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S U M M A R Y

This paper develops a probabilistic Bayesian approach to the problem of inferring the spa-

tiotemporal evolution of earthquake rupture on a fault surface from seismic data with rigorous

uncertainty estimation. To date, uncertainties of rupture parameters are poorly understood,

and the effect of choices such as fault discretization on uncertainties has not been studied.

We show that model choice is fundamentally linked to uncertainty estimation and can have

profound effects on results. The approach developed here is based on a trans-dimensional self-

parametrization of the fault, avoids regularization constraints and provides rigorous uncertainty

estimation that accounts for model-selection ambiguity associated with the fault discretization.

In particular, the fault is parametrized using self-adapting irregular grids which intrinsically

match the local resolving power of the data and provide parsimonious solutions requiring

few parameters to capture complex rupture characteristics. Rupture causality is ensured by

parametrizing rupture-onset time by a rupture-velocity field and obtaining first rupture times

from the eikonal equation. The Bayesian sampling of the parameter space is implemented on

a computer cluster with a highly efficient parallel tempering algorithm.

The inversion is applied to simulated and observed W-phase waveforms from the 2010

Maule (Chile) earthquake. Simulation results show that our approach avoids both over- and

underparametrization to ensure unbiased inversion results with uncertainty estimates that are

consistent with data information. The simulation results also show the ability of W-phase data

to resolve the spatial variability of slip magnitude and rake angles. In addition, sensitivity to

spatially dependent rupture velocities exists for kinematic slip models.

Application to the observed data indicates that residual errors are highly correlated and

likely dominated by theory error, necessitating the iterative estimation of a non-stationary

data covariance matrix. The moment magnitude for the Maule earthquake is estimated to be

∼8.9, with slip concentrated in two zones updip of and north and south of the hypocentre,

respectively. While this aspect of the slip distribution is similar to previous studies, we show

that the slip maximum in the southern zone is poorly resolved compared to the northern zone.

Both slip maxima are higher than reported in previous studies, which we speculate may be due

to the lack of bias caused by the regularization used in other studies.

Key words: Inverse theory; Probability distributions; Earthquake source observations;

Computational seismology; Statistical seismology; Early warning.

1 I N T RO D U C T I O N

Finite-fault slip inversion provides estimates of the spatiotemporal

evolution of earthquake rupture over one or more discretized fault

surfaces and represents a way to study the physics of rupture (Olsen

& Apsel 1982; Hartzell & Heaton 1983). The fundamental problem

of estimating slip on an unknown fault surface from incomplete

and noisy data is highly non-linear, non-unique and challenging to

address without making substantial assumptions about some of the

unknowns. Over the last three decades, significant work has been

directed at estimating slip for linearized and non-linear parametriza-

tions to obtain optimal parameter estimates (Hartzell 1989;

Beresnev 2003; Ide 2007).

While the inverse problem can be linearized by constraining the

parametrization to special cases, for example, the multiple time-

window method (Hartzell & Heaton 1983), the consequences of

such simplifications are difficult to quantify. Linearized inversion

approaches are typically overparametrized, that is, the spatial and

temporal discretization are below the resolving power of the data,

and require some form of regularization (often through spatial
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smoothing) since the inverse problems are ill-posed and under-

determined. The impacts of regularization constraints on inversion

results are difficult to quantify which can result in substantial dif-

ficulty in interpreting results. In particular, regularization has been

shown to produce biased and underestimated uncertainties (Aster

et al. 2005). In addition, regularization requires specification of pa-

rameters that scale the solution between the regularized solution

and that due to the data information. While these parameters can be

estimated based on misfit (e.g. L-curve test) or Bayesian model se-

lection [e.g. Akaike’s Bayesian Information Criterion (BIC, Yabuki

& Matsu’ura 1992; Matsu’ura et al. 2007; Guo et al. 2011)], rigor-

ous estimation is often overlooked and is associated with additional

computational cost. Finally, regularization is specified a priori for

the whole model, which may be inadequate in cases where data con-

straint varies between model parameters. For example, if a global

smoothing matrix is assumed all regions of the model are exposed to

the same smoothing which can over- and/or underregularize various

aspects of the model. In addition, these undesirable aspects can not

only affect parameters of identical meaning (various regions of slip

may be resolved to varying degrees) but also parameters of differ-

ent physical meaning (different parameter types may have different

spatial/temporal resolution).

Non-linear optimization techniques (e.g. simulated annealing,

Hartzell et al. 1996) have also been extensively applied to account

for some non-linear effects, such as treating rise time as unknown.

While regularization is sometimes applied in non-linear inversion, it

is not required. For unregularized inversions, optimal parameter vec-

tor estimation requires quantitative model selection. However, both

linear and non-linear models are typically specified ad hoc based

on empirical estimates of data resolution. Consequently, slip inver-

sion results for identical earthquakes and data often vary substan-

tially and show strong dependence on the choice of parametrization

(Beresnev 2003). While non-linear approaches have relaxed some

of the assumptions at higher computational cost, non-linear parame-

ter uncertainties of slip models have been only recently investigated

(Minson et al. 2013).

In Bayesian inversion, the solution to the inverse problem is

given probabilistically by the posterior probability density (PPD)

of model parameters (MacKay 2003; Tarantola 2005) which ex-

presses the state of information about the parameters. Bayesian in-

version considers prior information (independent information about

the parameters expressed as a probability) and updates the prior

with data information (expressed in terms of the likelihood func-

tion) to obtain the PPD. Here, the term model is considered to be

general and includes a particular choice of physical theory (e.g.

wave propagation that predicts the response of the system to a

signal), an appropriate set of model parameters (e.g. the spatiotem-

poral fault parameters), and a statistical representation of the un-

certainty distribution for the data (which includes measurement

errors and errors due to model limitations). The uncertainty distri-

bution for the data (the data covariance matrix) may also depend

on parameters. A realization of the model is given by a parame-

ter vector. The data are generally noisy and incomplete (e.g. lim-

ited frequency band, azimuthal coverage) which causes uncertainty

in the parameters. In a Bayesian approach, it is crucial to define

and differentiate between variability and uncertainty. Variability

is a measure of the inherent spatial and/or temporal heterogene-

ity in an environmental property. Uncertainty is a measure of our

knowledge of an environmental parameter value, and is quantified

by a probability density. To study parameter variability (the ulti-

mate goal of inversion work), rigorous uncertainty estimation is a

pre-requisite.

Examples of application of Bayesian inference to linear slip in-

version include Yabuki & Matsu’ura (1992) and Matsu’ura et al.

(2007) for geodetic data, regularized linear inversion of geodetic

data with positivity constraints (Fukuda & Johnson 2008), and reg-

ularized mixed linear–non-linear joint inversion of multiple data

sets (Fukuda & Johnson 2010). The leading work of Minson et al.

(2013) developed a fully non-linear Bayesian inversion including a

kinematic source model on a fixed, regular grid. The source-time

function is parametrized with a rise time and a rupture velocity

and causality is satisfied by solving the eikonal equation. A non-

linear Bayesian approach was successfully applied to joint inver-

sion of geodetic, seismic and tsunami waveform data from the 2011

Tohoku-Oki earthquake (Simons et al. 2011; Minson et al. 2014).

In these applications, the model is assumed to be fixed and model

selection is not applied.

The uncertainties from Bayesian inversion quantify the accuracy

of parameter estimates for the particular model choice (including

choice of physical theory, appropriate set of model parameters and

statistical representation of the data-uncertainty distribution), and

can depend strongly on that choice. Therefore, it is important to

estimate the model quantitatively and objectively from the data (a

process referred to as model selection). Model selection must avoid

both over- and underparametrization (MacKay 2003; Dettmer et al.

