plot of chr3p21.31 index SNP (rs13078854) in the trans-ethnic analysis and for each population (European, Latino, and 

African American). Square points indicate the fixed effect estimate from the meta-analysis, with error bars indicating 95% confidence intervals, and 

genome-wide significant associations highlighted in red.
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Extended Data Fig. 9 | See next page for caption.
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Extended Data Fig. 9 | Comparison of chr3p21.31 index SNP effect sizes within different strata. a,b, The index SnP (rs13078854) effect sizes in the 

‘severe respiratory symptoms’ phenotype as estimated within US states (a) and US regions (b). For all plots, points indicate the maximum likelihood 

estimate, error bars indicate 95% confidence intervals, and numbers within brackets indicate the numbers of cases and controls within the given group.
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Extended Data Fig. 10 | Manhattan plots for all phenotypes and each population prior to trans-ethnic meta-analysis. The nearest gene to each index 

SnP is indicated above each association peak. SnPs achieving genome-wide significance are highlighted in red.
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