2009; Brooks et al. 2011; Menke 2012). Overparametrization is

associated with models that include too many parameters which

cannot be properly constrained by the data. Such models overfit

data (fitting noise features) and parameter inference leads to results

with unconstrained structure and unrealistically high uncertainty

estimates. Underparametrization is associated with models that in-

clude too few parameters to properly fit the data, leaving structure

unresolved and biased. This requirement for parsimony is intrinsi-

cally satisfied by Bayes’ theorem (MacKay 2003) and quantitative

model selection can be carried out by evaluating the denominator

in Bayes’ theorem (referred to as Bayesian evidence). The exten-

sion of Bayesian inference to model selection provides the ability

to discriminate between models and make quantitative statements

about which model is preferred. It follows that the inferences car-

ried out with the posterior density of the preferred model are supe-

rior to those obtained from a posterior for an inferior model. Such

model selection can be addressed efficiently by trans-dimensional

(trans-D) models (Brooks et al. 2011). Trans-D inversion is based

on a hierarchical Bayesian formulation (Green 1995, 2003) where

model specification is relaxed so that a group of models is simul-

taneously considered. Group members contribute to the solution

according to their support by the data and prior information. The

trans-D model may contain multiple members that fit the data and

should be considered jointly in uncertainty estimation. The result is

a probability distribution which extends over all group members and

provides ensemble-parameter estimates with rigorous uncertain-

ties that inherently include uncertainty due to this model-selection

ambiguity.

However, it should be noted that all Bayesian inferences, includ-

ing model selection, are fundamentally tied to the assumption about

the statistical distribution form (e.g. Gaussian) of the residual errors

(a combination of theory and measurement errors) and the parame-

ters estimated for that distribution (e.g. variances and covariances).

Poorly met assumptions and/or poor distribution parameter esti-

mates can cause biases in inversion results (MacKay 2003). Inverse

problems in seismology can be particularly challenging in this con-

text, since theory errors are often dominant in the residuals. While

these issues cannot be fully alleviated in all cases, statistical anal-

ysis of posterior residual errors should be applied to examine the
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validity of the assumptions about residual-error statistics (Dettmer

et al. 2007). Posterior residuals that are reasonably consistent with

the assumptions raise confidence in the results, while poor consis-

tency may require application of an alternative likelihood function.

This work develops a novel non-linear Bayesian approach to slip

inversion that rigorously addresses model selection with a trans-D

model which efficiently and locally self-adapts to data resolution.

In addition, strongly correlated data errors are quantified in the

likelihood function by a combination of hierarchical and empirical

Bayesian estimation. The inversion is validated with simulated data

and then applied to the inversion of W-phase data from the 2010

Maule (Chile) earthquake.

Trans-D models have been applied widely in geophysics (Malin-

verno 2002; Sambridge et al. 2006; Dettmer et al. 2010a; Minsley

2011; Ray & Key 2012; Bodin et al. 2012) and are particularly

effective for 2-D inverse problems with irregular grids (Bodin &

Sambridge 2009; Dettmer & Dosso 2013), where the curse of di-

mensionality can preclude the use of regular-grid parametrization.

Sambridge et al. (1995) proposed irregular grids based on Voronoi

cells (Voronoi 1908) for spatial interpolation, grouping regions in

terms of nearest neighbours. Voronoi cells can be used as efficient

parametrizations since nodes can move freely and nodal density

vary to be sparse where little parameter variability and/or low data

information content exist and dense where variability and/or in-

formation is high (Bodin et al. 2009). A substantial generalization

is to allow grids where the number of nodes sampled in the in-

version is variable (Bodin & Sambridge 2009). In such trans-D

models, the parameters include the number of nodes, node posi-

tions and environmental properties at each node, which can result

in substantially fewer parameters compared to regular grids. Trans-

D models have been shown to self-adapt locally to the data infor-

mation based on Bayesian parsimony (Bodin & Sambridge 2009;

Minsley 2011). The parsimony, which is intrinsic to a Bayesian

trans-D model, controls structure so as to be consistent with prior

and data information, and no subjective choices/regularizations are

required.

We account for residual errors (including those due to measure-

ment process and model limitations) in the inversion by a com-

bination of empirical and hierarchical estimation. Residual-error

estimates from an initial inversion that assumes uncorrelated er-

rors are used to estimate the data covariance matrix for an optimal

model. The data covariance matrix is a block matrix that treats the

multiple seismic stations as independent and results in no require-

ment for weighting of data for the various stations. Rather, weights

are estimated from the data (i.e. from the noise level which be-

comes an unknown in the inversion). The residual-error estimation

process also accounts for non-stationary effects which are common

for waveform data because the error statistics change as a function

of time at each station. Since the optimal model is a point estimate

limited to one fixed-dimensional member of the trans-D model, a

hierarchical scaling is applied to each station. Note that many of

these residual-error characteristics (non-stationarity, strong corre-

lations) are common in waveform inversion and are largely due

to errors stemming from limitations in the model. Accounting for

these model limitations is particularly important in Bayesian infer-

ence when uncertainty estimation is of interest.

For non-linear problems, no analytic solution exists for the poste-

rior density and numerical sampling methods must be applied. Here,

the sampling is implemented with the reversible-jump Metropolis–

Hastings–Green (MHG) algorithm (Geyer & Moller 1994; Green

1995) which samples by probabilistically accepting/rejecting new

model vectors generated by a proposal density. The proposal choice

can strongly affect sampling efficiency and finding efficient den-

sities has historically been one of the greatest challenges in ap-

plying Bayesian inference to large-scale problems (Brooks et al.

2011). Here, trans-D interacting Markov chains (also referred to

as parallel tempering, PT, Geyer 1991; Jasra et al. 2007; Dettmer

& Dosso 2012; Sambridge 2014) are applied to improve sampling

efficiency by simulating many Markov chains in parallel on a com-

puter cluster. The likelihood functions of the various chains are

tempered (raised to a power between zero and one) such that chains

with an increasing level of tempering (low powers) increasingly de-

emphasize data information and sample more widely. Chains with

no tempering sample from the posterior of interest and are used for

posterior inference. The parallel chains exchange information by

swapping tempering parameters, and the exchange is governed by

the Metropolis–Hastings (MH) criterion for multiple chains.

The fault is parametrized by a variable number of nodes which

define homogeneous nearest neighbourhood regions. Each node

position has two unknown parameters (along-strike and along-dip

positions). The slip vector at each node has two components (sym-

metric around an initial guess for the rake) of unknown magnitude

which also estimates the rake (Hartzell et al. 1996). The rupture

time at each node is parametrized by a rupture velocity and the rise

time of the triangular source-time function is fixed at 24 s. Green’s

functions (GFs) are defined on an underlying grid which is finer than

the resolving power of the data. The node values of the irregular grid

always guarantee a natural partitioning of the fault which is used to

copy the slip parameters from Voronoi nodes onto the underlying

regular grid to carry out data predictions. The underlying fine grid

is also used to compute first arrival times for the rupture wave front

by solving the eikonal equation.

The inversion is applied to simulated W-phase (Kanamori 1993)

data and W-phase observations from the 2010 Maule (Chile) earth-

quake. W-phase data are of particular interest in tsunami early warn-

ing systems (Kanamori & Rivera 2008). Recently, Benavente &

Cummins (2013) have shown that W-phase data can be used for

efficient estimation of the slip distribution. However, uncertain-

ties may have significant impact on the utility of W-phase data for

early warning but are poorly understood. This study is in part moti-

vated by studying the uncertainties associated with slip inversion of

W-phase data. The results for simulated data show the principal

ability of W-phase data to resolve slip in finite-fault models well

(including peak slip) and also its ability to resolve spatially depen-

dent rupture velocities.

Application to the Maule earthquake shows that the slip pattern

is well resolved by the data and peak slip is well constrained in

some areas but not in others. These data display strongly correlated

residual errors that are likely due to a combination of the long-period

bandpass filter typically applied in W-phase data processing and

model limitations. Significant attention is directed to estimating data

covariance matrices for all stations. Posterior residual-error analysis

is carried out to judge the quality of the covariance estimates. The

covariance estimates significantly improve the residual statistics but

do not remove all effects of correlation.

2 I N V E R S I O N M E T H O D

2.1 Bayesian inference with trans-D models

A trans-D model (Green 1995, 2003) is used here to treat the num-

ber of grid nodes as unknown. The underlying theory is briefly

reviewed below and more detailed discussion on trans-D inversion
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in geophysics can be found elsewhere (Malinverno 2002; Sambridge

et al. 2006; Bodin & Sambridge 2009; Dettmer et al. 2010a; Minsley

2011; Dettmer et al. 2012; Ray & Key 2012). In particular, we fol-

low Dettmer & Dosso (2012, 2013) to implement trans-D sampling

by combining the reversible-jump algorithm with PT on a com-

puter cluster to achieve efficient sampling of a highly non-linear,

high-dimensional 2-D problem. Trans-D models allow a group of

parametrizations to be considered simultaneously for analysis. The

state space of the inversion is composed of the union of subspaces

for the various models. These subspaces can vary in dimension and

also in the physical meaning of parameters. Here, the inversion is

carried out such that the subspaces correspond to models that differ

in the number of Voronoi nodes and hence dimension. These sub-

spaces are indexed with parameter k with a uniform prior and the

posterior density is defined over all subspaces (of various dimen-

sions). To carry out inferences on the posterior, k is typically treated

as a nuisance parameter and marginalized over. The ensemble in-

ferences then include all models considered in the analysis, and

account for how limited knowledge about the parametrization af-

fects the posterior-parameter and uncertainty estimates. Inferences

obtained in this manner avoid the inherent biases involved in select-

ing a single fixed parametrization and are hence more realistic and

reflective of the state of knowledge about model parameters.

Let d be a random variable of N observed data and Mk denote

a group of models specifying particular choices of physical theory,

model parametrization, and error statistics, where k ∈ K and K

is a countable set. In this particular application, k will index the

number of Voronoi nodes in the parametrization. Let mk be a random

variable of Mk parameters representing a realization of model Mk .

Green (1995) shows that Bayes’ rule can be written for a Bayesian

hierarchical model to include parameter k

p(k, mk |d) =
p(k)p(d|k, mk)p(mk |k)

∑

k′∈K

∫

p(k ′)p(d|k ′, m′
k′ )p(m′

k′ |k ′)dm′
k′

, (1)

where p(k) is the prior over the K models considered. The state

variables (k, mk) are of dimension Mk and the state space is trans-D

and given by the union of all fixed-dimensional spaces in K, that

is,
⋃

k∈K({k} × R
Mk ). A Markov chain that samples this state space

can be defined and converges to the trans-D posterior p(k, mk |d).

Note that the PPD p(k, mk |d) intrinsically addresses model selec-

tion and typical inferences about expectations do not require the

computation of normalizing constants (the denominator in eq. 1).

This is a substantial advantage over model selection by way of

normalizing constants/evidence for geophysical problems (Dettmer

et al. 2010b). The conditional probability p(d|k, mk) in eq. (1)

describes the residual-error statistics, where residual errors are de-

fined as the difference of observed and predicted data. For observed

(fixed) data, p(d|k, mk) is interpreted as the likelihood function

L(x), where x = (k, mk) is the parameter (state) vector. The like-

lihood is a function of only x and quantifies the probability that a

given set of parameters gave rise to the observed data: for low L,

x is judged unlikely to have given rise to the observed data; if L is

high, x is likely to be the source of the data.

The slip and rupture-velocity distributions on the fault are de-

scribed fully by the node positions and the parameters associated

with the nodes, resulting in five unknowns for every node: along-

strike node position u, along-dip node position w, first slip compo-

nent s1, second slip component s2 and rupture velocity vrup. This

hierarchical partition model allows data and prior to determine the

spatial complexity of rupture, and adapts locally to the detail re-

solved by the data.

The model is sampled with the MHG algorithm (Green 1995),

where the creation and deletion of nodes are implemented as

reversible-jump steps. The MHG algorithm is a generalization of

the MH algorithm and is implemented by proposing new states

x′ = (k ′, m′
k′ ) of the Markov chain using a proposal distribution q

which is generally centred on the current state x. The proposed state

is then accepted/rejected based on the acceptance probability

α = min

[

1,
p(x′)

p(x)

(

L(x′)

L(x)

)β
q(x|x′)

q(x′|x)
|J|

]

, (2)

where β is an annealing parameter (see below for details), and |J|

is the determinant of the Jacobian for the diffeomorphism from x

to x′ (assures proper dimension mapping of proposals, see Green

2003,for a detailed discussion). A new node is proposed by uni-

formly sampling a position on the fault (drawing along-strike and

along-dip positions from a uniform density) and perturbing the slip

parameters that were previously associated with that position. A

Gaussian proposal distribution centred on the previous parameters

is used for the perturbation (although other choices are possible).

The proposed node is accepted/rejected according to eq. (2) if α is

greater than a uniform random number. To delete, a random node

is selected and removed and the resulting model is again evalu-

ated according to eq. (2). A detailed derivation of the acceptance

probability for adding/deleting nodes is given by eq. (20) in Dettmer

et al. (2010a). Upon creation and deletion of nodes, the Voronoi cells

provide a natural repartitioning of the space that allows straightfor-

ward evaluation of the proposal ratio (which requires the step size

of the perturbation). In addition to jumps that create/delete nodes,

perturbations of node positions and the associated parameters are

performed as additional steps in the Markov chain.

2.2 Non-parametric data covariance matrix with

hierarchical scaling

To evaluate eq. (2), the likelihood function must be defined which re-

quires specifying the data uncertainty distribution for the measured

data. However, since data uncertainties include measurement and

theory errors, their distribution is rarely known independently, but

must be estimated from residual errors which are the difference of

observed and predicted data. For observed data d and predicted data

d(x), the residuals are given by r = d − d(x). Hence, these resid-

ual errors are model-based estimates. Lack of specific knowledge

suggests assuming a simple distribution form for the residuals, for

example, a multivariate Gaussian which is supported by the Central

Limit Theorem. For Gaussian-distributed residuals, the likelihood

function is given by

L(x) =

S
∏

i=1

1

(2π )Ni /2 | Ci |1/2
exp

(

−
1

2
r⊤

i C−1
i ri

)

, (3)

where i indexes S data sets di at multiple stations and/or data types

that are assumed to have independent noise, Ni is the number of

data points for that data set, and Ci are covariance matrices of the

residual errors ri . Note that eq. (3) is general and can be applied to

any number of stations and various types of data so that joint in-

version is straightforward. The relative weighting of data sets/types

is intrinsically given by the Ci with no requirement for ad hoc

scaling/empirical weights.

However, the Ci are generally not known independently because

the sources of theory errors are poorly understood. Therefore, a

crucial aspect of Bayesian inversion is the estimation of Ci . Note

that covariance estimation based directly on the data (e.g. a quiet
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section of a seismogram, ensemble averages of multiple measure-

ments) fails to consider the theory error which is intrinsic to most

geophysical problems and can in fact be important. Therefore, it is

desirable to estimate Ci from residual errors that include the effects

of theory error. This estimation can be carried out by parametric

approaches, where the covariance matrix is parametrized with few

parameters, such as autoregressive error models (Dettmer et al.

2012; Steininger et al. 2013). While hierarchical estimation of co-

variances is possible and desirable for trans-D models, to date only

simple models have been applied (Bodin et al. 2012; Dettmer et al.

2012). For the W-phase data considered in this work, such simple

models (exponential decay of correlation with lag) are insufficient

since the correlations appear more complex.

Alternatively, non-parametric approaches (Holland et al. 2005;

Dettmer et al. 2008) can be applied to iteratively estimate Ci under

the initial assumption of uncorrelated Gaussian errors of unknown

standard deviation. To derive such an implicit likelihood function,

we temporarily assume uncorrelated errors of standard deviation

σ i (Ci = σ 2
i I, where I is the identity matrix). In this case, the

likelihood function simplifies and can be used to derive maximum

likelihood estimates σ̂i by setting ∂Li/∂σ i = 0 and solving for σ i.

After substituting σ̂i into eq. (3) it can be shown (Dosso & Wilmut

2006) that the likelihood function becomes

L(x) ∝

S
∏

i=1

exp

(

−
Ni

2
loge

(

r⊤
i ri

)

)

, (4)

where the normalizing constant is omitted for simplicity, resulting

in the proportionality sign. Note that eq. (4) represents a hierar-

chical model, that is, the standard deviation of the residual error is

estimated by the data. However, instead of explicitly sampling over

S standard deviation parameters, the analytic expression σ̂i is used

for more efficient estimation (for large data sets with many stations,

this approach can substantially reduce the number of parameters).

Hierarchical error models (Malinverno & Briggs 2004; Dosso &

Wilmut 2006) are a substantial advantage of a Bayesian approach,

since error statistics are estimated as part of the inverse problem

which can greatly simplify the inversion.

Eq. (4) is used in an initial phase of the inversion to obtain

optimal point estimates of x to provide data residuals ri . Under the

assumption of ergodicity, the residuals are considered to represent

a realization of the errors. The (biased) autocovariance functions of

the ri are then used to approximate the data covariance matrices.

This approach results in diagonal-constant matrix estimates that

can be applied subsequently via eq. (3). Note that the approach is

typically applied iteratively until the Ci are stable (Dettmer et al.

2007), which can be performed during the burn-in phase of the

sampling algorithm. This approach requires some damping of the

autocovariance function to ensure the resulting matrix is positive

definite. The damping is applied here by employing the biased

estimate for the autocovariance function (i.e. always normalize by

the total number of data for all lags) which dampens values at

large lags, where only few data pairs are available for estimation.

The covariance matrix is updated every 1000 iterations during the

burn-in phase and then held fixed during sampling. Each update of

the matrix is based on the highest likelihood model for the most

probable k value. Since the covariance matrices are estimated from

optimal models, estimates change little once the algorithm samples

appropriate high-likelihood regions (Dettmer et al. 2008). Here,

covariance matrix estimates were empirically found to change little

after a few thousand Markov chain steps, while burn-in periods for

the sampler were much longer (100 000 burn-in steps were used in

the Maule case).

Diagonally constant matrices assume errors to be stationary at

each seismic station. However, the W-phase data considered here

are strongly non-stationary, likely due to theory errors that scale

with the magnitude of the data. Non-stationarity is accounted for

by estimating the standard deviation in a running window of length

of 1/5 of the number of data at each station (to ensure a sufficient

number of data to reasonably estimate the standard deviation). The

initial Ci estimates are then normalized to give correlation matrices

and finally each element is scaled according to the non-stationary

standard deviation estimates (Dettmer et al. 2007). The resulting

covariance matrices are for a single model that may not be rep-

resentative for all members of the trans-D model. Therefore, we

include a hierarchical scaling parameter for each station in the like-

lihood function, so that the magnitude of the covariance matrix is

scaled by a single parameter ξ i:

L(x) ∝

S
∏

i=1

exp

(

−
Ni

2
loge ξi −

1

2ξi

r⊤
i C−1

i ri

)

. (5)

The assumption about the distribution form of residual errors

should be examined a posteriori. This can be carried out by exam-

ining standardized residuals (by multiplying ri with the Cholesky

decomposition of Ci , e.g. Dettmer et al. 2007), which should be

uncorrelated, Gaussian distributed with unit standard deviation. Ab-

sence of significant evidence against the assumptions raises confi-

dence in the inversion results. If significant evidence against the

original assumption exists, covariance estimates are likely poor or

other distribution forms (e.g. Laplacian) should be considered.

2.3 Fault parametrization

The fault model extends over a distance of interest along strike

and dip and is approximately centred around an initial hypocen-

tre location. The hypocentre location is itself treated as unknown

(parametrized in terms of along-strike and along-dip position)

within a small region around an initial location. The prior for the

hypocentre location is uniform over that region. The fault extent is

based on independent information, such as the distribution of after-

shocks. The plane orientation in space is given by fixed strike and

dip angles obtained here from independent point-source inversion

results.

The fault is parametrized here as a partition model in terms of

Voronoi cells which are non-overlapping nearest neighbour regions

that are fully described by node position (along-strike and along-

dip distance) and a norm that defines the distance between the node

position and any point in space (Fig. 1). The norm is given here by

the Euclidian distance d(i) for the ith node in normalized coordinates

un (along strike) and wn (along dip)

d (i) =

√

(u
(i)
n − un)2 + (w

(i)
n − wn)2 . (6)

The subfault parameters associated with a node are constant within

the cell area.

A vector of Voronoi nodes can represent a 2-D environment effi-

ciently with a small number of parameters. This form of partitioning

is particularly suited to cases where some reasonably homogeneous

regions are expected in the environment. In such situations, Voronoi

nodes can be arranged (driven by data) so that few nodes represent

large areas. The trans-D hierarchical formulation of the model en-

sures parsimony, constraining the number of nodes to be consistent
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740 J. Dettmer et al.

Figure 1. Two grids are used to carry out the inversion: (a) The regular

subfault grid on which Green’s functions are computed and (b) the variable

dimension, irregular grid that is used to define the inversion parametrization.

For each data prediction, the Voronoi-node values are copied onto the regular

grid nodes within the cell to match the Green’s functions representation.

Quantities on the regular grid are denoted with the ˆ symbol in (a) and the

coloured regions in (b) indicate which parts of the grid are constrained by

the various Voronoi nodes.

with data and prior information. We choose cells to represent re-

gions of constant values since previous work (Bodin & Sambridge

2009) has shown that such cells have the ability to capture both

abrupt changes and smooth transitions in posterior ensemble es-

timates. Alternatively, smooth interpolation may be advantageous

in some cases while it may cause smooth representation where the

actual process is discreet. Smooth models are not investigated in

this work.

The prediction of waveforms is based on a GF library. The GF are

computed for W phases by normal-mode summation (Kanamori &

Rivera 2008) for a reference earth model (Dziewonski & Anderson

1981). To obtain a smooth representation of the irregular inversion

grid, GFs are given on an underlying fine grid with regular 12-

km spacing (Fig. 1). The grid spacing of the fine grid is chosen

to be below the resolution power of the data. Due to the finite

regular spacing, some changes in Voronoi-node positions can result

in no change to the parameters of the fine grid. However, this does

not significantly affect the algorithm. For each data prediction, the

rupture parameters (s1, s2 and vrup) for each node are applied to

all regular grid nodes in its nearest neighbour region, resulting in

a homogeneous area (Fig. 1). However, since initiation time of the

rupture depends on vrup and the distance from the hypocentre, it is

not constant within the cell. Rather, the eikonal equation is solved

for the vrup distribution on the regular GF grid with a fast finite-

difference solver (Podvin & Lecomte 1991). The eikonal equation

ensures causality for arbitrary spatial distributions of vrup. Due to

the long periods, W-phase data are not sensitive to the rise time of

the source-time function (Kanamori & Rivera 2008) and a triangular

function with a fixed rise time of 24 s is applied here. In addition,

rise times between 15 and 30 s were found to not change linear

inversion results based on the algorithm of Benavente & Cummins

(2013). For computational efficiency, this source-time function is

convolved with the GFs in the library and variations in initiation

time (given by the spatial vrup distribution) are accounted for by

shifting the GFs in time.

2.4 Sampling efficiency

A fundamental challenge in non-linear Bayesian inference is the

efficient sampling of the posterior density. This issue is particularly

difficult for high-dimensional problems, such as 2-D parametriza-

tions with several unknown parameters as a function of space. In

addition, sampling is generally more difficult for data with high

information content, where the likelihood function is highly peaked

with high-likelihood regions being confined to extremely small parts

of the parameter space. Since high data-information content is as-

sociated with low noise levels, sampling is typically more difficult

for data with low noise level.

To date, little work exists in non-linear Bayesian sampling for slip

inversions. Minson et al. (2013) develop a highly efficient fixed-

dimensional sampling algorithm for joint inversion that employs

sequential Monte Carlo techniques (resampling, annealed posterior

sequence) similar to methods developed in other fields (Jarzynski

1997; Neal 2001; Godsill & Clapp 2001). In addition, Minson et al.

(2013) estimate parameter covariances from the sample to allow ef-

ficient proposal of new steps which is similar to proposal densities in

principal component space (Dosso 2002). However, to date efficient

proposals in principal component space have not been developed

for trans-D problems.

Here, population Monte Carlo/PT (Geyer 1991; Jasra et al. 2007)

is applied to improve sampling from the trans-D space. PT samples

from a sequence of tempered densities which has been shown to im-

prove sampling efficiency for trans-D inverse problems with peaked

likelihoods (Dettmer & Dosso 2012, 2013). Tempering relaxes the

likelihood function by raising it to the power of an annealing pa-

rameter (0 ≤ β ≤ 1, see eq. 2) which effectively flattens peaks,

making transitions of the Markov chain easier. By simulating many

parallel chains for various values of β and allowing information

exchange between chains, sampling efficiency can be dramatically

improved for difficult problems. While additional computational

cost is associated with the additional chains, the accelerated rate of

convergence often dwarfs that cost. PT is particularly well suited

for a parallel implementation and large problems. It is formally

based on augmenting the posterior with additional densities to

obtain π∗

π∗ =

N
∏

i=1

πi . (7)

Here, N is the number of parallel Markov chains, π i is the poste-

rior sampled by Markov chain i for a given value of the tempering

parameter β i, and at least one πi ≡ π = p(x|d) (i.e. the posterior

sampled with β = 1). The idea is that the additional densities aid

in sampling from π to a degree that the additional computational

effort is insignificant. Note that the π i-sequence can be chosen

in any meaningful way and is not limited to a sequence of tem-

pered densities (hence, some literature prefers the more general

term of interacting Markov chains). Here, the sequence is cho-

sen to be tempered. To allow proper application to trans-D models

(Jasra et al. 2007), only the likelihood function is raised to the

power of the tempering parameter
(

πi ∝ p(x)L(x)βi , βi ∈ [0, 1]
)

.

Each density is targeted by one Markov chain and the multi-

ple chains are simulated in parallel on a computer cluster. While

high-β chains sample locally, low-β chains sample much more

widely due to the relaxed likelihood structure. Importantly, chains

can interact by exchange updates where randomly selected pairs

are allowed to swap temperatures (Geyer 1991). For two chains n

and q with parameter vectors xn and xq , respectively, updates are
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accepted/rejected based on the MH criterion for exchange updates

given by

α = min

[

1,
πn(xq )πq (xn)

πn(xn)πq (xq )

]

= min

[

1,

(

L(xn)

L(xq )

)βq −βn
]

. (8)

Note that chains n and q can have states of arbitrary dimension

during exchange moves since eq. (8) simplifies to a tempered likeli-

hood ratio when only likelihoods are tempered (i.e. prior probabil-

ities cancel). The interacting population of chains is implemented

here on a parallel computer cluster with fast interconnect between

processors. The algorithm has a simple master-worker structure and

each chain is run on an individual processor. Exchange moves are

carried out by the master when workers communicate with the mas-

ter after each step. Since the order of workers communicating with

the master is random, proposing exchange moves for consecutively

reporting worker pairs results in proper sampling. Note that the

reporting order can depend on the particular computer cluster and

should be verified by saving the chain number as part of the posterior

sample. Note that PT works best when exchange moves are proposed

frequently. Since exchange moves carry virtually no computational

overhead (do not require likelihood evaluation) these moves should

be proposed as often as possible. The only limitation on exchange

frequency on a computer cluster can be high-latency/low-bandwidth

networks.

The choice of proposal distribution for perturbation steps can

significantly impact algorithm efficiency. While arbitrary adapta-

tion of the proposal distribution is not allowed and can cause biased

sampling, diminishing adaptation (Brooks et al. 2011) is applied to

allow automated tuning of the standard deviations of the proposal

densities. The adaptation of step sizes is such that MH acceptance

rates are targeted to be in the range of 20–30 per cent. Each chain

is adapted individually, so that proposal distributions are scaled ap-

propriately for the various tempering levels in the algorithm. There-

fore, highly tempered chains propose much larger steps than those

with little or no tempering. This is consistent with the relaxation

of the tempered likelihood function. The adaptation is automated

such that it diminishes over time and does not violate detailed bal-

ance. In practice, most adaptation also occurs in the burn-in phase

where chains do not contribute to the posterior estimates. Finally,

Cauchy distributions are used as proposal distributions for pertur-

bation moves which often perform better for difficult problems than

Gaussian proposals due to a higher probability of proposing large

steps (heavy tails) while having similar probability of proposing

small steps (Dosso & Wilmut 2008).

3 I N V E R S I O N R E S U LT S

This section considers three data sets, two of which are simulations

and one for the 2010 February 27 Mw = 8.8 Maule (Chile) earth-

quake. All data sets are based on the configuration of 30 stations

obtained for the Maule earthquake as shown in Fig. 2. Vertical-

component W-phase data were obtained for distances of 5◦–90◦

with good azimuthal coverage (maximum azimuthal gap of 50◦,

Fig. 2). Since a large number of data are available, we limit the

inversion to vertical components which are typically less noisy than

horizontal components. This approach is favourable for the com-

putational expense which increases with the number of data. The

data are bandpass filtered to 200–1000 s periods and W-phase time

windows are chosen according to Kanamori & Rivera (2008). The

sampling rate for all data sets is 4 s (∼6500 data points). The fault-

plane geometry is considered fixed with a strike of 18◦, a dip of

Figure 2. Station configuration (dots) used for all inversions in Section 3.

Stations highlighted in red are considered in more detail in Section 3.3 and

the hypocentre location is indicated by a star.

18◦, along-strike extent of 600 km and along-dip extent of 300 km

(Benavente & Cummins 2013). The orientation of the two compo-

nents of the slip vector is identical to that in the simulation study.

Hence, the initial rake is 104◦ and depending on the scale of the two

components, rake can vary between 59◦ and 149◦ (i.e. slip compo-

nent one is at 149◦, component two at 59◦). Data predictions are

based on a GF library, computed for W phases by normal-mode

summation (Kanamori & Rivera 2008) for a reference earth model

(Dziewonski & Anderson 1981).

Convergence of all inversions is judged by examining the chain

history. First, a burn-in period is discarded. The burn-in period

includes the adaptive phase of the algorithm, where step sizes are

tuned (automated) based on the acceptance rate. Once acceptance

rates for all parameters are between 20 and 30 per cent, the algorithm

is run as long again and these steps are discarded. For the sampling

phase, sections of chain history (the first third and the last third)

are compared in terms of marginal densities and chain plots (see

Dettmer et al. 2013,for a detailed description). Once the practitioner

is satisfied by the results, the inversion is terminated.

This section obtains inferences about parameters by marginal-

izing the high-dimensional PPD (Sivia & Skilling 2006). This re-

sults in various marginal densities that integrate over all parameters

but those that are inferred. Therefore, the marginal estimates in-

clude the integrated effects (covariances) due to the other uncertain

parameters and give quantities that can be interpreted in a more

straightforward manner than the high-dimensional PPD.

3.1 Importance of model selection and irregular grids

The first data set considers finite-fault inversion of simulated W-

phase data for a simple slip distribution to illustrate the importance

of quantitative model selection for rupture parameter and uncer-

tainty estimation. W-phase data are simulated for a single, rectan-

gular slip patch located between 330- and 420-km along-strike dis-

tance and 30- and 90-km along-dip distance. The slip magnitude in

this patch is 28.6 m and is parametrized as two components with 25-

and 14-m slip. All other areas have zero slip. Gaussian-distributed

noise with a standard deviation of 15 per cent of the mean absolute

amplitude at each station was added to the data. Three inversions

with different parametrizations are carried out to investigate the
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Figure 3. Inversion results for simulated data comparing (a) trans-D re-

sults, (b) irregular grid with 20 nodes and (c) regular grid with 120 nodes.

Ensemble mean model (left-hand panels), MAP model (middle panels) and

uncertainty estimates (right panels) are shown (solid blue: posterior mean,

dashed black: 95 per cent CIs, dashed red: true values). Fine white lines

indicate the Green’s function grid (subfault boundaries) and heavy white

lines the position of cell boundaries for irregular grids. For clear visual pre-

sentation, Voronoi-node positions are only shown in (a) as white points and

omitted in (b). The hypocentre location is given by the white star.

impact of parametrization choice on the results for this problem:

(i) A trans-D, irregular grid as outlined in Section 2 is applied.

(ii) The number of irregular grid nodes is fixed at 20 (much higher

than required for such a simple slip distribution), otherwise the in-

version is identical to case (i). (iii) The inversion grid is regular,

fixed and identical to the underlying GF grid. Uniform priors were

applied for slip with bounds of 0 and 40 m. The rupture velocity

and hypocentre location were assumed as known. The three choices

have substantially different numbers of parameters. In case (i), the

number of parameters is variable but the algorithm predominantly

samples models with four grid nodes, hence the dimension of the

parameter vector is close to 16 (two slip parameters and two position

parameters per node). In case (ii), the dimension is 80 and in case

(iii) it is 240 (a subfault size of 30 by 30 km). These differences

have a significant impact on the ability to infer information from

the data. Convergence for all three inversions was judged based

on chain history after burn-in (Section 3). Case (iii) converged

after ∼5000 steps. Note that one step in the chain includes propos-

ing perturbations to all parameters and, hence, computational time

for one Markov-chain step increases linearly with the number of

parameters. Case (ii) converged after ∼15 000 steps, while case

(iii) required ∼20 000 steps. Hence, the total number of forward-

model evaluations for case (i) is ∼80 000, for (ii) ∼1× 106 and for

(iii) ∼4× 106.

Fig. 3 compares the three inversion results in terms of posterior

mean and maximum a posteriori (MAP) models, and 95 per cent

credibility intervals (CI) for the slip as a function of along-dip dis-

tance at 405-km along-strike distance. The trans-D inversion has

the ability to capture the rupture complexity with only four nodes

(16 parameters) which results in the lowest parameter uncertainties

(∼1-m CIs). Such low uncertainties appear reasonable considering

the simple slip pattern and the large number of data. Note that the

detailed shape of the Voronoi cells does not reflect the data predic-

tion, since the cells are only used to copy the appropriate rupture

parameters onto the regular GF grid (see Fig. 1). When the number

of irregular grid nodes is arbitrarily increased to (but fixed at) 20,

posterior estimates are smeared/smoothed and uncertainties sub-

stantially increase. Interestingly, node positions cluster around the

slip centre and the large areas without slip are still parametrized by

few nodes, illustrating how irregular grids can locally adapt to the

structure supported by the data. In the case of a fixed grid with spac-

ing of 30 km (240 parameters), the model is so overparametrized for

the given data that the inversion loses ability to resolve parameter

values and results are even more smeared out/smoothed. In addition,

uncertainties are large and in some cases reach over the full prior

width.

This example illustrates the importance of quantitative model

selection to obtain rigorous posterior estimates. While specific de-

tails of the solution may vary with noise level and data type, the

important result is that uncertainty estimates depend strongly on

parametrization choice. For models of 2-D/3-D structures such as

faults, empirically choosing the parametrization/grid spacing can

be extremely difficult. In addition, parameter resolution typically

varies as a function of space, making spatially regular parametriza-

tions undesirable. The parsimonious self-parametrization developed

here is ideally suited to address these issues which is desirable for

non-linear Bayesian inversion.

3.2 Simulated data inversion

This section considers W-phase data simulated for a realistic test

case based on the Maule earthquake (station configuration and fault

geometry are identical) to verify the algorithm. The goal of this

study is to validate the algorithm and to study fault-parameter un-

certainties in an ideal test case (without theory error). Fig. 4 shows

the model parameters used to simulate vertical components of

W-phase data. The rake is parametrized with the two component

slip vectors which are rotated such that the mean rake is centred

between them (i.e. slip component one is at 149◦, component two

at 59◦). The simulated slip distribution has two centres of high slip

with midpoints at ∼150 and 475 km along-strike distance, and ∼70

and 40 km along-dip distance, respectively. Changes in rake of up to

±45◦ around the centre value are included by varying the two slip

components independently. Note that the two slip centres are located

at different locations from the top of the fault to examine the ability

of W-phase data to differentiate between such small differences.

Prior densities were chosen to be uniform between 0 and 30-m slip

for each component. In addition, the rupture velocity is a function

of space across the fault with a uniform prior with bounds of 1.5 and

3.5 km s−1. Large rupture velocities exist near the hypocentre and

velocity decreases with increasing distance from the hypocentre.

The hypocentre is located on the fault at 300-km along-strike and

80-km along-dip distance. Uncorrelated, Gaussian-distributed noise

with standard deviations of 5 per cent of the mean absolute ampli-

tude at each station was added to the data, resulting in a different

level of noise for each waveform. We chose to carry out the inver-

sion for data with uncorrelated errors as an ideal test case, where no

theory error exists. However, the noise level of 5 per cent of mean

amplitude is high compared to seismic noise on typical observed

data. For example, estimating the seismic noise standard deviation

from 24 hr of data before the Maule event (for 200–1000-s periods),

gives much lower noise levels (∼1 per cent). However, such esti-

mates are unrealistically low since theory errors are ignored.

Fig. 5 shows four representative waveforms and the MAP pre-

dictions from the inversion. In addition, 95 per cent CIs for the data

predictions are shown. The CIs are obtained by predicting data for

all posterior samples (i.e. marginalizing the posterior in data space)
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Figure 4. True parameter values and hypocentre location (⋆) for the finite-fault inversion simulation: Slip component (a) one and (b) two and (c) rupture

velocity. Note that spatial changes of rupture velocity and slip do not coincide.

and indicate what range of data predictions the inversion produces.

The data are well fit by the inversion and the range of data predic-

tions is consistent with the level of noise on the simulated data. In

particular, the implicit sampling of the standard deviation at each

station accurately captures the various noise levels without any re-

quirement to specify weights or scale amplitudes. The likelihood

values sampled by the inversion are of the order of the likelihood

value when using the true model. The trans-D model has the highest

probability for group members with 10 nodes but has some prob-

ability from 8 to 12 nodes (Fig. 6a). In addition, the true moment

magnitude of ∼8.99 is also well estimated by the inversion with low

uncertainty (Fig. 6b).

Fig. 7 considers the inversion results in terms of ensemble-mean

models for both slip components and for the rupture velocity. The

spatial distributions of both slip components are well recovered

and the mean model clearly distinguishes between areas of shallow

and deeper slip. However, the slip is not precisely recovered due to

noise, and since the self-parametrization cannot capture the com-

plexity of the true model precisely in this more complex case. It is

important to note that this is a limitation for all inversions where the

model is simpler than the true environment. Here, a parsimonious

approximation of the true environment is successfully found and

can be verified by the fact that the true likelihood value is in the

range of sampled likelihood values. The results capture the main

features of the true model well, agreeing in magnitude, direction and

position of slip. The self-parametrizing inversion is able to adapt

locally to the structure supported by the data and capture different

spatial scales in different parts of the model without any require-

ment for regularization. Fig. 7 also shows the posterior mean model

for the rupture velocity and the rupture wave fronts for that model.

The posterior rupture velocity agrees reasonably well with the true

model but some differences exist. This particular example is chal-

lenging, since the true spatial distribution of vrup is on a different

scale than that for slip. Therefore, some nodes may be required for

vrup but not for slip and vice versa. However, the inversion always

requires all parameters to be present for each node, a limitation that

is non-trivial to overcome.

The Bayesian approach applied here also allows examination of

uncertainties for all parameters in the inversion. Fig. 8 shows the slip

magnitude and vrup along-dip profiles at selected locations along the

strike of the fault (locations are indicated in Fig. 7). Posterior mean

profiles, 95 per cent CIs and true values are shown. The uncertainty

of slip magnitude is generally of the order of metres but is as

high as ∼10 m in some areas of high slip. In the transition zones

between low- and high-slip areas, the uncertainty of slip magnitude

can be very high due to uncertainty in resolving the location of

the transition (e.g. the slice at 480-km along-strike distance, Fig. 8).

The uncertainty estimates for vrup indicate that W-phase data contain
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Figure 5. Simulated vertical component W-phase data for four selected stations (blue). The MAP predictions (red) and 95 per cent CIs (black) of the predictions

are also shown.

Figure 6. Simulation results for (a) model complexity of inferred trans-D

model and (b) moment magnitude. The solid vertical line in (b) indicates

Mw for the true model.

little information about the spatial distribution of vrup. However,

while uncertainty is large, some sensitivity appears to exist to rup-

ture velocity. To examine vrup resolution further, the inversion was

also carried out by parametrizing vrup with a single unknown pa-

rameter that quantifies vrup in space (referred to as inversion two).

Hence, while the value of vrup can be uncertain and is inferred as

part of inversion two, vrup does not change spatially. The inver-

sion results were compared using the BIC (Schwarz 1978), which

identified the more complex model (inversion one) as preferable.

In addition, convergence was much more difficult in inversion two

and results showed strong divergence from the true model. There-

fore, we conclude that W-phase data can be sensitive to signifi-

cant variability in vrup and accounting for such variability in the

model should be examined by model selection for observed data.

However, inferences on vrup variability are associated with large

uncertainties.

3.3 Application to the Maule (Mw = 8.8, Chile) earthquake

This section applies the inversion to the 2010 February 27 Mw = 8.8

Maule (Chile) earthquake. Prior bounds for both slip components

are uniform between 0- and 70-m slip and for rupture velocity

uniform between 2.0 and 3.0 km s−1. Two complete inversions were

carried out for these data to investigate the optimal parametrization

for the rupture velocity. The first inversion assumes a simpler model

where rupture velocity is not a function of space but given by a single

unknown parameter. The second inversion assumed a more complex
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Figure 7. Inversion results in terms of the posterior mean model: Slip component (a) one and (b) two, and (c) rupture velocity. Dashed vertical lines indicate

the location of slices for examining uncertainty estimates (see Fig. 8) and dashed lines in (c) are inferred rupture wave fronts for the posterior mean model.

True hypocentre location (⋆) and MAP hypocentre location (∗) are also shown.

model where vrup is a function of space and given by an additional

parameter for each grid node. The results for both inversions are

compared with the BIC and BIC values for the simpler model are

15 units lower than those for the more complex model. Therefore,

the simpler model is chosen as optimal and the following detailed

discussion of results only considers results for a single unknown for

vrup.

Fig. 9 shows W-phase waveforms for four arbitrarily chosen sta-

tions (IU.TRIS, IU.SLBS, IU.TSUM and IU.LSZ). In addition, MAP

data predictions and prediction CIs are shown. The predictions ap-

pear to fit the observed data well. However, while the observed

data lie mostly within the range of data predictions, close inspec-

tion shows that areas of systematic misfit appear at all stations,

suggesting strongly correlated residual errors. It is crucial to ad-

dress such correlations in the covariance matrix of the likelihood

function to avoid biases in parameter estimates and uncertainties.

Following the approach in Section 9, the matrices for each station

are estimated here from residuals obtained from an initial inversion

that assumes uncorrelated errors. The matrices are then periodically

updated during the burn-in phase of the following inversion. The

final estimates are shown for four representative stations in Fig. 10.

Note that the residuals are strongly non-stationary with smaller

standard deviations at early times (low waveform amplitudes) and

high standard deviations at later times (high waveform amplitudes).

This suggests that misfit increases with W-phase amplitude (i.e.

errors scale with the magnitude of the data). This effect is likely

due to theory errors stemming from limitations in the GF library

(Duputel et al. 2014).

The trans-D inversion captures the complexity of this rupture with

12 nodes and uncertainties range from 11 to 14 nodes (Fig. 11). In-

version results in terms of the posterior-mean model for total slip

(Fig. 12a) suggest that three spatially distinct areas of significant

slip exist. Two of these areas show peak-slip magnitudes of >30 m

and are located at the shallowest parts of the fault plane. While the

southern slip concentration (at ∼190 km along strike) shows the

highest mean slip of 58 m, the uncertainty associated with this re-

gion is also high (∼30 m CI, Figs 12b and 13). In areas of such high

uncertainty, the posterior mean model does not provide meaningful

estimates of slip and the credibility intervals in Fig. 13 should be

considered instead. Fig. 13 shows that uncertainties in the southern

slip concentration are so high that meaningful peak-slip estimation

is not possible in that area. The northern slip centre shows much

lower uncertainty with slip of ∼35 ± 7.5 m. The slip pattern is

consistent with other published results, in particular the geodetic

inversion by Vigny et al. (2011) who observed significant slip south

of the hypocentre. However, peak slip is much higher than previously
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Figure 8. Posterior mean profiles (blue), 95 per cent CIs (dashed) and true model (red), at arbitrarily selected along-strike distances for slip magnitude (top)

and rupture velocity (bottom). The top row is cropped to 150-km along dip distance to focus on the area where most slip occurs.

Figure 9. W-phase waveforms for select stations as indicated in Fig. 2. Observed (blue), MAP data predictions (red) and 95 per cent CIs (black) for three

stations for the Maule earthquake inversion.

reported (e.g. Koper et al. 2012; Benavente & Cummins 2013). This

work is significantly different from all previous work on slip estima-

tion for this event since no smoothing or regularization is applied.

In addition, this is the most rigorous model selection applied to

slip inversion to date and the simulation in Section 3.2 has clearly

shown that W-phase data can resolve peak slip within reasonable

uncertainties. Therefore, it is possible that previous work underes-

timated the peak slip of this event due to restrictive assumptions

made in the inversion. In particular, it is fundamentally not possible

to quantify the effects of global regularization on the inferred pa-

rameters. In addition, previous work has ignored correlated residual

errors for various data types. It is important to note that correlated

errors can substantially impact linear and non-linear inversion re-

sults (Dettmer et al. 2007). However, the W-phase data used here

show such strongly correlated residuals that some concern remains

about the reliability of the estimation process for the data covari-

ance matrices. Recent work on physical modelling of some aspects

of theory error (Yagi & Fukahata 2011; Duputel et al. 2014) shows
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Figure 10. Examples of non-stationary data covariance matrix estimates for

the same stations as shown in Fig. 9. Note that the range of time lags varies

for the various matrices.

Figure 11. Posterior distribution of number of nodes in rupture model (in-

dicating model complexity).

promise but intrinsically cannot address all theory error. A com-

bination of the approach presented here and physical modelling of

theory error may address the problem better but poses a significant

research task. Joint inversion may also provide further insights since

additional data types may help constrain slip magnitudes better.

In the northern updip slip centre, the rake (Fig. 12c) is estimated

at 140◦ with a 95 per cent CI from 130◦ to 149◦. These values are

consistent with previously reported results (Benavente & Cummins

2013) and are also consistent with the tsunamigenic character of the

earthquake. The uncertainty in rake is much higher in the southern

slip centre where the 95 per cent CI is from 110◦ to 149◦. A third

region of smaller slip (∼25 ± 7.5 m) exists at 480-km along-strike

distance and 100-km along-dip distance. The posterior rake esti-

mate in this region is ∼85◦ but there is no conclusive explanation

for the difference in rake compared to the patch at shallower depth.

Since the slip is significantly smaller than elsewhere in the model,

the data features constraining this patch are likely small and are

more likely to be affected by limitations in the noise estimation

process. Fig. 12(d) shows the node density on the fault which is an

indication for where the data support structure in the slip distribu-

tion. Importantly, no significant structure is supported at along-dip

distances larger than 150 km.

Fig. 14(a) shows marginal densities for the hypocentre location.

The density is highly multimodal which is likely due to the in-

fluence of theory errors in the inversion. While the multimodal

density increased sampling difficulty, it is important to account for

the uncertainty in hypocentre location in the parameter estimates

of primary interest (slip). Fig. 14(b) shows the marginal estimate

for rupture velocity with a MAP value of 2.15 km s−1. The MAP

moment magnitude is Mw ≈ 8.9 with a 95 per cent CI of 0.02.

Finally, residual errors are examined to judge how appropriate

the assumptions in the likelihood function are. Raw and standard-

ized residuals are considered. The raw residuals are obtained for

the MAP model from the initial inversion that ignored correlated

errors (only scaled by a single standard deviation that is implicitly

sampled in the inversion according to eq. 4). Standardized residuals

are obtained for the MAP model of the final inversion that included

the hierarchically scaled covariance estimate. These residuals are

standardized by multiplication with the Cholesky decomposition of

the covariance matrix (Dettmer et al. 2007). If assumptions are well

met, the standardized residuals should be Gaussian distributed with

zero mean and unit standard deviation. We examine the random-

ness of the residuals by considering the autocorrelation function

which should have a sharp central peak for truly random residuals.

Fig. 15(a) shows the autocorrelation for four stations for raw and

standardized residuals. The standardized residuals are substantially

narrower in the main peak but still show correlation. Hence, the

covariance estimation carried out here improved the inversion. To

examine Gaussianity, residual histograms are considered. Fig. 15(b)

shows histograms for raw and standardized residuals, and a Gaus-

sian density as reference. The standardized residuals appear to be

much closer to the Gaussian reference than the raw residuals, which

raised confidence in the results. Note that the results in Fig. 15

Figure 12. Inversion results for the Maule event: (a) Posterior mean slip magnitude and 7.5-m slip contours (white), (b) 95 per cent CI width for slip magnitude

on the fault, (c) rake for posterior mean model and (d) Voronoi-node position probability (darker values correspond to higher density). Point-source hypocentre

location (⋆) and MAP hypocentre location (∗) are also shown. Vertical dashed lines indicate locations of marginal profiles in Fig. 13.
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Figure 13. Marginal profiles of slip magnitude for select along-strike distances. Posterior mean (solid blue) and 95 per cent CIs (dashed black) are shown. Note

the large uncertainty of ∼50 m associated with the southern slip centre. Along-dip distance is cropped to 150 km to focus on the area where most slip occurs.

Figure 14. Marginal densities for (a) hypocentre location (point-source hypocentre: ⋆, MAP hypocentre: ∗), (b) rupture velocity and (c) moment magnitude.

are representative for all 30 stations. In summary, the advanced

covariance estimation applied here significantly improves residuals

but does not address all issues. More research is required to better

understand the source of theory errors.

4 S U M M A RY A N D D I S C U S S I O N

This paper developed a probabilistic finite-fault inversion based on

a trans-D self-parametrization of the fault. The fault is parametrized

using self-adapting irregular grids which intrinsically match the lo-

cal resolving power of the data and provide parsimonious solutions

requiring few parameters to infer complex rupture characteristics.

The self-adapting parametrization is implemented by a trans-D ir-

regular grid based on an unknown number of Voronoi nodes. The

model structure is controlled by Bayesian parsimony, and hence

does not require subjective choices of regularization.

The time dependence of the rupture was parametrized by rupture-

velocity parameters and a single triangular source-time function

with fixed rise time of 24 s. Fixing the rise time is justified by the

long periods of W-phase data which are not sensitive to changes

in rise time (Benavente & Cummins 2013). Rupture causality

is ensured by solving the eikonal equation on the regular GF

grid. For the parametrization of vrup, we selected two possible

models: (1) a rupture-velocity parameter being present for all

Voronoi nodes, and (2) a spatially independent vrup. However, the op-

timal parametrization is likely different but non-trivial to estimate.

The data information on the spatial variability of various types of

parameters is likely different for each type. Model one cannot treat

spatial variability in vrup as independent of that in slip distribu-

tion. Rather, the spatial dependence is parametrized with a single

set of nodes with three slip-related and two position parameters.

If data information about spatial variability in vrup is substantially

different from that about the slip components, the resulting trans-D

model may be overparametrized. An alternative approach would be

to decouple the types of parameters and allow a separate trans-D

model for vrup. However, this leads to similar problems where the

overparametrization is due to additional node-position parameters.

The inversion was applied to simulated W-phase data and W-

phase observations from the 2010 Maule (Chile) earthquake. The

simulated-data results showed the ability of W-phase data to resolve

slip distributions and spatially dependent rupture velocities of slip

models. The complexity of the true model was chosen such that

the spatial variability of rupture velocity does not coincide with the
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Figure 15. Residual analysis in terms of (a) residual autocorrelation plots

(raw residuals: grey, standardized residuals: black), and (b) residual his-

tograms (raw residuals: red, standardized residuals: black and standard nor-

mal distribution: blue) for four stations.

spatial variability of the slip. Despite this challenge, the complexity

of the true model was captured with just a few Voronoi nodes

(∼10). The estimated moment magnitude agreed closely with the

true moment magnitude of the simulation and slip uncertainties

are mostly of the order of metres. However, some areas of large

uncertainties on slip exists where slip transitions from low to high

values.

Application to the Maule earthquake estimates a moment magni-

tude of ∼8.9 with 95 per cent CIs of 0.02. For the Maule event, the

data do not support rupture velocity varying as a function of space.

A slip pattern of three major slip centres was clearly resolved by the

data, showing two shallow areas of large slip to the south and to the

north of the hypocentre. The southern centre has large uncertainty

associated with the slip (almost as large as the magnitude of the slip),

while the northern slip centre is well determined with uncertainties

of only ±7.5 m. While the results of the spatial variability of slip

are consistent with other published results (Vigny et al. 2011), peak

slip is significantly higher (∼35 m in the well-determined north-

ern slip centre) than previously reported. Benavente & Cummins

(2013) recently reported finite-fault results from a linear regular-

ized inversion of W-phase data. While uncertainty estimation was

not considered, general similarity exists with the slip pattern pre-

sented here. A significant difference is our ability to identify the

southern slip centre as poorly constrained. In addition, the northern

area resolves two distinct regions of slip due to the ability to adapt

the parametrization to the local resolving power of the data. The

global regularization in Benavente & Cummins (2013) precludes

such resolution.

The residual errors for W-phase data appear to be dominated by

theory error (errors due to model limitations) which results in highly

correlated errors that we account for by a combination of empirical

and hierarchical estimation: The non-stationary covariance matrix

at each station is iteratively estimated from the residuals and ap-

plied in the inversion with a hierarchical scaling factor. While this

approach is an advanced treatment of residual errors, not all corre-

lation is removed and further work is required to better understand

W-phase residual errors. While some recent contributions in the lit-

erature show promise (Yagi & Fukahata 2011; Duputel et al. 2014),

a comprehensive solution to this problem does not currently exist.

While computationally intensive, the methods developed here

can in principle be applied to any combination of earthquake

observations, including seismic, geodetic and tsunami data. The

hierarchical-empirical approach to determining noise statistics pro-

vides natural scaling of the contribution each data set makes to the

solution, avoiding the need to apply subjective weighting factors.

Better understanding of earthquake sources is key to improving

tsunami-hazard assessments which typically base predictions on

overly simplistic characterizations of earthquake rupture and poor

understanding of uncertainty. Quantitative study of parameter un-

certainty in rupture models is a crucial component for better un-

derstanding of rupture and better hazard assessments. The efficient

parametrization and rigorous error treatment developed here are

among the first such steps towards better inferences on rupture.
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